Life on the Urbach Edge

The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For s...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 13; no. 33; pp. 7702 - 7711
Main Authors Ugur, Esma, Ledinský, Martin, Allen, Thomas G., Holovský, Jakub, Vlk, Aleš, De Wolf, Stefaan
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.08.2022
Online AccessGet full text

Cover

Loading…
Abstract The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material’s minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley–Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.
AbstractList The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material’s minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley–Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.
The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.
Author Holovský, Jakub
Ugur, Esma
Allen, Thomas G.
Ledinský, Martin
De Wolf, Stefaan
Vlk, Ales
AuthorAffiliation KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE)
Faculty of Electrical Engineering
Centre for Advanced Photovoltaics, Czech Technical University in Prague
Laboratory of Nanostructures and Nanomaterials, Institute of Physics
AuthorAffiliation_xml – name: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE)
– name: Centre for Advanced Photovoltaics, Czech Technical University in Prague
– name: Laboratory of Nanostructures and Nanomaterials, Institute of Physics
– name: Faculty of Electrical Engineering
Author_xml – sequence: 1
  givenname: Esma
  orcidid: 0000-0003-0070-334X
  surname: Ugur
  fullname: Ugur, Esma
  organization: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE)
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-6586-5473
  surname: Ledinský
  fullname: Ledinský, Martin
  organization: Laboratory of Nanostructures and Nanomaterials, Institute of Physics
– sequence: 3
  givenname: Thomas G.
  surname: Allen
  fullname: Allen, Thomas G.
  organization: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE)
– sequence: 4
  givenname: Jakub
  surname: Holovský
  fullname: Holovský, Jakub
  organization: Faculty of Electrical Engineering
– sequence: 5
  givenname: Aleš
  orcidid: 0000-0003-2866-7133
  surname: Vlk
  fullname: Vlk, Aleš
  organization: Laboratory of Nanostructures and Nanomaterials, Institute of Physics
– sequence: 6
  givenname: Stefaan
  orcidid: 0000-0003-1619-9061
  surname: De Wolf
  fullname: De Wolf, Stefaan
  email: stefaan.dewolf@kaust.edu.sa
  organization: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE)
BookMark eNqFkDFPwzAQhS1UJNrCzMCSkSWpz4kTZ0RVKUiRWOhsXRybukrjYrsD_55AOyAGmO5J9743fDMyGdygCbkDmgFlsEAVst1B9TrGjCkKAtgFmUJdiLQCwSc_8hWZhbCjtKypqKbktrFGJ25I4lYnG9-i2iar7k1fk0uDfdA35zsnm8fV6_IpbV7Wz8uHJsWcsZgCci5MqztUYJQSvBa85IaKAjgqlneirUpaGOwQCoGsoi0i5HVrlC4Np_mc3J92D969H3WIcm-D0n2Pg3bHIEeCgch5XY3V-lRV3oXgtZHKRozWDdGj7SVQ-SVDjjLkWYY8yxjZ_Bd78HaP_uMfanGivp_u6IdRxZ_EJ7Vfd5A
CitedBy_id crossref_primary_10_1002_aenm_202406033
crossref_primary_10_1021_acs_jpclett_3c02966
crossref_primary_10_1021_acsomega_3c05930
crossref_primary_10_1021_acs_chemmater_3c02898
crossref_primary_10_1016_j_joule_2024_09_001
crossref_primary_10_1002_ange_202401751
crossref_primary_10_1016_j_rineng_2025_104009
crossref_primary_10_1038_s41560_024_01472_3
crossref_primary_10_1038_s44221_024_00247_0
crossref_primary_10_1016_j_ces_2024_120249
crossref_primary_10_1002_anie_202407508
crossref_primary_10_1016_j_surfin_2024_105383
crossref_primary_10_1103_PhysRevApplied_22_044053
crossref_primary_10_1002_adom_202301361
crossref_primary_10_1002_smll_202301037
crossref_primary_10_1002_solr_202400447
crossref_primary_10_1016_j_nanoen_2024_110269
crossref_primary_10_1021_acsenergylett_2c02352
crossref_primary_10_1021_acs_inorgchem_4c00470
crossref_primary_10_1039_D3EE00952A
crossref_primary_10_1039_D4EY00091A
crossref_primary_10_1002_adom_202300776
crossref_primary_10_1002_solr_202300538
crossref_primary_10_1039_D4EE00901K
crossref_primary_10_1002_anie_202401751
crossref_primary_10_1002_solr_202300261
crossref_primary_10_1021_acsami_3c13710
crossref_primary_10_1063_5_0168780
crossref_primary_10_1039_D3CC02270F
crossref_primary_10_1088_1361_6463_ad91c1
crossref_primary_10_1002_ange_202407508
crossref_primary_10_1021_acs_jpcc_3c07293
crossref_primary_10_1021_acsaem_3c00146
crossref_primary_10_1021_acs_nanolett_3c04881
crossref_primary_10_1116_6_0002866
crossref_primary_10_1063_5_0145442
crossref_primary_10_1021_acs_jpclett_4c00814
crossref_primary_10_1039_D4SE01437E
crossref_primary_10_1002_solr_202400750
crossref_primary_10_1021_acs_jpclett_3c01893
crossref_primary_10_1038_s41578_025_00784_4
crossref_primary_10_1021_acs_chemmater_2c02187
crossref_primary_10_1021_acs_chemmater_4c00188
crossref_primary_10_1088_1402_4896_adb915
crossref_primary_10_1126_science_adp1621
crossref_primary_10_1039_D4TC00212A
crossref_primary_10_1002_aenm_202404755
crossref_primary_10_1021_acs_jpcc_3c06502
crossref_primary_10_1002_adom_202302701
crossref_primary_10_1080_00222348_2024_2395095
crossref_primary_10_1021_acs_jpcc_3c05388
crossref_primary_10_1007_s12648_024_03290_5
crossref_primary_10_1016_j_ijleo_2023_171153
crossref_primary_10_1039_D4TC03743J
crossref_primary_10_1103_PhysRevB_110_235201
crossref_primary_10_1021_acsenergylett_3c00951
crossref_primary_10_1021_acs_jpcc_3c04172
crossref_primary_10_1021_acs_jpclett_3c00010
crossref_primary_10_1002_adom_202401753
crossref_primary_10_3390_coatings14010005
crossref_primary_10_1103_PhysRevMaterials_7_085401
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1038_s41598_024_69632_9
crossref_primary_10_1002_solr_202400264
crossref_primary_10_1021_acs_jpcc_2c08968
crossref_primary_10_1002_smtd_202300202
crossref_primary_10_1039_D4EE00912F
crossref_primary_10_1002_adpr_202300184
crossref_primary_10_1088_1361_6463_acd859
crossref_primary_10_1002_pssa_202400015
crossref_primary_10_1016_j_ceramint_2024_12_250
crossref_primary_10_1021_acsaelm_4c02268
crossref_primary_10_1021_acsami_4c04095
crossref_primary_10_1007_s11082_023_05067_2
crossref_primary_10_3390_nano14020202
crossref_primary_10_1021_acsami_2c18199
crossref_primary_10_1016_j_jnoncrysol_2025_123516
crossref_primary_10_1016_j_surfin_2024_105331
crossref_primary_10_1021_acs_jpclett_2c03525
crossref_primary_10_1021_acs_chemmater_4c01701
Cites_doi 10.1002/pssa.201700730
10.1103/PhysRevMaterials.3.024601
10.1002/adfm.202002964
10.1063/1.359683
10.1021/acsenergylett.7b00847
10.1103/PhysRevLett.120.057404
10.1103/PhysRevLett.100.206403
10.1021/acsenergylett.7b00526
10.1103/PhysRevB.92.144308
10.1021/acsenergylett.8b01906
10.1063/1.4898346
10.1021/acs.jpclett.8b00526
10.1021/acsenergylett.7b00923
10.1038/s41467-021-24202-9
10.1038/s41560-020-00692-7
10.1021/acs.jpcc.0c08193
10.1021/acs.jpclett.7b00998
10.1103/PhysRevLett.74.1020
10.1021/acsenergylett.0c01020
10.1002/aenm.201801208
10.1002/adma.201504417
10.1039/C5NR07739G
10.1103/PhysRevB.76.085303
10.1103/PhysRev.92.1324
10.1063/1.3510470
10.1021/jz500279b
10.1021/acsami.1c10171
10.1002/pip.3449
10.1021/acs.jpclett.5b00044
10.1002/aenm.201803699
10.1103/PhysRevB.86.024201
10.1039/C4SC03141E
10.1038/s41467-020-15078-2
10.1038/s41467-020-15215-x
10.1021/acsaem.0c01849
10.1103/PhysRevB.86.165201
10.1016/j.solmat.2020.110502
10.1021/acs.jpclett.8b03458
10.1002/adfm.200800056
10.3390/coatings10090820
10.1038/s41586-021-03406-5
10.1364/OL.44.003474
10.1021/jz5026323
10.1088/0022-3719/15/18/012
10.1039/C5TC01718A
10.1021/acs.jpcc.0c07983
10.1021/acs.jpclett.1c01935
10.1049/ip-j.1986.0054
10.1021/acs.jpclett.9b00138
10.1103/PhysRevB.25.5559
10.1021/acs.nanolett.5b02369
10.1002/solr.201900555
10.1021/acsenergylett.0c02362
10.1038/s41467-017-00567-8
10.1039/c1cs15098g
10.1364/AO.20.001333
10.1002/aenm.201902573
10.1038/nphoton.2016.62
10.1002/solr.202000382
10.1021/acs.jpclett.6b01406
10.1038/s41467-019-11087-y
10.1002/aenm.201902583
10.1002/adma.201306281
10.1063/1.5143265
10.1364/OL.5.000377
10.1063/1.1737071
10.1103/PhysRevApplied.7.044016
10.1021/acs.jpclett.1c02869
10.1126/sciadv.aav8925
10.1021/acsenergylett.0c02067
10.1021/acsomega.1c05364
10.1021/acsomega.9b03178
10.1016/j.jnoncrysol.2011.12.031
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.jpclett.2c01812
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 7711
ExternalDocumentID 10_1021_acs_jpclett_2c01812
a443114427
GroupedDBID 53G
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED
GGK
GNL
IH9
JG
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a322t-1a558fbedac1fcc8598565f08415ac23d8b7604fada148a270baa139bfce6f503
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Fri Jul 11 08:14:37 EDT 2025
Tue Jul 01 01:02:39 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Sat Aug 27 13:19:03 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a322t-1a558fbedac1fcc8598565f08415ac23d8b7604fada148a270baa139bfce6f503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0070-334X
0000-0003-2866-7133
0000-0002-6586-5473
0000-0003-1619-9061
PQID 2702183597
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2702183597
crossref_citationtrail_10_1021_acs_jpclett_2c01812
crossref_primary_10_1021_acs_jpclett_2c01812
acs_journals_10_1021_acs_jpclett_2c01812
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220825
2022-08-25
PublicationDateYYYYMMDD 2022-08-25
PublicationDate_xml – month: 08
  year: 2022
  text: 20220825
  day: 25
PublicationDecade 2020
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
Pankove J. I. (ref1/cit1) 1971
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
Sa-Yakanit V. (ref3/cit3) 1987; 13
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1002/pssa.201700730
– ident: ref35/cit35
  doi: 10.1103/PhysRevMaterials.3.024601
– ident: ref40/cit40
  doi: 10.1002/adfm.202002964
– ident: ref32/cit32
  doi: 10.1063/1.359683
– ident: ref42/cit42
  doi: 10.1021/acsenergylett.7b00847
– ident: ref39/cit39
  doi: 10.1103/PhysRevLett.120.057404
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.100.206403
– ident: ref53/cit53
  doi: 10.1021/acsenergylett.7b00526
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.92.144308
– ident: ref23/cit23
  doi: 10.1021/acsenergylett.8b01906
– ident: ref65/cit65
  doi: 10.1063/1.4898346
– ident: ref18/cit18
  doi: 10.1021/acs.jpclett.8b00526
– ident: ref19/cit19
  doi: 10.1021/acsenergylett.7b00923
– ident: ref24/cit24
  doi: 10.1038/s41467-021-24202-9
– ident: ref44/cit44
  doi: 10.1038/s41560-020-00692-7
– ident: ref13/cit13
  doi: 10.1021/acs.jpcc.0c08193
– ident: ref37/cit37
  doi: 10.1021/acs.jpclett.7b00998
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.74.1020
– ident: ref48/cit48
  doi: 10.1021/acsenergylett.0c01020
– ident: ref58/cit58
  doi: 10.1002/aenm.201801208
– ident: ref68/cit68
  doi: 10.1002/adma.201504417
– ident: ref56/cit56
  doi: 10.1039/C5NR07739G
– volume-title: Optical Processes in Semiconductors
  year: 1971
  ident: ref1/cit1
– ident: ref71/cit71
  doi: 10.1103/PhysRevB.76.085303
– ident: ref2/cit2
  doi: 10.1103/PhysRev.92.1324
– ident: ref33/cit33
  doi: 10.1063/1.3510470
– ident: ref6/cit6
  doi: 10.1021/jz500279b
– ident: ref41/cit41
  doi: 10.1021/acsami.1c10171
– volume: 13
  start-page: 35
  year: 1987
  ident: ref3/cit3
  publication-title: Comments Condens. Matter Phys.
