Life on the Urbach Edge
The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For s...
Saved in:
Published in | The journal of physical chemistry letters Vol. 13; no. 33; pp. 7702 - 7711 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material’s minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley–Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric. |
---|---|
AbstractList | The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material’s minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley–Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric. The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric.The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques. The strength of this metric is that it elegantly captures the optoelectronic performance potential of a semiconductor in a single number. For solar cells, the Urbach energy is found to be predictive of a material's minimal open-circuit-voltage deficit. Performance calculations considering the Urbach energy give more realistic power conversion efficiency limits than from classical Shockley-Queisser considerations. The Urbach energy is often also found to correlate well with the Stokes shift and (inversely) with the carrier mobility of a semiconductor. Here, we discuss key features, underlying physics, measurement techniques, and implications for device fabrication, underlining the utility of this metric. |
Author | Holovský, Jakub Ugur, Esma Allen, Thomas G. Ledinský, Martin De Wolf, Stefaan Vlk, Ales |
AuthorAffiliation | KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) Faculty of Electrical Engineering Centre for Advanced Photovoltaics, Czech Technical University in Prague Laboratory of Nanostructures and Nanomaterials, Institute of Physics |
AuthorAffiliation_xml | – name: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) – name: Centre for Advanced Photovoltaics, Czech Technical University in Prague – name: Laboratory of Nanostructures and Nanomaterials, Institute of Physics – name: Faculty of Electrical Engineering |
Author_xml | – sequence: 1 givenname: Esma orcidid: 0000-0003-0070-334X surname: Ugur fullname: Ugur, Esma organization: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) – sequence: 2 givenname: Martin orcidid: 0000-0002-6586-5473 surname: Ledinský fullname: Ledinský, Martin organization: Laboratory of Nanostructures and Nanomaterials, Institute of Physics – sequence: 3 givenname: Thomas G. surname: Allen fullname: Allen, Thomas G. organization: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) – sequence: 4 givenname: Jakub surname: Holovský fullname: Holovský, Jakub organization: Faculty of Electrical Engineering – sequence: 5 givenname: Aleš orcidid: 0000-0003-2866-7133 surname: Vlk fullname: Vlk, Aleš organization: Laboratory of Nanostructures and Nanomaterials, Institute of Physics – sequence: 6 givenname: Stefaan orcidid: 0000-0003-1619-9061 surname: De Wolf fullname: De Wolf, Stefaan email: stefaan.dewolf@kaust.edu.sa organization: KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) |
BookMark | eNqFkDFPwzAQhS1UJNrCzMCSkSWpz4kTZ0RVKUiRWOhsXRybukrjYrsD_55AOyAGmO5J9743fDMyGdygCbkDmgFlsEAVst1B9TrGjCkKAtgFmUJdiLQCwSc_8hWZhbCjtKypqKbktrFGJ25I4lYnG9-i2iar7k1fk0uDfdA35zsnm8fV6_IpbV7Wz8uHJsWcsZgCci5MqztUYJQSvBa85IaKAjgqlneirUpaGOwQCoGsoi0i5HVrlC4Np_mc3J92D969H3WIcm-D0n2Pg3bHIEeCgch5XY3V-lRV3oXgtZHKRozWDdGj7SVQ-SVDjjLkWYY8yxjZ_Bd78HaP_uMfanGivp_u6IdRxZ_EJ7Vfd5A |
CitedBy_id | crossref_primary_10_1002_aenm_202406033 crossref_primary_10_1021_acs_jpclett_3c02966 crossref_primary_10_1021_acsomega_3c05930 crossref_primary_10_1021_acs_chemmater_3c02898 crossref_primary_10_1016_j_joule_2024_09_001 crossref_primary_10_1002_ange_202401751 crossref_primary_10_1016_j_rineng_2025_104009 crossref_primary_10_1038_s41560_024_01472_3 crossref_primary_10_1038_s44221_024_00247_0 crossref_primary_10_1016_j_ces_2024_120249 crossref_primary_10_1002_anie_202407508 crossref_primary_10_1016_j_surfin_2024_105383 crossref_primary_10_1103_PhysRevApplied_22_044053 crossref_primary_10_1002_adom_202301361 crossref_primary_10_1002_smll_202301037 crossref_primary_10_1002_solr_202400447 crossref_primary_10_1016_j_nanoen_2024_110269 crossref_primary_10_1021_acsenergylett_2c02352 crossref_primary_10_1021_acs_inorgchem_4c00470 crossref_primary_10_1039_D3EE00952A crossref_primary_10_1039_D4EY00091A crossref_primary_10_1002_adom_202300776 crossref_primary_10_1002_solr_202300538 crossref_primary_10_1039_D4EE00901K crossref_primary_10_1002_anie_202401751 crossref_primary_10_1002_solr_202300261 crossref_primary_10_1021_acsami_3c13710 crossref_primary_10_1063_5_0168780 crossref_primary_10_1039_D3CC02270F crossref_primary_10_1088_1361_6463_ad91c1 crossref_primary_10_1002_ange_202407508 crossref_primary_10_1021_acs_jpcc_3c07293 crossref_primary_10_1021_acsaem_3c00146 crossref_primary_10_1021_acs_nanolett_3c04881 crossref_primary_10_1116_6_0002866 crossref_primary_10_1063_5_0145442 crossref_primary_10_1021_acs_jpclett_4c00814 crossref_primary_10_1039_D4SE01437E crossref_primary_10_1002_solr_202400750 crossref_primary_10_1021_acs_jpclett_3c01893 crossref_primary_10_1038_s41578_025_00784_4 crossref_primary_10_1021_acs_chemmater_2c02187 crossref_primary_10_1021_acs_chemmater_4c00188 crossref_primary_10_1088_1402_4896_adb915 crossref_primary_10_1126_science_adp1621 crossref_primary_10_1039_D4TC00212A crossref_primary_10_1002_aenm_202404755 crossref_primary_10_1021_acs_jpcc_3c06502 crossref_primary_10_1002_adom_202302701 crossref_primary_10_1080_00222348_2024_2395095 crossref_primary_10_1021_acs_jpcc_3c05388 crossref_primary_10_1007_s12648_024_03290_5 crossref_primary_10_1016_j_ijleo_2023_171153 crossref_primary_10_1039_D4TC03743J crossref_primary_10_1103_PhysRevB_110_235201 crossref_primary_10_1021_acsenergylett_3c00951 crossref_primary_10_1021_acs_jpcc_3c04172 crossref_primary_10_1021_acs_jpclett_3c00010 crossref_primary_10_1002_adom_202401753 crossref_primary_10_3390_coatings14010005 crossref_primary_10_1103_PhysRevMaterials_7_085401 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1038_s41598_024_69632_9 crossref_primary_10_1002_solr_202400264 crossref_primary_10_1021_acs_jpcc_2c08968 crossref_primary_10_1002_smtd_202300202 crossref_primary_10_1039_D4EE00912F crossref_primary_10_1002_adpr_202300184 crossref_primary_10_1088_1361_6463_acd859 crossref_primary_10_1002_pssa_202400015 crossref_primary_10_1016_j_ceramint_2024_12_250 crossref_primary_10_1021_acsaelm_4c02268 crossref_primary_10_1021_acsami_4c04095 crossref_primary_10_1007_s11082_023_05067_2 crossref_primary_10_3390_nano14020202 crossref_primary_10_1021_acsami_2c18199 crossref_primary_10_1016_j_jnoncrysol_2025_123516 crossref_primary_10_1016_j_surfin_2024_105331 crossref_primary_10_1021_acs_jpclett_2c03525 crossref_primary_10_1021_acs_chemmater_4c01701 |
Cites_doi | 10.1002/pssa.201700730 10.1103/PhysRevMaterials.3.024601 10.1002/adfm.202002964 10.1063/1.359683 10.1021/acsenergylett.7b00847 10.1103/PhysRevLett.120.057404 10.1103/PhysRevLett.100.206403 10.1021/acsenergylett.7b00526 10.1103/PhysRevB.92.144308 10.1021/acsenergylett.8b01906 10.1063/1.4898346 10.1021/acs.jpclett.8b00526 10.1021/acsenergylett.7b00923 10.1038/s41467-021-24202-9 10.1038/s41560-020-00692-7 10.1021/acs.jpcc.0c08193 10.1021/acs.jpclett.7b00998 10.1103/PhysRevLett.74.1020 10.1021/acsenergylett.0c01020 10.1002/aenm.201801208 10.1002/adma.201504417 10.1039/C5NR07739G 10.1103/PhysRevB.76.085303 10.1103/PhysRev.92.1324 10.1063/1.3510470 10.1021/jz500279b 10.1021/acsami.1c10171 10.1002/pip.3449 10.1021/acs.jpclett.5b00044 10.1002/aenm.201803699 10.1103/PhysRevB.86.024201 10.1039/C4SC03141E 10.1038/s41467-020-15078-2 10.1038/s41467-020-15215-x 10.1021/acsaem.0c01849 10.1103/PhysRevB.86.165201 10.1016/j.solmat.2020.110502 10.1021/acs.jpclett.8b03458 10.1002/adfm.200800056 10.3390/coatings10090820 10.1038/s41586-021-03406-5 10.1364/OL.44.003474 10.1021/jz5026323 10.1088/0022-3719/15/18/012 10.1039/C5TC01718A 10.1021/acs.jpcc.0c07983 10.1021/acs.jpclett.1c01935 10.1049/ip-j.1986.0054 10.1021/acs.jpclett.9b00138 10.1103/PhysRevB.25.5559 10.1021/acs.nanolett.5b02369 10.1002/solr.201900555 10.1021/acsenergylett.0c02362 10.1038/s41467-017-00567-8 10.1039/c1cs15098g 10.1364/AO.20.001333 10.1002/aenm.201902573 10.1038/nphoton.2016.62 10.1002/solr.202000382 10.1021/acs.jpclett.6b01406 10.1038/s41467-019-11087-y 10.1002/aenm.201902583 10.1002/adma.201306281 10.1063/1.5143265 10.1364/OL.5.000377 10.1063/1.1737071 10.1103/PhysRevApplied.7.044016 10.1021/acs.jpclett.1c02869 10.1126/sciadv.aav8925 10.1021/acsenergylett.0c02067 10.1021/acsomega.1c05364 10.1021/acsomega.9b03178 10.1016/j.jnoncrysol.2011.12.031 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.jpclett.2c01812 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 7711 |
ExternalDocumentID | 10_1021_acs_jpclett_2c01812 a443114427 |
GroupedDBID | 53G 55A 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ DU5 EBS ED GGK GNL IH9 JG P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a322t-1a558fbedac1fcc8598565f08415ac23d8b7604fada148a270baa139bfce6f503 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Fri Jul 11 08:14:37 EDT 2025 Tue Jul 01 01:02:39 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Sat Aug 27 13:19:03 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a322t-1a558fbedac1fcc8598565f08415ac23d8b7604fada148a270baa139bfce6f503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0070-334X 0000-0003-2866-7133 0000-0002-6586-5473 0000-0003-1619-9061 |
PQID | 2702183597 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2702183597 crossref_citationtrail_10_1021_acs_jpclett_2c01812 crossref_primary_10_1021_acs_jpclett_2c01812 acs_journals_10_1021_acs_jpclett_2c01812 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220825 2022-08-25 |
PublicationDateYYYYMMDD | 2022-08-25 |
PublicationDate_xml | – month: 08 year: 2022 text: 20220825 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 Pankove J. I. (ref1/cit1) 1971 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 Sa-Yakanit V. (ref3/cit3) 1987; 13 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1002/pssa.201700730 – ident: ref35/cit35 doi: 10.1103/PhysRevMaterials.3.024601 – ident: ref40/cit40 doi: 10.1002/adfm.202002964 – ident: ref32/cit32 doi: 10.1063/1.359683 – ident: ref42/cit42 doi: 10.1021/acsenergylett.7b00847 – ident: ref39/cit39 doi: 10.1103/PhysRevLett.120.057404 – ident: ref4/cit4 doi: 10.1103/PhysRevLett.100.206403 – ident: ref53/cit53 doi: 10.1021/acsenergylett.7b00526 – ident: ref21/cit21 doi: 10.1103/PhysRevB.92.144308 – ident: ref23/cit23 doi: 10.1021/acsenergylett.8b01906 – ident: ref65/cit65 doi: 10.1063/1.4898346 – ident: ref18/cit18 doi: 10.1021/acs.jpclett.8b00526 – ident: ref19/cit19 doi: 10.1021/acsenergylett.7b00923 – ident: ref24/cit24 doi: 10.1038/s41467-021-24202-9 – ident: ref44/cit44 doi: 10.1038/s41560-020-00692-7 – ident: ref13/cit13 doi: 10.1021/acs.jpcc.0c08193 – ident: ref37/cit37 doi: 10.1021/acs.jpclett.7b00998 – ident: ref30/cit30 doi: 10.1103/PhysRevLett.74.1020 – ident: ref48/cit48 doi: 10.1021/acsenergylett.0c01020 – ident: ref58/cit58 doi: 10.1002/aenm.201801208 – ident: ref68/cit68 doi: 10.1002/adma.201504417 – ident: ref56/cit56 doi: 10.1039/C5NR07739G – volume-title: Optical Processes in Semiconductors year: 1971 ident: ref1/cit1 – ident: ref71/cit71 doi: 10.1103/PhysRevB.76.085303 – ident: ref2/cit2 doi: 10.1103/PhysRev.92.1324 – ident: ref33/cit33 doi: 10.1063/1.3510470 – ident: ref6/cit6 doi: 10.1021/jz500279b – ident: ref41/cit41 doi: 10.1021/acsami.1c10171 – volume: 13 start-page: 35 year: 1987 ident: ref3/cit3 publication-title: Comments Condens. Matter Phys. – ident: ref7/cit7 doi: 10.1002/pip.3449 – ident: ref52/cit52 doi: 10.1021/acs.jpclett.5b00044 – ident: ref57/cit57 doi: 10.1002/aenm.201803699 – ident: ref66/cit66 doi: 10.1103/PhysRevB.86.024201 – ident: ref60/cit60 doi: 10.1039/C4SC03141E – ident: ref46/cit46 doi: 10.1038/s41467-020-15078-2 – ident: ref69/cit69 doi: 10.1038/s41467-020-15215-x – ident: ref49/cit49 doi: 10.1021/acsaem.0c01849 – ident: ref67/cit67 doi: 10.1103/PhysRevB.86.165201 – ident: ref8/cit8 doi: 10.1016/j.solmat.2020.110502 – ident: ref47/cit47 doi: 10.1021/acs.jpclett.8b03458 – ident: ref5/cit5 doi: 10.1002/adfm.200800056 – ident: ref31/cit31 doi: 10.3390/coatings10090820 – ident: ref55/cit55 doi: 10.1038/s41586-021-03406-5 – ident: ref16/cit16 doi: 10.1364/OL.44.003474 – ident: ref22/cit22 doi: 10.1021/jz5026323 – ident: ref51/cit51 doi: 10.1088/0022-3719/15/18/012 – ident: ref17/cit17 doi: 10.1039/C5TC01718A – ident: ref45/cit45 doi: 10.1021/acs.jpcc.0c07983 – ident: ref70/cit70 doi: 10.1021/acs.jpclett.1c01935 – ident: ref64/cit64 doi: 10.1049/ip-j.1986.0054 – ident: ref12/cit12 doi: 10.1021/acs.jpclett.9b00138 – ident: ref27/cit27 doi: 10.1103/PhysRevB.25.5559 – ident: ref38/cit38 doi: 10.1021/acs.nanolett.5b02369 – ident: ref50/cit50 doi: 10.1002/solr.201900555 – ident: ref63/cit63 doi: 10.1021/acsenergylett.0c02362 – ident: ref36/cit36 doi: 10.1038/s41467-017-00567-8 – ident: ref11/cit11 doi: 10.1039/c1cs15098g – ident: ref28/cit28 doi: 10.1364/AO.20.001333 – ident: ref72/cit72 doi: 10.1002/aenm.201902573 – ident: ref75/cit75 doi: 10.1038/nphoton.2016.62 – ident: ref25/cit25 doi: 10.1002/solr.202000382 – ident: ref9/cit9 doi: 10.1021/acs.jpclett.6b01406 – ident: ref14/cit14 doi: 10.1038/s41467-019-11087-y – ident: ref43/cit43 doi: 10.1002/aenm.201902583 – ident: ref10/cit10 doi: 10.1002/adma.201306281 – ident: ref73/cit73 doi: 10.1063/1.5143265 – ident: ref26/cit26 doi: 10.1364/OL.5.000377 – ident: ref61/cit61 doi: 10.1063/1.1737071 – ident: ref62/cit62 doi: 10.1103/PhysRevApplied.7.044016 – ident: ref59/cit59 doi: 10.1021/acs.jpclett.1c02869 – ident: ref54/cit54 doi: 10.1126/sciadv.aav8925 – ident: ref34/cit34 doi: 10.1021/acsenergylett.0c02067 – ident: ref74/cit74 doi: 10.1021/acsomega.1c05364 – ident: ref20/cit20 doi: 10.1021/acsomega.9b03178 – ident: ref29/cit29 doi: 10.1016/j.jnoncrysol.2011.12.031 |
SSID | ssj0069087 |
Score | 2.6208317 |
SecondaryResourceType | review_article |
Snippet | The Urbach energy is an expression of the static and dynamic disorder in a semiconductor and is directly accessible via optical characterization techniques.... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7702 |
Title | Life on the Urbach Edge |
URI | http://dx.doi.org/10.1021/acs.jpclett.2c01812 https://www.proquest.com/docview/2702183597 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFeKhIHDrS0adMmx2naNCHYBSbtVjlpwlPdtHYXfj3uCzFAaNeqqWLXsf3J8WdCLoURrnI1tQUmFwhQBJ456oOdeH6kJBMqLBn47ofhYBTcjtn4W7P6jwo-9W5AZc7rFHWY5w5VJb_UKlmjIY8KrNXpPjSOF3FeOQ8PYTm30eWyhmTo748U4Uhli-Fo0RuXIaa_RYZNo051s-TNmefSUR-_eRuX2_022ayTTatTWccOWdHpLlnvNjPe9sjh3YvR1iS1MA20RjMJ6tnqJU96n4z6vcfuwK5HJdiAJzK3PWCMG6kTUJ5RijPBMVMzLsf4DIr6CZdR6AYGEkD8AzRyJQAmf9IoHRrm-geklU5SfUSsgEpPcx9UQCFIjICEFXVew4UyiFVMm1yhUHFt6llcVrGpF5cPK0njWtI2oY1yY1VTjheTL97_X3T9tWhaMW78__pF89diVF5R7oBUT-ZZXHTaocNCxHS8_JZPyAYtGhxc9B_slLTy2VyfYdqRy_PS2D4Bk8bSJQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1BOcCFfd-CBBIHUhInbuMDh6pQFWi5QCVuwXZsVqWoSYXge_gV_ouJm4CKEOKCxNWyrdHzeBaN_QZgm2nmSEcRm2FwgQkKwztHPG5HrleVgjJZMQx87bNKs-OfXNLLEXgt_sKgEAnulJgi_ie7gLufjd09IpRpWibS0EzlTylP1fMTJmrJwfEhnuoOIY2ji3rTznsJ2BxVNrVdTmmghYq4dLWUAWUBhjLaCdCBcUm8KBDViuNrHnFMEDipOoJzjI6ElqqiqePhvqMwhmtIluLV6ueFvcf00rThc5kf2GjpacFt9L3QmReUybAXHHYCxrM1puDtAxPzoOW-3E9FWb58oYv876BNw2QeWlu1wV2YgREVz8J4vehoNweLrVutrG5sYdBrdXqCyxvrKLpW89D5E7kWoBR3Y7UElk-EqwKPS59wP9KMRzSrauuASY2ZmV6GXQQxzC92EpqaPXFDMzhANsyRXQZSnGkoc4L1rM_Hw8-L9j4WPQ74RX6evlUoS4jgZcUdHqtuPwmzf4VonjE_XPm9yJsw3rxot8LW8dnpKkyQ7GuHg5aTrkEp7fXVOgZcqdgw-m7B1V_ryjtCqDZ9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64gHpxX8a1goIHO7ZpM9McPMjo4I6gA95qkiaudAbbQfQX-Vf8V75kWkER8eLBa2jD48tbecn3ANaYZp70FHEZJhdYoDC0ORJwN_GDuhSUyZpl4Ds5re23wsNLetkHr-VbGBQiw50y28Q3Vt1JdMEw4G-Z9bsOwpnnVSIt1VRxnfJIPT9hsZZtH-ziya4T0ty7aOy7xTwBl6Pa5q7PKY20UAmXvpYyoizCdEZ7EQYxLkmQRKJe80LNE45FAid1T3COGZLQUtU09QLctx8GTaPQlHk7jfPS52OJaUfx-SyMXPT2tOQ3-l5oEwll9jkSfg4ENro1x-DtAxd7qeW-2s1FVb58oYz8D8CNw2iRYjs7PZuYgD6VTsJwo5xsNwWzx7daOe3UweTXaT0KLm-cveRaTUPrT-SagYG0nao5cEIifBUFXIaEh4lmPKGmu60jJjVWaLoCGwhiXBh4FtvePfFju9hDNi6QrQApzzWWBdG6mffx8PNPmx8_dXo8Iz9_vloqTIzgmSYPT1W7m8XmfSG6aawT538v8goMne024-OD06MFGCHmhYeHDpQuwkD-2FVLmHflYtmqvANXf60q75LGOQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+on+the+Urbach+Edge&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Ugur%2C+Esma&rft.au=Ledinsk%C3%BD%2C+Martin&rft.au=Allen%2C+Thomas+G.&rft.au=Holovsk%C3%BD%2C+Jakub&rft.date=2022-08-25&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=13&rft.issue=33&rft.spage=7702&rft.epage=7711&rft_id=info:doi/10.1021%2Facs.jpclett.2c01812&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_2c01812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |