Responses of hydrodynamics to changes in shoreline and bathymetry in the Pearl River Estuary, China

Numerous estuaries worldwide have been modified in the past decades by human interventions. The shoreline and bathymetry in the Pearl River Estuary (PRE) have changed greatly over the past 40 years due to the influence of land reclamation and waterway dredging, which have resulted in the correspondi...

Full description

Saved in:
Bibliographic Details
Published inContinental shelf research Vol. 229; p. 104556
Main Authors Lin, Shicheng, Liu, Guangping, Niu, Jianwei, Wei, Xing, Cai, Shuqun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text
ISSN0278-4343
1873-6955
DOI10.1016/j.csr.2021.104556

Cover

Loading…
Abstract Numerous estuaries worldwide have been modified in the past decades by human interventions. The shoreline and bathymetry in the Pearl River Estuary (PRE) have changed greatly over the past 40 years due to the influence of land reclamation and waterway dredging, which have resulted in the corresponding adjustment of its hydrodynamics. Utilizing the ROMS numerical model, this paper studies the hydrodynamic responses to changes in shoreline and bathymetry in the PRE from 1971 to 2012. The results show that, on one hand, during neap tide, the change in the shoreline makes the residual current in the West Channel (WC) increase by 0.10 (0.05) m/s at maximum in the surface (near bottom) layer. Therefore, the exchange flow increases by 9.5% and the longitudinal circulation strengthens. The surface isohalines move southward up to 18 km, but the bottom isohalines move northward ∼2 km in the WC and East Channel (EC), which is different from the previous conclusion that the seaward extension of coastlines inhibits saltwater intrusion. The decrease in salinity in the upper layer reduces the upper seaward salt transport, resulting in a larger net landward salt transport from 25.21 × 103 kg/s to 35.44 × 103 kg/s. During spring tide, the changes are relatively weaker, but the direction of salt transport changes to seaward and the net seaward transport also increases. Moreover, the change in shoreline reduces the water area and volume in the PRE by 21.3% and 15.6% respectively, which causes a reduction of 11.3% (17.1%) in tidal prism during spring (neap) tide. The wave celerity is enhanced (>23%) and the amplification of semidiurnal tide is strengthened (>20%) in the WC and West Shoal (WS). The reduction in tidal prism together with the strengthened reflection of tidal waves with a larger phase lag between elevation and velocity of M2 tidal component cause a significant decrease of 19.0% in tidal energy flux entering the PRE. However, the tidal range increases by ∼0.30 m (mainly due to the increase in M2 tidal amplitude) in the EC, which is induced by lower tidal energy dissipation there. On the other hand, during neap tide, the change in bathymetry greatly enhances the bottom landward residual current whose peak value increases by 80% in the WC, thereby increasing approximately 14 km of the intrusion distance of saline water, enhancing the exchange flow by 27.5% and strengthening the longitudinal circulation. The net landward salt transport increases to 38.39 × 103 kg/s. The results during spring tide are similar to those during neap tide but with smaller changes, and the net seaward salt transport decreases. Moreover, the wave celerity is slightly reduced (<8%) and the amplification of semidiurnal tide is also decreased (<10%) in the WC and WS. Meanwhile, the change in bathymetry only decreases the water volume by 4.7%, leading to a relatively smaller effect on the tidal prism, and it strengthens (weakens) the reflection of tidal waves in the West Shoal and Middle Shoal (WC and EC), resulting in a slight reduction in tidal energy flux entering the bay. In the WC, the tidal range is basically unchanged since the increased tidal energy flux is offset by the increased dissipation. The quantitative results obtained in this study may provide some references for the development and protection of the PRE and other estuaries that are subject to strong human interventions. •Seaward extension of coastlines increases tidal range, wave celerity and saltwater intrusion.•Change in bathymetry increases ∼14 km of the intrusion distance of saltwater.•Change in bathymetry enhances exchange flow by 27.5%, reduces tidal energy flux by 2.4%.
AbstractList Numerous estuaries worldwide have been modified in the past decades by human interventions. The shoreline and bathymetry in the Pearl River Estuary (PRE) have changed greatly over the past 40 years due to the influence of land reclamation and waterway dredging, which have resulted in the corresponding adjustment of its hydrodynamics. Utilizing the ROMS numerical model, this paper studies the hydrodynamic responses to changes in shoreline and bathymetry in the PRE from 1971 to 2012. The results show that, on one hand, during neap tide, the change in the shoreline makes the residual current in the West Channel (WC) increase by 0.10 (0.05) m/s at maximum in the surface (near bottom) layer. Therefore, the exchange flow increases by 9.5% and the longitudinal circulation strengthens. The surface isohalines move southward up to 18 km, but the bottom isohalines move northward ∼2 km in the WC and East Channel (EC), which is different from the previous conclusion that the seaward extension of coastlines inhibits saltwater intrusion. The decrease in salinity in the upper layer reduces the upper seaward salt transport, resulting in a larger net landward salt transport from 25.21 × 103 kg/s to 35.44 × 103 kg/s. During spring tide, the changes are relatively weaker, but the direction of salt transport changes to seaward and the net seaward transport also increases. Moreover, the change in shoreline reduces the water area and volume in the PRE by 21.3% and 15.6% respectively, which causes a reduction of 11.3% (17.1%) in tidal prism during spring (neap) tide. The wave celerity is enhanced (>23%) and the amplification of semidiurnal tide is strengthened (>20%) in the WC and West Shoal (WS). The reduction in tidal prism together with the strengthened reflection of tidal waves with a larger phase lag between elevation and velocity of M2 tidal component cause a significant decrease of 19.0% in tidal energy flux entering the PRE. However, the tidal range increases by ∼0.30 m (mainly due to the increase in M2 tidal amplitude) in the EC, which is induced by lower tidal energy dissipation there. On the other hand, during neap tide, the change in bathymetry greatly enhances the bottom landward residual current whose peak value increases by 80% in the WC, thereby increasing approximately 14 km of the intrusion distance of saline water, enhancing the exchange flow by 27.5% and strengthening the longitudinal circulation. The net landward salt transport increases to 38.39 × 103 kg/s. The results during spring tide are similar to those during neap tide but with smaller changes, and the net seaward salt transport decreases. Moreover, the wave celerity is slightly reduced (<8%) and the amplification of semidiurnal tide is also decreased (<10%) in the WC and WS. Meanwhile, the change in bathymetry only decreases the water volume by 4.7%, leading to a relatively smaller effect on the tidal prism, and it strengthens (weakens) the reflection of tidal waves in the West Shoal and Middle Shoal (WC and EC), resulting in a slight reduction in tidal energy flux entering the bay. In the WC, the tidal range is basically unchanged since the increased tidal energy flux is offset by the increased dissipation. The quantitative results obtained in this study may provide some references for the development and protection of the PRE and other estuaries that are subject to strong human interventions. •Seaward extension of coastlines increases tidal range, wave celerity and saltwater intrusion.•Change in bathymetry increases ∼14 km of the intrusion distance of saltwater.•Change in bathymetry enhances exchange flow by 27.5%, reduces tidal energy flux by 2.4%.
ArticleNumber 104556
Author Wei, Xing
Liu, Guangping
Niu, Jianwei
Cai, Shuqun
Lin, Shicheng
Author_xml – sequence: 1
  givenname: Shicheng
  orcidid: 0000-0001-7161-0250
  surname: Lin
  fullname: Lin, Shicheng
  organization: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
– sequence: 2
  givenname: Guangping
  orcidid: 0000-0002-1912-2708
  surname: Liu
  fullname: Liu, Guangping
  organization: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
– sequence: 3
  givenname: Jianwei
  orcidid: 0000-0002-9392-9796
  surname: Niu
  fullname: Niu, Jianwei
  organization: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
– sequence: 4
  givenname: Xing
  surname: Wei
  fullname: Wei, Xing
  organization: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
– sequence: 5
  givenname: Shuqun
  surname: Cai
  fullname: Cai, Shuqun
  email: caisq@scsio.ac.cn
  organization: State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
BookMark eNp9kM9KAzEQh4NUsK0-gLc8gFvzZ3ezxZOUWoWCUnoPaTLrpmyTksTCvr0p9eShlwyZH98w803QyHkHCD1SMqOE1s_7mY5hxgij-V9WVX2DxrQRvKjnVTVCY8JEU5S85HdoEuOeECLquRgjvYF49C5CxL7F3WCCN4NTB6sjTh7rTrnvnFmHY-cD9NYBVs7gnUrdcIAUhnOWOsBfoEKPN_YEAS9j-lFheMKLzjp1j25b1Ud4-KtTtH1bbhfvxfpz9bF4XReKM5IKaMiuKVtoS65VfpUhNSVaQKWM4CAYp7lDiDK0mTNimpK3ZldWOWHAKJ8iehmrg48xQCuPwR7yGpISeZYk9zJLkmdJ8iIpM-Ifo21SyXqXgrL9VfLlQkK-6GQhyKgtOA3GBtBJGm-v0L-aNYTY
CitedBy_id crossref_primary_10_3389_fmars_2022_983182
crossref_primary_10_3390_w16091296
crossref_primary_10_1016_j_oceaneng_2022_111432
crossref_primary_10_3390_jmse10111677
crossref_primary_10_1016_j_oceaneng_2022_113483
crossref_primary_10_3390_rs15215210
crossref_primary_10_3390_su16062254
crossref_primary_10_1007_s13131_022_2017_1
crossref_primary_10_1088_1742_6596_2860_1_012003
crossref_primary_10_3390_rs14215549
crossref_primary_10_3390_jmse10070984
crossref_primary_10_1016_j_ocecoaman_2023_106586
crossref_primary_10_1016_j_ocecoaman_2024_107426
crossref_primary_10_1016_j_oceaneng_2023_113977
crossref_primary_10_1016_j_rsma_2025_104011
crossref_primary_10_3389_fmars_2024_1385382
crossref_primary_10_1016_j_rsma_2023_103048
Cites_doi 10.1016/j.jcp.2007.06.016
10.1029/RG020i004p00851
10.1016/0021-9991(76)90023-1
10.1080/14634988.2012.655549
10.1016/j.csr.2004.06.007
10.1016/j.csr.2004.06.006
10.1016/j.ecss.2016.02.018
10.1007/s10236-011-0453-0
10.1002/2017JC013470
10.1007/s13131-019-1455-3
10.1016/j.ocecoaman.2019.04.011
10.1006/jcph.1994.1189
10.4319/lo.1966.11.3.0319
10.1029/2019JC015369
10.1029/2020JC016256
10.1016/j.csr.2006.02.006
10.1016/j.ocecoaman.2019.04.001
10.1002/2013JC009042
10.1016/j.csr.2004.06.005
10.1016/j.ocemod.2011.02.010
10.1002/jgrc.20411
10.1080/02723646.1981.10642213
10.1016/j.marchem.2005.09.020
10.1016/S0278-4343(03)00143-2
10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2
10.1016/j.ecss.2017.06.025
10.1016/j.csr.2004.06.008
10.1016/j.csr.2018.11.007
10.1007/s12237-014-9815-4
10.1061/(ASCE)HY.1943-7900.0000594
10.1007/s10652-009-9146-3
10.1029/2004JC002691
10.1016/j.dsr2.2013.12.010
10.1016/j.jhydrol.2021.126153
10.1016/0021-9991(84)90121-9
10.1175/JPO-D-13-0214.1
10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
10.1016/j.ecss.2019.106345
10.1175/2009JPO4016.1
10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
10.1029/2007JC004408
10.1016/j.ocemod.2004.08.002
10.1016/j.csr.2013.11.019
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.csr.2021.104556
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
Environmental Sciences
EISSN 1873-6955
ExternalDocumentID 10_1016_j_csr_2021_104556
S0278434321002120
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEP
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
ZMT
~02
~G-
29F
6TU
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SSH
VH1
VOH
WUQ
~A~
ID FETCH-LOGICAL-a320t-e80b84fef43caef4ad0610c7e5ad73e7231d0600ad18920d843fdb45e722e213
IEDL.DBID AIKHN
ISSN 0278-4343
IngestDate Thu Apr 24 23:01:45 EDT 2025
Tue Jul 01 00:58:46 EDT 2025
Fri Feb 23 02:47:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tidal range
Tidal prism
Residual current
Tidal energy flux
Numerical model
Pearl river estuary
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a320t-e80b84fef43caef4ad0610c7e5ad73e7231d0600ad18920d843fdb45e722e213
ORCID 0000-0001-7161-0250
0000-0002-1912-2708
0000-0002-9392-9796
ParticipantIDs crossref_primary_10_1016_j_csr_2021_104556
crossref_citationtrail_10_1016_j_csr_2021_104556
elsevier_sciencedirect_doi_10_1016_j_csr_2021_104556
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Continental shelf research
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gong, Chen, Chen, Zhang (bib15) 2019; 175
Smolarkiewicz (bib35) 1984; 54
Su (bib62) 2004; 24
Flather (bib10) 1976; 6
Joseph, Ricardo (bib66) 2003; 23
Zu, Gan (bib57) 2015; 117
Yang, Liu, Gong, Cai, Yu, Pan (bib47) 2019; 176
Xie, Liu, Yang, Huang (bib45) 2015
Zheng, Guan, Cai, Wei, Huang (bib54) 2014; 73
Chen, Sanford (bib4) 2009; 39
Zhu, Weisberg, Zheng, Han (bib56) 2015; 38
Shchepetkin, Mcwilliams (bib34) 2005; 9
Sun, Wan, Qiu (bib38) 2016; 173
Chen, Gong, Scully, Zhang, Cheng, Li (bib6) 2020; 125
Yao, Wang, Li (bib48) 2009; 30
Ji, Sheng, Tang, Liu, Yang (bib20) 2011; 38
Savenije (bib32) 2005
Pan, Gu, Wang (bib28) 2014; 119
Song, Haidvogel (bib36) 1994; 115
Yang (bib46) 2020
Holleman, Stacey (bib19) 2014; 44
Warner, Geyer, Lerczak (bib42) 2005; 110
Mellor, Yamada (bib64) 1982; 20
Pareja‐Roman, Chant, Sommerfield (bib30) 2020; 125
Chapman (bib65) 1985; 15
Zeng, Guan, Pang (bib49) 2011; 29
Dong, Su, Wong, Cao, Chen (bib9) 2004; 24
Pan, Lai, Devlin (bib29) 2020; 125
Van Rijn (bib40) 2011; 61
Gill (bib12) 1982
Large, Pond (bib21) 1981; 11
Ou, Zhang, Wang, He (bib60) 2007; SI50
Haidvogel, Arango, Budgell, Cornuelle, Curchitser, Lorenzo, Fennel, Geyer, Lanerolle, Levin, McWilliams, Miller, Moore, Powell, Shchepetkin, Sherwood, Signell, Warner, Wilkin (bib16) 2008; 227
Ou, Zhang, Wang (bib61) 2009; 9
Hansen, Rattray (bib59) 1966; 11
Kalnay, Kanamitsu, Kistler, Collins, Deaven, Gandin, Iredell, Saha, White, Woollen, Zhu, Chelliah, Ebisuzaki, Higgin, Janowiak, Mo, Ropelewski, Wang, Leetmaa, Reynolds, Jenne, Joseph (bib68) 1996
Savenije, Toffolon, Haas, Veling (bib33) 2008; 113
Wilmott (bib58) 1981; 2
Mao, Shi, Yin, Gan, Qi (bib25) 2004; 24
Gong, Zhou, Li (bib14) 2019; 41
Dai, Guo, Zhai, Yuan, Wang, Wang, Cai, Tang, Cai (bib8) 2006; 102
Zhong, Li (bib55) 2006; 26
Zhan, Wu, Wei, Tang, Zhan (bib50) 2018; 172
Luo, Zhou, Wang (bib24) 2012; 15
Orlanski (bib27) 1976; 21
Chen, Gong, Cai, Chen, Zhang (bib5) 2017; 194
Egbert, Erofeeva (bib67) 2002; 19
Wong, Chen, Dong (bib43) 2004; 24
Xie, Li (bib44) 2018; 123
Geyer (bib11) 2010
Chant, Sommerfield, Talke (bib3) 2018
Liu, Yu, Jia, Cai, Chen (bib23) 2019; 227
Wu, Saito, Zhao, Zhou, Cao, Li, Shang, Liang (bib63) 2016; 6
Cai, Savenije, Yang, Ou, Lei (bib2) 2012; 138
Liu, Cai (bib22) 2019; 38
Song, Wang (bib37) 2013; 118
Zhang, Yang, Wang, Cai, Liu, Zhao, Jia (bib53) 2021; 597
Gill (10.1016/j.csr.2021.104556_bib12) 1982
Zu (10.1016/j.csr.2021.104556_bib57) 2015; 117
Savenije (10.1016/j.csr.2021.104556_bib32) 2005
Cai (10.1016/j.csr.2021.104556_bib2) 2012; 138
Orlanski (10.1016/j.csr.2021.104556_bib27) 1976; 21
Mao (10.1016/j.csr.2021.104556_bib25) 2004; 24
Gong (10.1016/j.csr.2021.104556_bib14) 2019; 41
Smolarkiewicz (10.1016/j.csr.2021.104556_bib35) 1984; 54
Hansen (10.1016/j.csr.2021.104556_bib59) 1966; 11
Warner (10.1016/j.csr.2021.104556_bib42) 2005; 110
Joseph (10.1016/j.csr.2021.104556_bib66) 2003; 23
Xie (10.1016/j.csr.2021.104556_bib44) 2018; 123
Zhong (10.1016/j.csr.2021.104556_bib55) 2006; 26
Wilmott (10.1016/j.csr.2021.104556_bib58) 1981; 2
Savenije (10.1016/j.csr.2021.104556_bib33) 2008; 113
Dai (10.1016/j.csr.2021.104556_bib8) 2006; 102
Yang (10.1016/j.csr.2021.104556_bib46) 2020
Zhang (10.1016/j.csr.2021.104556_bib53) 2021; 597
Zhan (10.1016/j.csr.2021.104556_bib50) 2018; 172
Flather (10.1016/j.csr.2021.104556_bib10) 1976; 6
Geyer (10.1016/j.csr.2021.104556_bib11) 2010
Zheng (10.1016/j.csr.2021.104556_bib54) 2014; 73
Mellor (10.1016/j.csr.2021.104556_bib64) 1982; 20
Chen (10.1016/j.csr.2021.104556_bib6) 2020; 125
Large (10.1016/j.csr.2021.104556_bib21) 1981; 11
Haidvogel (10.1016/j.csr.2021.104556_bib16) 2008; 227
Van Rijn (10.1016/j.csr.2021.104556_bib40) 2011; 61
Kalnay (10.1016/j.csr.2021.104556_bib68) 1996
Chen (10.1016/j.csr.2021.104556_bib5) 2017; 194
Zhu (10.1016/j.csr.2021.104556_bib56) 2015; 38
Wu (10.1016/j.csr.2021.104556_bib63) 2016; 6
Gong (10.1016/j.csr.2021.104556_bib15) 2019; 175
Zeng (10.1016/j.csr.2021.104556_bib49) 2011; 29
Shchepetkin (10.1016/j.csr.2021.104556_bib34) 2005; 9
Egbert (10.1016/j.csr.2021.104556_bib67) 2002; 19
Wong (10.1016/j.csr.2021.104556_bib43) 2004; 24
Pareja‐Roman (10.1016/j.csr.2021.104556_bib30) 2020; 125
Sun (10.1016/j.csr.2021.104556_bib38) 2016; 173
Chen (10.1016/j.csr.2021.104556_bib4) 2009; 39
Liu (10.1016/j.csr.2021.104556_bib22) 2019; 38
Xie (10.1016/j.csr.2021.104556_bib45) 2015
Ou (10.1016/j.csr.2021.104556_bib61) 2009; 9
Yang (10.1016/j.csr.2021.104556_bib47) 2019; 176
Luo (10.1016/j.csr.2021.104556_bib24) 2012; 15
Pan (10.1016/j.csr.2021.104556_bib29) 2020; 125
Yao (10.1016/j.csr.2021.104556_bib48) 2009; 30
Holleman (10.1016/j.csr.2021.104556_bib19) 2014; 44
Song (10.1016/j.csr.2021.104556_bib37) 2013; 118
Pan (10.1016/j.csr.2021.104556_bib28) 2014; 119
Liu (10.1016/j.csr.2021.104556_bib23) 2019; 227
Ji (10.1016/j.csr.2021.104556_bib20) 2011; 38
Song (10.1016/j.csr.2021.104556_bib36) 1994; 115
Dong (10.1016/j.csr.2021.104556_bib9) 2004; 24
Su (10.1016/j.csr.2021.104556_bib62) 2004; 24
Chant (10.1016/j.csr.2021.104556_bib3) 2018
Ou (10.1016/j.csr.2021.104556_bib60) 2007; SI50
Chapman (10.1016/j.csr.2021.104556_bib65) 1985; 15
References_xml – volume: 29
  start-page: 73
  year: 2011
  end-page: 83
  ident: bib49
  article-title: Cumulative influence of long term reclamation on hydrodynamics in the Xiangshangang Bay (in Chinese)
  publication-title: J. Mar. Sci.
– volume: 38
  start-page: 132
  year: 2015
  end-page: 150
  ident: bib56
  article-title: Influences of channel deepening and widening on the tidal and nontidal circulations of Tampa bay
  publication-title: Estuar. Coast
– volume: 41
  start-page: 98
  year: 2019
  end-page: 107
  ident: bib14
  article-title: Morphological change and tidal prism variation in the Lingdingyang, Zhujiang River Estuary (in Chinese)
  publication-title: Hai Yang Xue Bao
– volume: 6
  start-page: 141
  year: 1976
  end-page: 164
  ident: bib10
  article-title: A tidal model of the northwest European continental shelf
  publication-title: Mem. Soc. R. Sci. Liege
– volume: 125
  year: 2020
  ident: bib30
  article-title: Impact of historical channel deepening on tidal hydraulics in the Delaware Estuary
  publication-title: J. Geophys. Res. Oceans.
– volume: 54
  start-page: 325
  year: 1984
  end-page: 362
  ident: bib35
  article-title: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion
  publication-title: J. Comput. Phys.
– volume: 194
  start-page: 252
  year: 2017
  end-page: 262
  ident: bib5
  article-title: Dispersal of the Pearl River plume over continental shelf in summer
  publication-title: Estuar. Coast Shelf Sci.
– volume: 110
  start-page: C05001
  year: 2005
  ident: bib42
  article-title: Numerical modeling of an estuary: a comprehensive skill assessment
  publication-title: J. Geophys. Res. Oceans
– volume: 123
  start-page: 2363
  year: 2018
  end-page: 2380
  ident: bib44
  article-title: Effects of wind straining on estuarine stratification: a combined observational and modeling study
  publication-title: J. Geophys. Res. Oceans
– volume: 15
  start-page: 62
  year: 2012
  end-page: 69
  ident: bib24
  article-title: Responses of the river plume to the external forcing in Pearl River Estuary
  publication-title: Aquat. Ecosys. Health Manag.
– volume: 102
  start-page: 159
  year: 2006
  end-page: 169
  ident: bib8
  article-title: Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought
  publication-title: Mar. Chem.
– volume: 11
  start-page: 324
  year: 1981
  end-page: 336
  ident: bib21
  article-title: Open ocean momentum flux measurements in moderate to strong winds
  publication-title: J. Phys. Oceanogr.
– year: 2005
  ident: bib32
  article-title: Salinity and Tides in Alluvial Estuaries
– year: 1996
  ident: bib68
  article-title: The NCEP/NCAR 40-year reanalysis project
– volume: 11
  start-page: 319
  year: 1966
  end-page: 325
  ident: bib59
  article-title: New dimensions in estuary classification
  publication-title: Limnol. Oceanogr.
– volume: 172
  start-page: 22
  year: 2018
  end-page: 32
  ident: bib50
  article-title: Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015
  publication-title: Continent. Shelf Res.
– year: 2020
  ident: bib46
  article-title: Study on the Changes in Erosion-Deposition Pattern in the Lingding Bay under New Conditions and the Underlying Sediment Dynamics
– volume: 2
  start-page: 184
  year: 1981
  end-page: 194
  ident: bib58
  article-title: On the validation of models
  publication-title: Phys. Geogr.
– volume: 26
  start-page: 752
  year: 2006
  end-page: 770
  ident: bib55
  article-title: Tidal energy fluxes and dissipation in the Chesapeake Bay
  publication-title: Continent. Shelf Res.
– volume: 227
  year: 2019
  ident: bib23
  article-title: Impacts of physical alterations on salt transport during the dry season in the Modaomen Estuary, Pearl River Delta, China. Estuarine
  publication-title: Coast. Shelf Sci.
– volume: 23
  start-page: 1597
  year: 2003
  end-page: 1613
  ident: bib66
  article-title: Numerical simulation of the tidal propagation in the coastal region of Santos( Brazil, 24°S 46°W)
  publication-title: Continent. Shelf Res.
– volume: 9
  start-page: 471
  year: 2009
  end-page: 492
  ident: bib61
  article-title: Dynamics of the buoyant plume off the pearl river estuary in summer
  publication-title: Environ. Fluid Mech.
– volume: 19
  start-page: 183
  year: 2002
  end-page: 204
  ident: bib67
  article-title: Efficient inverse modeling of barotropic ocean tides
  publication-title: J. Atmos. Ocean. Technol.
– year: 2018
  ident: bib3
  article-title: Impact of channel deepening on tidal and gravitational circulation in a highly engineered Estuarine basin
  publication-title: Estuar. Coast
– volume: 15
  start-page: 1060
  year: 1985
  end-page: 1075
  ident: bib65
  article-title: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model
  publication-title: J. Phys. Oceanogr.
– volume: 24
  start-page: 1761
  year: 2004
  end-page: 1777
  ident: bib9
  article-title: Seasonal variation and dynamics of the Pearl River plume
  publication-title: Continent. Shelf Res.
– volume: 9
  start-page: 347
  year: 2005
  end-page: 404
  ident: bib34
  article-title: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography following-coordinate oceanic model
  publication-title: Ocean Model.
– volume: 21
  start-page: 251
  year: 1976
  end-page: 269
  ident: bib27
  article-title: A simple boundary condition for unbounded hyperbolic flows
  publication-title: J. Comput. Phys.
– volume: 138
  start-page: 885
  year: 2012
  end-page: 896
  ident: bib2
  article-title: Influence of river discharge and dredging on tidal wave propagation: Modaomen estuary case
  publication-title: J. Hydraul. Eng.
– volume: 44
  start-page: 1439
  year: 2014
  end-page: 1455
  ident: bib19
  article-title: Coupling of sea level rise, tidal amplification, and inundation
  publication-title: J. Phys. Oceanogr.
– volume: 173
  start-page: 16
  year: 2016
  end-page: 25
  ident: bib38
  article-title: Three dimensional model evaluation of physical alterations of the Caloosahatchee River and Estuary: impact on salt transport. Estuarine
  publication-title: Coast. Shelf Sci.
– volume: 115
  start-page: 228
  year: 1994
  end-page: 244
  ident: bib36
  article-title: A semi-implicit ocean circulation model using a generalized topography-following coordinate system
  publication-title: J. Comput. Phys.
– volume: 38
  start-page: 22
  year: 2019
  end-page: 35
  ident: bib22
  article-title: Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary
  publication-title: Acta Oceanol. Sin.
– volume: 125
  year: 2020
  ident: bib6
  article-title: Axial wind effects on stratification and longitudinal sediment transport in a convergent estuary during wet season
  publication-title: J. Geophys. Res.: Oceans
– volume: 38
  start-page: 138
  year: 2011
  end-page: 160
  ident: bib20
  article-title: Process study of circulation in the Pearl River Estuary and adjacent coastal waters in the wet season using a triply-nested circulation model
  publication-title: Ocean Model.
– volume: 118
  start-page: 5568
  year: 2013
  end-page: 5590
  ident: bib37
  article-title: Suspended sediment transport in the deepwater navigation channel, Yangtze River Estuary, China, in the dry season 2009: 2. Numerical simulations
  publication-title: J. Geophys. Res. Oceans
– volume: 125
  year: 2020
  ident: bib29
  article-title: Channel‐trapped convergence and divergence of lateral velocity in the Pearl River Estuary: influence of along‐estuary variations of channel depth and width
  publication-title: J. Geophys. Res. Oceans
– volume: 176
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib47
  article-title: Morphological response of Lingding bay in the Pearl River Estuary to human intervention in recent decades
  publication-title: Ocean Coast Manag.
– volume: 61
  start-page: 1719
  year: 2011
  end-page: 1741
  ident: bib40
  article-title: Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent estuaries
  publication-title: Ocean Dynam.
– volume: 113
  start-page: C1002
  year: 2008
  ident: bib33
  article-title: Analytical description of tidal dynamics in convergent estuaries
  publication-title: J. Geophys. Res. Oceans.
– volume: 227
  start-page: 3595
  year: 2008
  end-page: 3624
  ident: bib16
  article-title: Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System
  publication-title: J. Comput. Phys.
– volume: 24
  start-page: 1779
  year: 2004
  end-page: 1795
  ident: bib43
  article-title: A model of the plume front of the Pearl River Estuary, China and adjacent coastal waters in the winter dry season
  publication-title: Continent. Shelf Res.
– volume: 24
  start-page: 1745
  year: 2004
  end-page: 1760
  ident: bib62
  article-title: Overview of the South China Sea circulation and its inflfluence on the coastal physical oceanography outside the Pearl River Estuary
  publication-title: Continent. Shelf Res.
– volume: 39
  start-page: 1905
  year: 2009
  end-page: 1920
  ident: bib4
  article-title: Axial wind Effects on stratification and longitudinal salt transport in an idealized, partially mixed Estuary
  publication-title: J. Phys. Oceanogr.
– volume: 73
  start-page: 31
  year: 2014
  end-page: 40
  ident: bib54
  article-title: A model study of the effects of river discharges and interannual variation of winds on the plume front in winter in Pearl River Estuary
  publication-title: Continent. Shelf Res.
– year: 2010
  ident: bib11
  article-title: Contemporary issues in Estuarine physics: Estuarine salinity structure and circulation
– volume: 119
  start-page: 2480
  year: 2014
  end-page: 2500
  ident: bib28
  article-title: Observations and numerical modeling of the Pearl River plume in summer season
  publication-title: J. Geophys. Res. Oceans
– volume: 117
  start-page: 53
  year: 2015
  end-page: 64
  ident: bib57
  article-title: A numerical study of coupled estuary–shelf circulation around the Pearl River Estuary during summer: responses to variable winds, tides and river discharge
  publication-title: Deep Sea Res. Part II Top. Stud. Oceanogr.
– start-page: 56
  year: 2015
  end-page: 62
  ident: bib45
  article-title: Variations of current and sediment transport in Lingding Bay during spring tide in flood season driven by human activities (in Chinese)
  publication-title: J. Sediment. Res.
– start-page: 662
  year: 1982
  ident: bib12
  article-title: Atmosphere-Ocean Dynamics
– volume: SI50
  start-page: 652
  year: 2007
  end-page: 657
  ident: bib60
  article-title: Horizontal Characteristics of Buoyant Plume off the Pearl River Estuary during Summer
  publication-title: J. Coast. Res.
– volume: 30
  start-page: 43
  year: 2009
  end-page: 45
  ident: bib48
  article-title: Primary analysis of water distribution ratio variation in main waterway in Pearl River Delta (in Chinese)
  publication-title: Pearl River
– volume: 20
  start-page: 851
  year: 1982
  end-page: 875
  ident: bib64
  article-title: Development of a turbulence closure model for geophysical fluid problems
  publication-title: Rev. Geophy.
– volume: 6
  start-page: 37
  year: 2016
  end-page: 42
  ident: bib63
  article-title: Impact of human activities on subaqueous topgraphic change in Lingding Bay of the Pearl River estuary, China, during 1955-2013
  publication-title: Sci. Rep.
– volume: 597
  year: 2021
  ident: bib53
  article-title: Stepwise alterations in tidal hydrodynamics in a highly human-modified estuary: the roles of channel deepening and narrowing
  publication-title: J. Hydrol.
– volume: 24
  start-page: 1797
  year: 2004
  end-page: 1808
  ident: bib25
  article-title: Tides and tidal currents in the Pearl River Estuary
  publication-title: Continent. Shelf Res.
– volume: 175
  start-page: 110
  year: 2019
  end-page: 126
  ident: bib15
  article-title: Plume-to-plume interactions in the pearl river delta in winter
  publication-title: Ocean Coast Manag.
– volume: 227
  start-page: 3595
  year: 2008
  ident: 10.1016/j.csr.2021.104556_bib16
  article-title: Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.016
– volume: 20
  start-page: 851
  year: 1982
  ident: 10.1016/j.csr.2021.104556_bib64
  article-title: Development of a turbulence closure model for geophysical fluid problems
  publication-title: Rev. Geophy.
  doi: 10.1029/RG020i004p00851
– volume: 21
  start-page: 251
  year: 1976
  ident: 10.1016/j.csr.2021.104556_bib27
  article-title: A simple boundary condition for unbounded hyperbolic flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(76)90023-1
– volume: 6
  start-page: 37
  year: 2016
  ident: 10.1016/j.csr.2021.104556_bib63
  article-title: Impact of human activities on subaqueous topgraphic change in Lingding Bay of the Pearl River estuary, China, during 1955-2013
  publication-title: Sci. Rep.
– volume: 15
  start-page: 62
  year: 2012
  ident: 10.1016/j.csr.2021.104556_bib24
  article-title: Responses of the river plume to the external forcing in Pearl River Estuary
  publication-title: Aquat. Ecosys. Health Manag.
  doi: 10.1080/14634988.2012.655549
– volume: 24
  start-page: 1779
  year: 2004
  ident: 10.1016/j.csr.2021.104556_bib43
  article-title: A model of the plume front of the Pearl River Estuary, China and adjacent coastal waters in the winter dry season
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2004.06.007
– volume: 24
  start-page: 1761
  year: 2004
  ident: 10.1016/j.csr.2021.104556_bib9
  article-title: Seasonal variation and dynamics of the Pearl River plume
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2004.06.006
– volume: 173
  start-page: 16
  year: 2016
  ident: 10.1016/j.csr.2021.104556_bib38
  article-title: Three dimensional model evaluation of physical alterations of the Caloosahatchee River and Estuary: impact on salt transport. Estuarine
  publication-title: Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2016.02.018
– start-page: 56
  year: 2015
  ident: 10.1016/j.csr.2021.104556_bib45
  article-title: Variations of current and sediment transport in Lingding Bay during spring tide in flood season driven by human activities (in Chinese)
  publication-title: J. Sediment. Res.
– volume: 61
  start-page: 1719
  year: 2011
  ident: 10.1016/j.csr.2021.104556_bib40
  article-title: Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent estuaries
  publication-title: Ocean Dynam.
  doi: 10.1007/s10236-011-0453-0
– volume: 123
  start-page: 2363
  year: 2018
  ident: 10.1016/j.csr.2021.104556_bib44
  article-title: Effects of wind straining on estuarine stratification: a combined observational and modeling study
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2017JC013470
– volume: 38
  start-page: 22
  year: 2019
  ident: 10.1016/j.csr.2021.104556_bib22
  article-title: Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary
  publication-title: Acta Oceanol. Sin.
  doi: 10.1007/s13131-019-1455-3
– year: 2005
  ident: 10.1016/j.csr.2021.104556_bib32
– volume: 176
  start-page: 1
  year: 2019
  ident: 10.1016/j.csr.2021.104556_bib47
  article-title: Morphological response of Lingding bay in the Pearl River Estuary to human intervention in recent decades
  publication-title: Ocean Coast Manag.
  doi: 10.1016/j.ocecoaman.2019.04.011
– volume: 41
  start-page: 98
  year: 2019
  ident: 10.1016/j.csr.2021.104556_bib14
  article-title: Morphological change and tidal prism variation in the Lingdingyang, Zhujiang River Estuary (in Chinese)
  publication-title: Hai Yang Xue Bao
– year: 2018
  ident: 10.1016/j.csr.2021.104556_bib3
  article-title: Impact of channel deepening on tidal and gravitational circulation in a highly engineered Estuarine basin
  publication-title: Estuar. Coast
– volume: 125
  year: 2020
  ident: 10.1016/j.csr.2021.104556_bib6
  article-title: Axial wind effects on stratification and longitudinal sediment transport in a convergent estuary during wet season
  publication-title: J. Geophys. Res.: Oceans
– volume: 115
  start-page: 228
  year: 1994
  ident: 10.1016/j.csr.2021.104556_bib36
  article-title: A semi-implicit ocean circulation model using a generalized topography-following coordinate system
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1189
– volume: 6
  start-page: 141
  issue: 10
  year: 1976
  ident: 10.1016/j.csr.2021.104556_bib10
  article-title: A tidal model of the northwest European continental shelf
  publication-title: Mem. Soc. R. Sci. Liege
– volume: 11
  start-page: 319
  year: 1966
  ident: 10.1016/j.csr.2021.104556_bib59
  article-title: New dimensions in estuary classification
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1966.11.3.0319
– volume: 125
  year: 2020
  ident: 10.1016/j.csr.2021.104556_bib29
  article-title: Channel‐trapped convergence and divergence of lateral velocity in the Pearl River Estuary: influence of along‐estuary variations of channel depth and width
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2019JC015369
– volume: 125
  year: 2020
  ident: 10.1016/j.csr.2021.104556_bib30
  article-title: Impact of historical channel deepening on tidal hydraulics in the Delaware Estuary
  publication-title: J. Geophys. Res. Oceans.
  doi: 10.1029/2020JC016256
– volume: 26
  start-page: 752
  year: 2006
  ident: 10.1016/j.csr.2021.104556_bib55
  article-title: Tidal energy fluxes and dissipation in the Chesapeake Bay
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2006.02.006
– volume: 175
  start-page: 110
  year: 2019
  ident: 10.1016/j.csr.2021.104556_bib15
  article-title: Plume-to-plume interactions in the pearl river delta in winter
  publication-title: Ocean Coast Manag.
  doi: 10.1016/j.ocecoaman.2019.04.001
– volume: 119
  start-page: 2480
  year: 2014
  ident: 10.1016/j.csr.2021.104556_bib28
  article-title: Observations and numerical modeling of the Pearl River plume in summer season
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2013JC009042
– volume: SI50
  start-page: 652
  year: 2007
  ident: 10.1016/j.csr.2021.104556_bib60
  article-title: Horizontal Characteristics of Buoyant Plume off the Pearl River Estuary during Summer
  publication-title: J. Coast. Res.
– volume: 24
  start-page: 1745
  year: 2004
  ident: 10.1016/j.csr.2021.104556_bib62
  article-title: Overview of the South China Sea circulation and its inflfluence on the coastal physical oceanography outside the Pearl River Estuary
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2004.06.005
– volume: 38
  start-page: 138
  year: 2011
  ident: 10.1016/j.csr.2021.104556_bib20
  article-title: Process study of circulation in the Pearl River Estuary and adjacent coastal waters in the wet season using a triply-nested circulation model
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2011.02.010
– volume: 118
  start-page: 5568
  year: 2013
  ident: 10.1016/j.csr.2021.104556_bib37
  article-title: Suspended sediment transport in the deepwater navigation channel, Yangtze River Estuary, China, in the dry season 2009: 2. Numerical simulations
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/jgrc.20411
– volume: 2
  start-page: 184
  year: 1981
  ident: 10.1016/j.csr.2021.104556_bib58
  article-title: On the validation of models
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
– volume: 102
  start-page: 159
  year: 2006
  ident: 10.1016/j.csr.2021.104556_bib8
  article-title: Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2005.09.020
– volume: 23
  start-page: 1597
  year: 2003
  ident: 10.1016/j.csr.2021.104556_bib66
  article-title: Numerical simulation of the tidal propagation in the coastal region of Santos( Brazil, 24°S 46°W)
  publication-title: Continent. Shelf Res.
  doi: 10.1016/S0278-4343(03)00143-2
– start-page: 662
  year: 1982
  ident: 10.1016/j.csr.2021.104556_bib12
– year: 2020
  ident: 10.1016/j.csr.2021.104556_bib46
– volume: 15
  start-page: 1060
  year: 1985
  ident: 10.1016/j.csr.2021.104556_bib65
  article-title: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2
– volume: 194
  start-page: 252
  year: 2017
  ident: 10.1016/j.csr.2021.104556_bib5
  article-title: Dispersal of the Pearl River plume over continental shelf in summer
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/j.ecss.2017.06.025
– volume: 24
  start-page: 1797
  year: 2004
  ident: 10.1016/j.csr.2021.104556_bib25
  article-title: Tides and tidal currents in the Pearl River Estuary
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2004.06.008
– volume: 172
  start-page: 22
  year: 2018
  ident: 10.1016/j.csr.2021.104556_bib50
  article-title: Spatio-temporal variation of the suspended sediment concentration in the Pearl River Estuary observed by MODIS during 2003–2015
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2018.11.007
– volume: 38
  start-page: 132
  year: 2015
  ident: 10.1016/j.csr.2021.104556_bib56
  article-title: Influences of channel deepening and widening on the tidal and nontidal circulations of Tampa bay
  publication-title: Estuar. Coast
  doi: 10.1007/s12237-014-9815-4
– volume: 30
  start-page: 43
  year: 2009
  ident: 10.1016/j.csr.2021.104556_bib48
  article-title: Primary analysis of water distribution ratio variation in main waterway in Pearl River Delta (in Chinese)
  publication-title: Pearl River
– volume: 138
  start-page: 885
  year: 2012
  ident: 10.1016/j.csr.2021.104556_bib2
  article-title: Influence of river discharge and dredging on tidal wave propagation: Modaomen estuary case
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000594
– volume: 29
  start-page: 73
  year: 2011
  ident: 10.1016/j.csr.2021.104556_bib49
  article-title: Cumulative influence of long term reclamation on hydrodynamics in the Xiangshangang Bay (in Chinese)
  publication-title: J. Mar. Sci.
– volume: 9
  start-page: 471
  year: 2009
  ident: 10.1016/j.csr.2021.104556_bib61
  article-title: Dynamics of the buoyant plume off the pearl river estuary in summer
  publication-title: Environ. Fluid Mech.
  doi: 10.1007/s10652-009-9146-3
– volume: 110
  start-page: C05001
  year: 2005
  ident: 10.1016/j.csr.2021.104556_bib42
  article-title: Numerical modeling of an estuary: a comprehensive skill assessment
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2004JC002691
– volume: 117
  start-page: 53
  year: 2015
  ident: 10.1016/j.csr.2021.104556_bib57
  article-title: A numerical study of coupled estuary–shelf circulation around the Pearl River Estuary during summer: responses to variable winds, tides and river discharge
  publication-title: Deep Sea Res. Part II Top. Stud. Oceanogr.
  doi: 10.1016/j.dsr2.2013.12.010
– volume: 597
  year: 2021
  ident: 10.1016/j.csr.2021.104556_bib53
  article-title: Stepwise alterations in tidal hydrodynamics in a highly human-modified estuary: the roles of channel deepening and narrowing
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126153
– year: 2010
  ident: 10.1016/j.csr.2021.104556_bib11
– year: 1996
  ident: 10.1016/j.csr.2021.104556_bib68
  article-title: The NCEP/NCAR 40-year reanalysis project
– volume: 54
  start-page: 325
  year: 1984
  ident: 10.1016/j.csr.2021.104556_bib35
  article-title: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90121-9
– volume: 44
  start-page: 1439
  year: 2014
  ident: 10.1016/j.csr.2021.104556_bib19
  article-title: Coupling of sea level rise, tidal amplification, and inundation
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/JPO-D-13-0214.1
– volume: 19
  start-page: 183
  year: 2002
  ident: 10.1016/j.csr.2021.104556_bib67
  article-title: Efficient inverse modeling of barotropic ocean tides
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
– volume: 227
  year: 2019
  ident: 10.1016/j.csr.2021.104556_bib23
  article-title: Impacts of physical alterations on salt transport during the dry season in the Modaomen Estuary, Pearl River Delta, China. Estuarine
  publication-title: Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2019.106345
– volume: 39
  start-page: 1905
  year: 2009
  ident: 10.1016/j.csr.2021.104556_bib4
  article-title: Axial wind Effects on stratification and longitudinal salt transport in an idealized, partially mixed Estuary
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/2009JPO4016.1
– volume: 11
  start-page: 324
  year: 1981
  ident: 10.1016/j.csr.2021.104556_bib21
  article-title: Open ocean momentum flux measurements in moderate to strong winds
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
– volume: 113
  start-page: C1002
  year: 2008
  ident: 10.1016/j.csr.2021.104556_bib33
  article-title: Analytical description of tidal dynamics in convergent estuaries
  publication-title: J. Geophys. Res. Oceans.
  doi: 10.1029/2007JC004408
– volume: 9
  start-page: 347
  year: 2005
  ident: 10.1016/j.csr.2021.104556_bib34
  article-title: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography following-coordinate oceanic model
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2004.08.002
– volume: 73
  start-page: 31
  year: 2014
  ident: 10.1016/j.csr.2021.104556_bib54
  article-title: A model study of the effects of river discharges and interannual variation of winds on the plume front in winter in Pearl River Estuary
  publication-title: Continent. Shelf Res.
  doi: 10.1016/j.csr.2013.11.019
SSID ssj0007697
Score 2.4450662
Snippet Numerous estuaries worldwide have been modified in the past decades by human interventions. The shoreline and bathymetry in the Pearl River Estuary (PRE) have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104556
SubjectTerms Numerical model
Pearl river estuary
Residual current
Tidal energy flux
Tidal prism
Tidal range
Title Responses of hydrodynamics to changes in shoreline and bathymetry in the Pearl River Estuary, China
URI https://dx.doi.org/10.1016/j.csr.2021.104556
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vYggPvFNDp7EummTbrbHZVlZFRV8gLeSNgmurF3Z1sNe_O1OmtQHqAcvhWYyUCaTmSkz3wzAoVbUCEV1gM6HBegC4iBTIsF7JSJuTMJoZAHOl1ed4T0_f4gf5qDfYGFsWaW3_c6m19bar7S9NNsvo1H7ts6ZWVxkWPcpx__2hYglnbgFC72zi-HVh0EWbsaK3R9Yhia5WZd55aXtChqFNtkZ2zHWP7mnLy7ndAWWfaxIeu5zVmFOF2uwOfiEpiHR381yDZaucy0L34F6HfIbV_2qSzIx5HGm0FK66fMlqSbEAX5LMipI-TiZWlS6JrJQJMOQcPasq-nM0jA8JGg1p2NyYws4yKCsUKdmx6Seu70Bd6eDu_4w8BMVAskiWgW6S7MuN9pwlkt8SoXunOZCx1IJpgUGe7hCqVRhN4moQvkalfEYKZGOQrYJrWJS6C0gCaddkwlqlOxwmrMkzKRgca4M151YmG2gjRzT3Hcbt0MvxmlTVvaUouhTK_rUiX4bjj5YXlyrjb828-Zw0m_6kqIr-J1t539su7Bo3xwGcQ9a1fRV72MwUmUHMH_yFh54lXsH5OveUA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGEBIiKcoTw9MiFAndupmRFWrAi1IUKRukRPbalFJqyYMWfjtnOOEggQMLBl8Pim62HcX3ffdIXSuJNFcEuVA8KEOhADfiSQP4F5xj2kdUOIZgvPgvtl7Zrcjf1RD7YoLY2CVpe-3Pr3w1uVKo7RmYz6ZNJ6KmpnhRbpFn3L4b19lPuUG13f1vsR5cDthxex2zPaqtFmAvOLU9AT1XFPq9M0Q65-C05eA091Cm2WmiK_ty2yjmkp20H5nSUwDYXkz0x208RArkZT9p3dR_GixryrFM43HuQQ_aWfPpzibYUv3TfEkwel4tjCcdIVFInEECWH-qrJFbmSQHGLwmYspfjTwDdxJMzhR-SUupm7voWG3M2z3nHKegiOoRzJHtUjUYlppRmMBTyEhmJOYK19IThWHVA9WCBHSbQUekWBdLSPmg8RTnkv30UoyS9QBwgEjLR1xoqVoMhLTwI0Ep34sNVNNn-s6IpUdw7jsNW5GXkzDClT2EoLpQ2P60Jq-ji4-Vea20cZfm1n1ccJvpyWEQPC72uH_1M7QWm846If9m_u7I7RuJJaNeIxWssWbOoG0JItOi2P3AcRx3xs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responses+of+hydrodynamics+to+changes+in+shoreline+and+bathymetry+in+the+Pearl+River+Estuary%2C+China&rft.jtitle=Continental+shelf+research&rft.au=Lin%2C+Shicheng&rft.au=Liu%2C+Guangping&rft.au=Niu%2C+Jianwei&rft.au=Wei%2C+Xing&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0278-4343&rft.eissn=1873-6955&rft.volume=229&rft_id=info:doi/10.1016%2Fj.csr.2021.104556&rft.externalDocID=S0278434321002120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-4343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-4343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-4343&client=summon