– ident: ref7/cit7
  doi: 10.1002/pip.3449
– ident: ref52/cit52
  doi: 10.1021/acs.jpclett.5b00044
– ident: ref57/cit57
  doi: 10.1002/aenm.201803699
– ident: ref66/cit66
  doi: 10.1103/PhysRevB.86.024201
– ident: ref60/cit60
  doi: 10.1039/C4SC03141E
– ident: ref46/cit46
  doi: 10.1038/s41467-020-15078-2
– ident: ref69/cit69
  doi: 10.1038/s41467-020-15215-x
– ident: ref49/cit49
  doi: 10.1021/acsaem.0c01849
– ident: ref67/cit67
  doi: 10.1103/PhysRevB.86.165201
– ident: ref8/cit8
  doi: 10.1016/j.solmat.2020.110502
– ident: ref47/cit47
  doi: 10.1021/acs.jpclett.8b03458
– ident: ref5/cit5
  doi: 10.1002/adfm.200800056
– ident: ref31/cit31
  doi: 10.3390/coatings10090820
– ident: ref55/cit55
  doi: 10.1038/s41586-021-03406-5
– ident: ref16/cit16
  doi: 10.1364/OL.44.003474
– ident: ref22/cit22
  doi: 10.1021/jz5026323
– ident: ref51/cit51
  doi: 10.1088/0022-3719/15/18/012
– ident: ref17/cit17
  doi: 10.1039/C5TC01718A
– ident: ref45/cit45
  doi: 10.1021/acs.jpcc.0c07983
– ident: ref70/cit70
  doi: 10.1021/acs.jpclett.1c01935
– ident: ref64/cit64
  doi: 10.1049/ip-j.1986.0054
– ident: ref12/cit12
  doi: 10.1021/acs.jpclett.9b00138
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.25.5559
– ident: ref38/cit38
  doi: 10.1021/acs.nanolett.5b02369
– ident: ref50/cit50
  doi: 10.1002/solr.201900555
– ident: ref63/cit63
  doi: 10.1021/acsenergylett.0c02362
– ident: ref36/cit36
  doi: 10.1038/s41467-017-00567-8
– ident: ref11/cit11
  doi: 10.1039/c1cs15098g
– ident: ref28/cit28
  doi: 10.1364/AO.20.001333
– ident: ref72/cit72
  doi: 10.1002/aenm.201902573
– ident: ref75/cit75
  doi: 10.1038/nphoton.2016.62
– ident: ref25/cit25
  doi: 10.1002/solr.202000382
– ident: ref9/cit9
  doi: 10.1021/acs.jpclett.6b01406
– ident: ref14/cit14
  doi: 10.1038/s41467-019-11087-y
– ident: ref43/cit43
  doi: 10.1002/aenm.201902583
– ident: ref10/cit10
  doi: 10.1002/adma.201306281
– ident: ref73/cit73
  doi: 10.1063/1.5143265
– ident: ref26/cit26
  doi: 10.1364/OL.5.000377
– ident: ref61/cit61
  doi: 10.1063/1.1737071
– ident: ref62/cit62
  doi: 10.1103/PhysRevApplied.7.044016
– ident: ref59/cit59
  doi: 10.1021/acs.jpclett.1c02869
– ident: ref54/cit54
  doi: 10.1126/sciadv.aav8925
– ident: ref34/cit34
  doi: 10.1021/acsenergylett.0c02067
– ident: ref74/cit74
  doi: 10.1021/acsomega.1c05364
– ident: ref20/cit20
  doi: 10.1021/acsomega.9b03178
– ident: ref29/cit29
  doi: 10.1016/j.jnoncrysol.2011.12.031
SSID ssj0069087
Score 2.6208317
SecondaryResourceType review_article
Snippet The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques....
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7702
Title Life on the Urbach Edge
URI http://dx.doi.org/10.1021/acs.jpclett.2c01812
https://www.proquest.com/docview/2702183597
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFeKhIHDrS0adMmx2naNCHYBSbtVjlpwlPdtHYXfj3uCzFAaNeqqWLXsf3J8WdCLoURrnI1tQUmFwhQBJ456oOdeH6kJBMqLBn47ofhYBTcjtn4W7P6jwo-9W5AZc7rFHWY5w5VJb_UKlmjIY8KrNXpPjSOF3FeOQ8PYTm30eWyhmTo748U4Uhli-Fo0RuXIaa_RYZNo051s-TNmefSUR-_eRuX2_022ayTTatTWccOWdHpLlnvNjPe9sjh3YvR1iS1MA20RjMJ6tnqJU96n4z6vcfuwK5HJdiAJzK3PWCMG6kTUJ5RijPBMVMzLsf4DIr6CZdR6AYGEkD8AzRyJQAmf9IoHRrm-geklU5SfUSsgEpPcx9UQCFIjICEFXVew4UyiFVMm1yhUHFt6llcVrGpF5cPK0njWtI2oY1yY1VTjheTL97_X3T9tWhaMW78__pF89diVF5R7oBUT-ZZXHTaocNCxHS8_JZPyAYtGhxc9B_slLTy2VyfYdqRy_PS2D4Bk8bSJQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOcCFfd-CBBIHUhInbuMDh6pQFWi5QCVuwXZsVqWoSYXge_gV_ouJm4CKEOKCxNWyrdHzeBaN_QZgm2nmSEcRm2FwgQkKwztHPG5HrleVgjJZMQx87bNKs-OfXNLLEXgt_sKgEAnulJgi_ie7gLufjd09IpRpWibS0EzlTylP1fMTJmrJwfEhnuoOIY2ji3rTznsJ2BxVNrVdTmmghYq4dLWUAWUBhjLaCdCBcUm8KBDViuNrHnFMEDipOoJzjI6ElqqiqePhvqMwhmtIluLV6ueFvcf00rThc5kf2GjpacFt9L3QmReUybAXHHYCxrM1puDtAxPzoOW-3E9FWb58oYv876BNw2QeWlu1wV2YgREVz8J4vehoNweLrVutrG5sYdBrdXqCyxvrKLpW89D5E7kWoBR3Y7UElk-EqwKPS59wP9KMRzSrauuASY2ZmV6GXQQxzC92EpqaPXFDMzhANsyRXQZSnGkoc4L1rM_Hw8-L9j4WPQ74RX6evlUoS4jgZcUdHqtuPwmzf4VonjE_XPm9yJsw3rxot8LW8dnpKkyQ7GuHg5aTrkEp7fXVOgZcqdgw-m7B1V_ryjtCqDZ9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64gHpxX8a1goIHO7ZpM9McPMjo4I6gA95qkiaudAbbQfQX-Vf8V75kWkER8eLBa2jD48tbecn3ANaYZp70FHEZJhdYoDC0ORJwN_GDuhSUyZpl4Ds5re23wsNLetkHr-VbGBQiw50y28Q3Vt1JdMEw4G-Z9bsOwpnnVSIt1VRxnfJIPT9hsZZtH-ziya4T0ty7aOy7xTwBl6Pa5q7PKY20UAmXvpYyoizCdEZ7EQYxLkmQRKJe80LNE45FAid1T3COGZLQUtU09QLctx8GTaPQlHk7jfPS52OJaUfx-SyMXPT2tOQ3-l5oEwll9jkSfg4ENro1x-DtAxd7qeW-2s1FVb58oYz8D8CNw2iRYjs7PZuYgD6VTsJwo5xsNwWzx7daOe3UweTXaT0KLm-cveRaTUPrT-SagYG0nao5cEIifBUFXIaEh4lmPKGmu60jJjVWaLoCGwhiXBh4FtvePfFju9hDNi6QrQApzzWWBdG6mffx8PNPmx8_dXo8Iz9_vloqTIzgmSYPT1W7m8XmfSG6aawT538v8goMne024-OD06MFGCHmhYeHDpQuwkD-2FVLmHflYtmqvANXf60q75LGOQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+on+the+Urbach+Edge&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Ugur%2C+Esma&rft.au=Ledinsk%C3%BD%2C+Martin&rft.au=Allen%2C+Thomas+G.&rft.au=Holovsk%C3%BD%2C+Jakub&rft.date=2022-08-25&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=13&rft.issue=33&rft.spage=7702&rft.epage=7711&rft_id=info:doi/10.1021%2Facs.jpclett.2c01812&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_2c01812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon