Architecture of a distal pre‐vegetation braidplain: Cambrian middle member of the Wood Canyon Formation, southern Marble Mountains, California, USA
Architectural element analysis and detailed mapping of a 300 m along‐strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains, California, USA, provides new evidence for extensive braided–fluvial channel‐belt deposits with adjacent overbank environments. Three‐dimensiona...
Saved in:
Published in | Sedimentology Vol. 67; no. 2; pp. 1084 - 1113 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Madrid
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Architectural element analysis and detailed mapping of a 300 m along‐strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains, California, USA, provides new evidence for extensive braided–fluvial channel‐belt deposits with adjacent overbank environments. Three‐dimensional models constructed using ‘Structure from Motion’ techniques, combined with field‐based observations, allowed interpretation of outcrop‐scale trends, barforms, channel fills and fine‐scale features. The ca 80 m thick member is divisible into five distinct units, including units M1 to M3 that form the bulk of the stratigraphy. Units are defined by stacking patterns of three facies associations (Facies Association 1 to Facies Association 3), each representing the product of a subenvironment within the fluvial system. In Facies Association 1, stacked cosets, interpreted as low‐relief fluvial bars and channel fills, preserve vertical‐accretion and downstream‐accretion elements under unimodal north‐north‐west palaeoflow, with minor lateral accretion near bar edges. Deposits of Facies Association 2 to Facies Association 3, linked to overbank environments, are found only in unit M2, in the middle 27 m of the middle member. Floodplains, represented by Facies Association 2, include crumbly red‐orange intervals of fine to medium‐grained sandstone and thinner sets of cross‐bedding than Facies Association 1, interbedded with thicker cross‐stratification indicative of overbank splay or overland flow aggradation from adjacent channel belts during flood stage. Possible aeolian beds of Facies Association 3 preserve broad festooned trough cross‐strata that average 23 cm in thickness; their small size, medium‐grained sandstone and iron oxide cement suggest a high water table. The diverse assemblage of interpreted subenvironments, paired with bedform and facies patterns, implies a perennial fluvial system that gradually built large sand bars as the channel belt migrated and avulsed across an unconfined braided–fluvial reach, leaving the overbank area on its flanks subject to weathering and aeolian transport. Despite the occurrence of strata deposited in low‐energy and ponded settings, and a marine influence proposed for nearby sections of middle member, no ichnofossils were encountered. |
---|---|
AbstractList | Architectural element analysis and detailed mapping of a 300 m along‐strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains, California, USA, provides new evidence for extensive braided–fluvial channel‐belt deposits with adjacent overbank environments. Three‐dimensional models constructed using ‘Structure from Motion’ techniques, combined with field‐based observations, allowed interpretation of outcrop‐scale trends, barforms, channel fills and fine‐scale features. The ca 80 m thick member is divisible into five distinct units, including units M1 to M3 that form the bulk of the stratigraphy. Units are defined by stacking patterns of three facies associations (Facies Association 1 to Facies Association 3), each representing the product of a subenvironment within the fluvial system. In Facies Association 1, stacked cosets, interpreted as low‐relief fluvial bars and channel fills, preserve vertical‐accretion and downstream‐accretion elements under unimodal north‐north‐west palaeoflow, with minor lateral accretion near bar edges. Deposits of Facies Association 2 to Facies Association 3, linked to overbank environments, are found only in unit M2, in the middle 27 m of the middle member. Floodplains, represented by Facies Association 2, include crumbly red‐orange intervals of fine to medium‐grained sandstone and thinner sets of cross‐bedding than Facies Association 1, interbedded with thicker cross‐stratification indicative of overbank splay or overland flow aggradation from adjacent channel belts during flood stage. Possible aeolian beds of Facies Association 3 preserve broad festooned trough cross‐strata that average 23 cm in thickness; their small size, medium‐grained sandstone and iron oxide cement suggest a high water table. The diverse assemblage of interpreted subenvironments, paired with bedform and facies patterns, implies a perennial fluvial system that gradually built large sand bars as the channel belt migrated and avulsed across an unconfined braided–fluvial reach, leaving the overbank area on its flanks subject to weathering and aeolian transport. Despite the occurrence of strata deposited in low‐energy and ponded settings, and a marine influence proposed for nearby sections of middle member, no ichnofossils were encountered. Architectural element analysis and detailed mapping of a 300 m along‐strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains, California, USA, provides new evidence for extensive braided–fluvial channel‐belt deposits with adjacent overbank environments. Three‐dimensional models constructed using ‘Structure from Motion’ techniques, combined with field‐based observations, allowed interpretation of outcrop‐scale trends, barforms, channel fills and fine‐scale features. The ca 80 m thick member is divisible into five distinct units, including units M1 to M3 that form the bulk of the stratigraphy. Units are defined by stacking patterns of three facies associations (Facies Association 1 to Facies Association 3), each representing the product of a subenvironment within the fluvial system. In Facies Association 1, stacked cosets, interpreted as low‐relief fluvial bars and channel fills, preserve vertical‐accretion and downstream‐accretion elements under unimodal north‐north‐west palaeoflow, with minor lateral accretion near bar edges. Deposits of Facies Association 2 to Facies Association 3, linked to overbank environments, are found only in unit M2, in the middle 27 m of the middle member. Floodplains, represented by Facies Association 2, include crumbly red‐orange intervals of fine to medium‐grained sandstone and thinner sets of cross‐bedding than Facies Association 1, interbedded with thicker cross‐stratification indicative of overbank splay or overland flow aggradation from adjacent channel belts during flood stage. Possible aeolian beds of Facies Association 3 preserve broad festooned trough cross‐strata that average 23 cm in thickness; their small size, medium‐grained sandstone and iron oxide cement suggest a high water table. The diverse assemblage of interpreted subenvironments, paired with bedform and facies patterns, implies a perennial fluvial system that gradually built large sand bars as the channel belt migrated and avulsed across an unconfined braided–fluvial reach, leaving the overbank area on its flanks subject to weathering and aeolian transport. Despite the occurrence of strata deposited in low‐energy and ponded settings, and a marine influence proposed for nearby sections of middle member, no ichnofossils were encountered. Architectural element analysis and detailed mapping of a 300 m along‐strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains, California, USA , provides new evidence for extensive braided–fluvial channel‐belt deposits with adjacent overbank environments. Three‐dimensional models constructed using ‘Structure from Motion’ techniques, combined with field‐based observations, allowed interpretation of outcrop‐scale trends, barforms, channel fills and fine‐scale features. The ca 80 m thick member is divisible into five distinct units, including units M1 to M3 that form the bulk of the stratigraphy. Units are defined by stacking patterns of three facies associations (Facies Association 1 to Facies Association 3), each representing the product of a subenvironment within the fluvial system. In Facies Association 1, stacked cosets, interpreted as low‐relief fluvial bars and channel fills, preserve vertical‐accretion and downstream‐accretion elements under unimodal north‐north‐west palaeoflow, with minor lateral accretion near bar edges. Deposits of Facies Association 2 to Facies Association 3, linked to overbank environments, are found only in unit M2, in the middle 27 m of the middle member. Floodplains, represented by Facies Association 2, include crumbly red‐orange intervals of fine to medium‐grained sandstone and thinner sets of cross‐bedding than Facies Association 1, interbedded with thicker cross‐stratification indicative of overbank splay or overland flow aggradation from adjacent channel belts during flood stage. Possible aeolian beds of Facies Association 3 preserve broad festooned trough cross‐strata that average 23 cm in thickness; their small size, medium‐grained sandstone and iron oxide cement suggest a high water table. The diverse assemblage of interpreted subenvironments, paired with bedform and facies patterns, implies a perennial fluvial system that gradually built large sand bars as the channel belt migrated and avulsed across an unconfined braided–fluvial reach, leaving the overbank area on its flanks subject to weathering and aeolian transport. Despite the occurrence of strata deposited in low‐energy and ponded settings, and a marine influence proposed for nearby sections of middle member, no ichnofossils were encountered. |
Author | Bristow, Charlie Muhlbauer, Jason G. Fedo, Christopher M. Moersch, Jeffrey E. |
Author_xml | – sequence: 1 givenname: Jason G. orcidid: 0000-0002-8790-9967 surname: Muhlbauer fullname: Muhlbauer, Jason G. email: jmuhlbau@utk.edu organization: University of Tennessee – sequence: 2 givenname: Christopher M. orcidid: 0000-0002-2626-1132 surname: Fedo fullname: Fedo, Christopher M. organization: University of Tennessee – sequence: 3 givenname: Jeffrey E. surname: Moersch fullname: Moersch, Jeffrey E. organization: University of Tennessee – sequence: 4 givenname: Charlie surname: Bristow fullname: Bristow, Charlie |
BookMark | eNp9kEFO3DAUQK0KpA7QBTewxKrSBOw4dhJ2owHaSiAWdMQysuMfxqPEntoOaHYcgU0v2JPUzLBCAm_-4r_3Lb0DtGedBYSOKTml6Z0F0Kc0F2X5BU0oEzxjpKZ7aEIIKzNSFuIrOghhRQgVRVVP0N-Zb5cmQhtHD9h1WGJtQpQ9Xnv49_zyCA8QZTTOYuWl0eteGnuO53JQ3kiLB6N1D3iAQYF_9eMS8L1zOiF2k6wr54etP8XBjWnrLb6RXiXpxo02pnNhmuDedM5bI6d4cTc7Qvud7AN8e5uHaHF1-Xv-M7u-_fFrPrvOJMtJmVUUcsorUXBGuhJawbUCqUgr6o7UqixTCNoVtdBcE6UY55WSnLC0USTvODtEJ7u7a-_-jBBis3Kjt-nLJmdFXgtO6ypR33dU610IHrpm7c0g_aahpHmt3qTqzbZ6Ys_esa3Z9YspX_-Z8WR62Hx8urm7vNgZ_wHsFJd2 |
CitedBy_id | crossref_primary_10_1029_2022JE007408 crossref_primary_10_1144_SP540_2022_340 crossref_primary_10_2110_jsr_2020_023 crossref_primary_10_2110_jsr_2020_185 crossref_primary_10_1016_j_precamres_2020_105721 crossref_primary_10_1016_j_jsames_2021_103707 crossref_primary_10_1016_j_pgeola_2021_02_001 crossref_primary_10_1029_2022JE007280 crossref_primary_10_54991_jop_2024_1874 crossref_primary_10_1016_j_sedgeo_2023_106421 crossref_primary_10_1111_sed_12900 crossref_primary_10_1016_j_jsames_2024_105068 crossref_primary_10_2110_palo_2021_050 |
Cites_doi | 10.1016/j.sedgeo.2015.04.004 10.1130/G45206.1 10.2110/palo.2012.p12-016r 10.1111/j.1365-3091.2009.01072.x 10.1016/j.earscirev.2009.11.002 10.1144/SP404.6 10.1130/G32534C.1 10.1111/sed.12074 10.1130/0091-7613(1993)021<0669:ETWNAP>2.3.CO;2 10.1144/GSL.SP.1993.075.01.17 10.1016/j.sedgeo.2017.06.003 10.1007/978-3-540-85910-9 10.1007/978-3-642-88494-8_20 10.1130/0016-7606(2001)113<1343:DZPOMT>2.0.CO;2 10.1111/j.1365-3091.2011.01291.x 10.1016/S0037-0738(01)00088-4 10.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;2 10.1130/0016-7606(1997)109<1193:SOMPTE>2.3.CO;2 10.1306/02230908102 10.1016/j.geomorph.2015.05.011 10.1016/j.chemgeo.2011.04.014 10.2110/sepmsp.097.037 10.1111/sed.12230 10.1016/j.sedgeo.2018.05.009 10.1144/GSL.SP.1993.075.01.18 10.1016/j.earscirev.2014.05.004 10.1130/0016-7606(1991)103<1590:TSOTEP>2.3.CO;2 10.1130/GES00889.1 10.1130/B30657.1 10.1130/0016-7606(1968)79[1573:SCPCOT]2.0.CO;2 10.1130/0091-7613(2000)28<299:PTDVUS>2.0.CO;2 10.1002/9781444304374.ch2 10.2110/jsr.2009.066 10.1130/G32737C.1 10.1016/j.gr.2017.04.001 10.1016/S0037-0738(02)00313-5 10.1111/j.1365-3091.2010.01215.x 10.1038/s41561-018-0131-7 10.1016/j.sedgeo.2015.04.008 10.1111/nph.14664 10.1016/0012-8252(77)90055-1 10.1016/0037-0738(93)90183-6 10.1306/010603730516 10.1016/j.precamres.2015.11.003 10.2110/jsr.2016.16 10.1111/j.1365-3091.1989.tb01540.x 10.1180/000985598545507 10.1016/j.sedgeo.2006.05.006 10.1111/sed.12092 10.1130/0016-7606(1987)99<331:FABDVO>2.0.CO;2 10.1111/sed.12389 10.1016/j.sedgeo.2006.05.005 10.1086/661990 10.1126/science.1169659 10.1016/0024-4937(89)90021-2 10.1130/L218.1 10.1016/0037-0738(82)90060-4 10.1016/j.geomorph.2014.02.029 10.1016/j.precamres.2012.02.017 10.1130/0016-7606(1977)88<199:DOTTSC>2.0.CO;2 10.1016/0012-8252(85)90001-7 10.1016/j.epsl.2015.10.018 10.1016/j.sedgeo.2013.11.002 10.1016/j.precamres.2012.01.001 10.1016/j.sedgeo.2017.12.022 10.1144/GSL.SP.1993.072.01.12 10.1111/sed.12273 10.1002/9781444304374.ch4 10.1306/2DC40962-0E47-11D7-8643000102C1865D 10.1016/j.pgeola.2013.12.003 10.1016/j.sedgeo.2016.06.010 10.1130/0091-7613(1992)020<0351:SLDZGO>2.3.CO;2 10.2110/pec.81.31.0019 10.1144/jgs2017-012 10.1016/S0037-0738(98)00026-8 10.1111/sed.12478 10.1016/j.sedgeo.2019.01.011 10.2113/gscpgbull.64.4.538 10.1130/0016-7606(1991)104<0505:DASSFO>2.3.CO;2 10.1144/jgs2016-063 10.1111/sed.12211 10.1016/j.precamres.2007.04.021 10.1130/G32002.1 10.1306/D426782F-2B26-11D7-8648000102C1865D 10.1126/science.aan4660 10.1130/G37534.1 10.1007/s12182-011-0127-z 10.1016/j.sedgeo.2017.03.013 10.1016/j.precamres.2014.12.005 10.1038/ncomms15250 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Sedimentology © 2019 International Association of Sedimentologists Copyright © 2020 International Association of Sedimentologists |
Copyright_xml | – notice: 2019 The Authors. Sedimentology © 2019 International Association of Sedimentologists – notice: Copyright © 2020 International Association of Sedimentologists |
DBID | AAYXX CITATION 7ST 7TN 7UA C1K F1W H96 L.G SOI |
DOI | 10.1111/sed.12677 |
DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1365-3091 |
EndPage | 1113 |
ExternalDocumentID | 10_1111_sed_12677 SED12677 |
Genre | article |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GrantInformation_xml | – fundername: Geological Society of America funderid: 11554‐17 – fundername: NASA Exobiology funderid: 80NSSC78K1068 – fundername: University of Tennessee |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TN5 UB1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XJT XOL Y6R ZCA ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABJIA ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TN 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H96 L.G SOI |
ID | FETCH-LOGICAL-a3207-81e215864530f7ec65dbeab0c69f09b772671f496d5d0bb3558ba503b77b02f53 |
IEDL.DBID | DR2 |
ISSN | 0037-0746 |
IngestDate | Fri Jul 25 22:36:16 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Tue Jul 01 01:23:02 EDT 2025 Wed Jan 22 16:19:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3207-81e215864530f7ec65dbeab0c69f09b772671f496d5d0bb3558ba503b77b02f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2626-1132 0000-0002-8790-9967 |
PQID | 2342965198 |
PQPubID | 1106346 |
PageCount | 30 |
ParticipantIDs | proquest_journals_2342965198 crossref_primary_10_1111_sed_12677 crossref_citationtrail_10_1111_sed_12677 wiley_primary_10_1111_sed_12677_SED12677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Madrid |
PublicationPlace_xml | – name: Madrid |
PublicationTitle | Sedimentology |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 98 2011; 119 2012; 124 1993; 21 2016b; 73 2006; 36 1975 2011; 58 1985; 22 2003; 158 2013; 5 2014; 136 1979 1990; 60 2016; 260 2018; 46 1991; 103 2015; 258 2009; 93 2012; 27 1993a; 75 1989; 36 1991; 104 2014; 125 2014; 10 2016; 272 2018b; 175 1993b; 75 1999; 27 1982; 31 1996 1977; 88 2015; 404 2011; 8 1993; 58 2017; 50 1993; 57 2009; 79 1968; 79 1991; 67 2006; 190 2015; 62 1991; 61 2018a; 359 1988; 23 1977; 13 1989; 59 1992; 20 2018; 11 2012; 40 2014; 300 2017; 8 2018; 365 1983; 53 2011; 97 1978; 5 2016; 342 2012; 59 2017; 354 2014; 61 2017; 357 2012; 206 2016a; 63 2009; 56 2018; 372 2012; 214–215 1997; 109 2016b; 44 1993; 72 1981; 31 2009; 324 1998; 120 2017; 129 2011; 285 2001; 71 1987; 99 1970; 620 2000; 28 1993; 83 2015; 324 2015; 323 2009 1988; 55 1966; 550–C 2017; 174 2003 2011; 39 2019; 383 2003; 73 2018; 65 2017; 215 2016a; 86 2008; 160 2001; 113 2014; 227 1990; 69 2015; 432 2001; 141–142 2016; 64 1998; 33 Stewart J.H. (e_1_2_8_102_1) 1970; 620 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Stewart J.H. (e_1_2_8_101_1) 1966; 550 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 Fryberger S.G. (e_1_2_8_38_1) 1988; 55 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 Boothroyd J.C. (e_1_2_8_8_1) 1978 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_72_1 e_1_2_8_29_1 Miall A.D. (e_1_2_8_77_1) 1996 e_1_2_8_48_1 e_1_2_8_2_1 Long D.G.F. (e_1_2_8_64_1) 1978 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 Kocurek G. (e_1_2_8_56_1) 1993 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Cotter E. (e_1_2_8_20_1) 1978 e_1_2_8_94_1 Fedo C.M. (e_1_2_8_31_1) 1991; 61 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_71_1 e_1_2_8_28_1 Montanez I.P. (e_1_2_8_78_1) 1993 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 Fedo C.M. (e_1_2_8_33_1) 1991 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 Muhlbauer J.M. (e_1_2_8_80_1) 2017; 129 Tucker M.E. (e_1_2_8_106_1) 2003 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 Rainbird R.H. (e_1_2_8_88_1) 2017; 129 e_1_2_8_46_1 Decelles P.G. (e_1_2_8_25_1) 1983; 53 e_1_2_8_27_1 e_1_2_8_69_1 Lea P.D. (e_1_2_8_59_1) 1990; 60 e_1_2_8_4_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 Fedo C.M. (e_1_2_8_30_1) 1990; 69 e_1_2_8_73_1 e_1_2_8_50_1 Koerschner W.F. (e_1_2_8_57_1) 1989; 59 e_1_2_8_104_1 |
References_xml | – volume: 28 start-page: 299 year: 2000 end-page: 302 article-title: Precambrian‐Cambrian transition: Death Valley, United States publication-title: Geology – volume: 59 start-page: 654 year: 1989 end-page: 687 article-title: Field and modelling studies of Cambrian carbonate cycles, Virginia Appalachians publication-title: J. Sed. Res. – volume: 65 start-page: 2223 year: 2018 end-page: 2647 article-title: Fluvial products and processes before the evolution of land plants: evidence from the lower Cambrian Series Rouge, English Channel region publication-title: Sedimentology – volume: 39 start-page: 583 year: 2011 end-page: 586 article-title: Early Cambrian metazoans in fluvial environments, evidence of the non‐marine Cambrian radiation publication-title: Geology – volume: 36 start-page: 1023 year: 1989 end-page: 1035 article-title: Fluvial‐aeolian interactions: part I, modern systems publication-title: Sedimentology – volume: 372 start-page: 140 year: 2018 end-page: 172 article-title: Fluvial floodplains prior to greening of the continents: stratigraphic record, geodynamic setting, and modern analogues publication-title: Sed. Geol. – start-page: 582 year: 1996 – volume: 73 start-page: 516 year: 2003 end-page: 530 article-title: Three‐dimensional sedimentary architecture of a large, Mid‐Channel Sand Braid Bar, Jamuna River, Bangladesh publication-title: J. Sed. Res. – volume: 61 start-page: 1029 year: 1991 end-page: 1031 article-title: Braided fluvial to marine transition; the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California: DISCUSSION publication-title: J. Sed. Petrol. – volume: 79 start-page: 1573 year: 1968 end-page: 1588 article-title: Speculations concerning paleohydraulic controls of terrestrial sedimentation publication-title: Geol. Soc. Am. Bull. – volume: 27 start-page: 594 year: 2012 end-page: 606 article-title: Lower Cambrian anemone burrows from the upper member of the Wood Canyon Formation, Death Valley region, United States: paleoecological and paleoenvironmental significance publication-title: Palaios – volume: 57 start-page: 305 year: 1993 end-page: 326 – volume: 109 start-page: 1193 year: 1997 end-page: 1205 article-title: Sources of middle Proterozoic to early Cambrian siliciclastic sedimentary rocks in the Great Basin: a Nd isotope study publication-title: Geol. Soc. Am. Bull. – volume: 324 start-page: 32 year: 2015 end-page: 46 article-title: Depositional and erosional architectures of gravelly braid bar formed by a flood in the Abe River, central Japan, inferred from a three‐dimensional ground‐penetrating radar analysis publication-title: Sed. Geol. – volume: 61 start-page: 1055 year: 2014 end-page: 1085 article-title: Scales and causes of heterogeneity in bars in a large multi‐channel river: Río Paraná, Argentina publication-title: Sedimentology – volume: 61 start-page: 1032 year: 1991 end-page: 1035 article-title: Braided fluvial to marine transition: the Basal Lower Cambrian Wood Canyon Formation, Southern Marble Mountains, Mojave Desert, California: REPLY publication-title: J. Sed. Petrol. – volume: 75 start-page: 291 year: 1993b end-page: 304 article-title: Sedimentology of the Rough Rock: a Carboniferous braided river sheet sandstone in northern England publication-title: Geol. Soc. London Mem. – volume: 5 start-page: 313 year: 1978 end-page: 342 – volume: 31 start-page: 249 year: 1982 end-page: 266 article-title: Negatively skewed aeolian sands from a humid tropical coastal Dunefield, Northern Australia publication-title: Sed. Geol. – volume: 58 start-page: 220 year: 2011 end-page: 258 article-title: Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues publication-title: Sedimentology – start-page: 458 year: 2009 – volume: 5 start-page: 361 year: 1978 end-page: 384 – volume: 71 start-page: 713 year: 2001 end-page: 716 article-title: Quantitative interpretation of sedimentary structures formed by river dunes publication-title: J. Sed. Res. – volume: 69 start-page: 220 year: 1990 end-page: 234 article-title: Braided fluvial to marine transition; the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California publication-title: J. Sed. Res. – volume: 175 start-page: 13 year: 2018b end-page: 32 article-title: High‐energy flood events recorded in the Mesoproterozoic Meall Dearg Formation, NW Scotland; their recognition and implications for the study of pre‐vegetation alluvium publication-title: J. Geol. Soc. London – volume: 11 start-page: 438 year: 2018 end-page: 443 article-title: Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons publication-title: Nature Geosci. – volume: 60 start-page: 582 year: 1990 end-page: 591 article-title: Pleistocene periglacial eolian deposits in Southwestern Alaska: sedimentary facies and depositional processes publication-title: J. Sed. Res. – volume: 215 start-page: 505 year: 2017 end-page: 507 article-title: Insights into how the world turned green publication-title: New Phytol. – volume: 20 start-page: 351 year: 1992 end-page: 354 article-title: Sampling Laurentia: detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen publication-title: Geology – volume: 404 start-page: 105 year: 2015 end-page: 122 – volume: 73 start-page: 1550 year: 2016b end-page: 1581 article-title: Reappraisal of Precambrian sheet‐braided rivers: evidence for 1.9 Ga deep‐channelled drainage publication-title: Sedimentology – volume: 342 start-page: 31 year: 2016 end-page: 46 article-title: A sedimentary model for Early Palaeozoic fluvial fans, Alderney Sandstone Formation (Channel Islands, UK) publication-title: Sed. Geol. – volume: 75 start-page: 277 year: 1993a end-page: 289 article-title: Sedimentary structures exposed in bar tops in the Brahmaputra River, Bangladesh publication-title: Geol. Soc. London Mem. – volume: 432 start-page: 300 year: 2015 end-page: 310 article-title: Zircon U‐Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia publication-title: Earth Planet. Sci. Lett. – volume: 141–142 start-page: 501 year: 2001 end-page: 522 article-title: Sedimentology and sequence stratigraphy of Neoptoterozoic and Cambrian units across a craton‐margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin publication-title: Sed. Geol. – volume: 21 start-page: 669 year: 1993 end-page: 670 article-title: Extending the Proterozoic and Paleozoic continental crust through the Mojave Desert, California: COMMENT publication-title: Geology – volume: 36 start-page: 75 year: 2006 end-page: 106 – volume: 93 start-page: 795 year: 2009 end-page: 827 article-title: A new approach for outcrop characterization and geostatistical analysis of a low‐sinuosity fluvial‐dominated succession using digital outcrop models: Upper Triassic Oukaimeden Sandstone Formation, central High Atlas, Morocco publication-title: AAPG Bull. – volume: 10 start-page: 49 year: 2014 end-page: 65 article-title: Detrital zircon U‐Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America publication-title: Geosphere – volume: 72 start-page: 127 year: 1993 end-page: 141 article-title: Fluvial‐aeolian interactions in a Proterozoic alluvial plain: example from the Mancheral Quartzite, Sullavai Group, Pranhita‐Godavari Valley, India publication-title: Geol. Soc. London Mem. – volume: 59 start-page: 1030 year: 2012 end-page: 1049 article-title: Sedimentology of a wet, pre‐vegetation floodplain assemblage publication-title: Sedimentology – volume: 125 start-page: 524 year: 2014 end-page: 533 article-title: Palaeozoic co‐evolution of rivers and vegetation: a synthesis of current knowledge publication-title: Proc. Geol. Assoc. – volume: 258 start-page: 161 year: 2015 end-page: 170 article-title: A marine to fluvial transition in the Paleoproterozoic Koolbye Formation, Turee Creek Group, Western Australia publication-title: Precambrian Res. – volume: 129 start-page: 1585 year: 2017 end-page: 1601 article-title: Influence of textural parameters on detrital‐zircon age spectra with application to provenance and paleogeography during the Ediacaran‐Terreneuvian of southwestern Laurentia publication-title: Geol. Soc. Am. Bull. – volume: 324 start-page: 353 year: 2009 article-title: Origin and radiation of the earliest vascular land plants publication-title: Science – volume: 323 start-page: 110 year: 2015 end-page: 147 article-title: Morphodynamics of rivers strongly affected by monsoon precipitation: review of depositional style and forcing factors publication-title: Sed. Geol. – volume: 99 start-page: 331 year: 1987 end-page: 340 article-title: Fan‐deltas and braid deltas: varieties of coarse‐grained deltas publication-title: Geol. Soc. Am. Bull. – volume: 79 start-page: 629 year: 2009 end-page: 642 article-title: The sedimentology and alluvial architecture of a large braid bar, Río Paraná, Argentina publication-title: J. Sed. Res. – volume: 124 start-page: 1826 year: 2012 end-page: 1840 article-title: Detrital zircon geochronology from the Cambrian‐Ordovician Bliss Sandstone, New Mexico: evidence for contrasting Grenville‐age and Cambrian sources on opposite sides of the Transcontinental Arch publication-title: Geol. Soc. Am. Bull. – volume: 119 start-page: 661 year: 2011 end-page: 685 article-title: Reassessment of the Basal Sauk Supersequence boundary across the Laurentian Craton‐Margin Hinge Zone, Southeastern California publication-title: J. Geol. – volume: 214–215 start-page: 210 year: 2012 end-page: 226 article-title: Stratigraphic architecture of the Sonia fluvial interval, India in its Precambrian context publication-title: Precambrian Res. – volume: 98 start-page: 171 year: 2010 end-page: 200 article-title: Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants publication-title: Earth‐Sci. Rev. – volume: 300 start-page: 49 year: 2014 end-page: 61 article-title: Pre‐vegetation fluvial floodplains and channel‐belts in the Late Neoproterozoic‐Cambrian Santa Bárbara group (Southern Brazil) publication-title: Sed. Geol. – volume: 56 start-page: 2107 year: 2009 end-page: 2131 article-title: Aeolian dune‐field development in a water table‐controlled system: Skeiđarársandur, Southern Iceland publication-title: Sedimentology – volume: 190 start-page: 71 year: 2006 end-page: 95 article-title: Architecture of pre‐vegetation sandy‐braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as indicators of Precambrian fluvial style publication-title: Sed. Geol. – volume: 67 start-page: 227 year: 1991 end-page: 235 – volume: 357 start-page: 53 year: 2017 end-page: 71 article-title: Fluvial channel‐belts, floodbasins, and aeolian ergs in the Precambrian Meall Dearg Formation (Torridonian of Scotland): inferring climate regimes from pre‐vegetation clastic rock records publication-title: Sed. Geol. – volume: 359 start-page: 1022 year: 2018a end-page: 1024 article-title: Evolution of alluvial mudrock forced by early land plants publication-title: Science – volume: 550–C start-page: C66 year: 1966 end-page: C72 article-title: Correlation of Lower Cambrian and some Precambrian strata in the southern Great Basin, California and Nevada publication-title: US Geol. Surv. Prof. Pap. – volume: 365 start-page: 1 year: 2018 end-page: 20 article-title: The role of discharge variability in the formation and preservation of alluvial sediment bodies publication-title: Sed. Geol. – start-page: 234 year: 2003 – volume: 260 start-page: 4 year: 2016 end-page: 15 article-title: Reproducibility of UAV‐based earth topography reconstructions based on Structure‐from‐Motion algorithms publication-title: Geomorphology – volume: 40 start-page: e270 year: 2012 article-title: Early Cambrian metazoans in fluvial environments, evidence of the non‐marine Cambrian radiation: COMMENT publication-title: Geology – volume: 65 start-page: 492 year: 2018 end-page: 516 article-title: Precambrian snapshots: morphodynamics of Torridonian fluvial braid bars revealed by three‐dimensional photogrammetry and outcrop sedimentology publication-title: Sedimentology – volume: 174 start-page: 393 year: 2017 end-page: 404 article-title: Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation publication-title: J. Geol. Soc. – volume: 354 start-page: 1 year: 2017 end-page: 8 article-title: Using unmanned aerial vehicles and structure‐from‐motion photogrammetry to characterize sedimentary outcrops: an example from the Morrison Formation, Utah, USA publication-title: Sed. Geol. – volume: 120 start-page: 5 year: 1998 end-page: 53 article-title: Precambrian clastic sedimentation systems publication-title: Sed. Geol. – volume: 383 start-page: 16 year: 2019 end-page: 40 article-title: The lithofacies organization of fluvial channel deposits: a meta‐analysis of modern rivers publication-title: Sed. Geol. – volume: 50 start-page: 84 year: 2017 end-page: 134 article-title: A full‐plate global reconstruction of the Neoproterozoic publication-title: Gondwana Res. – volume: 46 start-page: 679 year: 2018 end-page: 682 article-title: Incomplete but intricately detailed: the inevitable preservation of true substrates in a time‐deficient stratigraphic record publication-title: Geology – volume: 44 start-page: 203 year: 2016b end-page: 206 article-title: The ancestors of meandering rivers publication-title: Geology – volume: 285 start-page: 231 year: 2011 end-page: 255 article-title: Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California publication-title: Chem. Geol. – volume: 227 start-page: 5 year: 2014 end-page: 17 article-title: How important and different are tropical rivers?—an overview publication-title: Geomorphology – volume: 8 start-page: 1 year: 2017 end-page: 8 article-title: Morphometric convergence between Proterozoic and post‐vegetation rivers publication-title: Nat. Commun. – volume: 83 start-page: 71 year: 1993 end-page: 85 article-title: Aeolian sand‐sheet deposits in the Lower Cambrian Neksø Sandstone Formation, Bornholm, Denmark: sedimentary architecture and genesis publication-title: Sed. Geol. – volume: 63 start-page: 609 year: 2016a end-page: 628 article-title: Reconstructing fluvial bar surfaces from compound cross‐strata and the interpretation of bar accretion direction in large river deposits publication-title: Sedimentology – volume: 160 start-page: 179 year: 2008 end-page: 210 article-title: Assembly, configuration, and break‐up history of Rodinia: a synthesis publication-title: Precambrian Res. – volume: 55 start-page: 1 year: 1988 end-page: 15 article-title: Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments publication-title: Sedimentology – volume: 113 start-page: 1343 year: 2001 end-page: 1356 article-title: Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico publication-title: Geol. Soc. Am. Bull. – volume: 31 start-page: 19 year: 1981 end-page: 29 – volume: 64 start-page: 538 year: 2016 end-page: 554 article-title: Sedimentology and ichnology of an Early‐Middle Cambrian storm‐influenced barred shoreface succession, Colville Hills, Northwest Territories publication-title: Bull. Can. Petrol. Geol. – volume: 104 start-page: 505 year: 1991 end-page: 515 article-title: Depositional and sequence stratigraphie framework of the Lower Cambrian Zabriskie Quartzite: implications for regional correlations and the Early Cambrian paleogeography of the Death Valley region of California and Nevada publication-title: Geol. Soc. Am. Bull. – volume: 23 start-page: 19 year: 1988 end-page: 52 article-title: Nature and origin of Proterozoic A‐type granitic magmatism in the southwestern United States of America publication-title: Lithos – volume: 272 start-page: 226 year: 2016 end-page: 243 article-title: Heterolithic meandering‐channel deposits from the Neoproterozoic of NW Scotland: implications for palaeogeographic reconstructions of Precambrian sedimentary environments publication-title: Precambrian Res. – volume: 129 start-page: 1408 year: 2017 end-page: 1423 article-title: Zircon provenance data record the lateral extent of pancontinental, early Neoproterozoic rivers and erosional unroofing history of the Grenville orogen publication-title: Geol. Soc. Am. Bull. – volume: 58 start-page: 393 year: 1993 end-page: 410 – volume: 22 start-page: 261 year: 1985 end-page: 308 article-title: Architectural‐element analysis: a new method of facies analysis applied to fluvial deposits publication-title: Earth‐Sci. Rev. – volume: 86 start-page: 199 year: 2016a end-page: 216 article-title: Highly variable fluvial style recorded in the Nelson Head Formation of Brock Inlier, Northwest Territories, Canada publication-title: J. Sed. Res. – volume: 40 start-page: e269 year: 2012 article-title: Early Cambrian metazoans in fluvial environments, evidence of the non‐marine Cambrian radiation: COMMENT publication-title: Geology – volume: 36 start-page: 11 year: 2006 end-page: 50 – volume: 8 start-page: 143 year: 2011 end-page: 150 article-title: Chlorite cement and its effect on the reservoir quality of sandstones from the Panyu low‐uplift, Pearl River Mouth Basin publication-title: Petrol. Sci. – volume: 13 start-page: 1 year: 1977 end-page: 62 article-title: A review of the braided river depositional environment publication-title: Earth‐Sci. Rev. – volume: 61 start-page: 881 year: 2014 end-page: 914 article-title: Distinct styles of fluvial deposition in a Cambrian rift basin publication-title: Sedimentology – volume: 206 start-page: 182 year: 2012 end-page: 199 article-title: Provenance of the Neoproterozoic Johnnie Formation and Stirling Quartzite, southeastern California, determined by detrital zircon geochronology and Nd isotope geochemistry publication-title: Precambrian Res. – volume: 62 start-page: 1950 year: 2015 end-page: 1977 article-title: Architecture and morphodynamics of a 1.6 Ga fluvial sandstone: Ellice Formation of Elu Basin, Arctic Canada publication-title: Sedimentology – volume: 190 start-page: 47 year: 2006 end-page: 70 article-title: Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic half‐graben, Baker Lake Basin, Nunavut, Canada publication-title: Sed. Geol. – volume: 103 start-page: 1590 year: 1991 end-page: 1606 article-title: Tectonic subsidence of the early Paleozoic passive continental margin in eastern California and southern Nevada publication-title: Geol. Soc. Am. Bull. – volume: 5 start-page: 17 year: 2013 end-page: 28 article-title: Crustal growth and tectonic evolution of the Mojave crustal province: insights from hafnium isotope systematics in zircons publication-title: Lithosphere – start-page: 365 year: 1979 – volume: 53 start-page: 629 year: 1983 end-page: 642 article-title: Two new methods of paleocurrent determination from trough cross‐stratification publication-title: J. Sed. Petrol. – volume: 27 start-page: 339 year: 1999 end-page: 342 article-title: Two diamictites, two cap carbonates, two 13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California publication-title: Geology – volume: 33 start-page: 317 year: 1998 end-page: 332 article-title: Lithological control on the occurrence of chlorite in the diagenetic Wealden complex of the Bilbao anticlinorium (Basco‐Cantabrian Basin, Northern Spain) publication-title: Clay Mineral. – volume: 620 start-page: 1 year: 1970 end-page: 206 article-title: Upper Precambrian and Lower Cambrian Strata, in the Southern Great Basin California and Nevada publication-title: US Geol. Surv. Prof. Pap. – volume: 5 start-page: 641 year: 1978 end-page: 668 – start-page: 171 year: 1975 end-page: 177 – volume: 158 start-page: 249 year: 2003 end-page: 270 article-title: Architecture of channel‐belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska publication-title: Sed. Geol. – volume: 97 start-page: 37 year: 2011 end-page: 61 – volume: 88 start-page: 199 year: 1977 end-page: 211 article-title: Deposition of the Tapeats sandstone (Cambrian) in central Arizona publication-title: Geol. Soc. Am. Bull. – volume: 136 start-page: 59 year: 2014 end-page: 95 article-title: Tectono‐stratigraphic framework of Neoproterozoic to Cambrian strata, west‐central U.S.: protracted rifting, glaciation, and evolution of the North American Cordilleran margin publication-title: Earth‐Sci. Rev. – ident: e_1_2_8_82_1 doi: 10.1016/j.sedgeo.2015.04.004 – ident: e_1_2_8_23_1 doi: 10.1130/G45206.1 – ident: e_1_2_8_68_1 doi: 10.2110/palo.2012.p12-016r – ident: e_1_2_8_79_1 doi: 10.1111/j.1365-3091.2009.01072.x – ident: e_1_2_8_21_1 doi: 10.1016/j.earscirev.2009.11.002 – volume: 620 start-page: 1 year: 1970 ident: e_1_2_8_102_1 article-title: Upper Precambrian and Lower Cambrian Strata, in the Southern Great Basin California and Nevada publication-title: US Geol. Surv. Prof. Pap. – ident: e_1_2_8_105_1 doi: 10.1144/SP404.6 – ident: e_1_2_8_70_1 doi: 10.1130/G32534C.1 – ident: e_1_2_8_92_1 doi: 10.1111/sed.12074 – ident: e_1_2_8_18_1 doi: 10.1130/0091-7613(1993)021<0669:ETWNAP>2.3.CO;2 – ident: e_1_2_8_10_1 doi: 10.1144/GSL.SP.1993.075.01.17 – volume: 59 start-page: 654 year: 1989 ident: e_1_2_8_57_1 article-title: Field and modelling studies of Cambrian carbonate cycles, Virginia Appalachians publication-title: J. Sed. Res. – ident: e_1_2_8_60_1 doi: 10.1016/j.sedgeo.2017.06.003 – ident: e_1_2_8_86_1 doi: 10.1007/978-3-540-85910-9 – volume: 60 start-page: 582 year: 1990 ident: e_1_2_8_59_1 article-title: Pleistocene periglacial eolian deposits in Southwestern Alaska: sedimentary facies and depositional processes publication-title: J. Sed. Res. – start-page: 582 volume-title: The Geology of Fluvial Deposits year: 1996 ident: e_1_2_8_77_1 – ident: e_1_2_8_107_1 doi: 10.1007/978-3-642-88494-8_20 – ident: e_1_2_8_103_1 doi: 10.1130/0016-7606(2001)113<1343:DZPOMT>2.0.CO;2 – ident: e_1_2_8_36_1 doi: 10.1111/j.1365-3091.2011.01291.x – start-page: 393 volume-title: Siliciclastic Sequence Stratigraphy: Recent Developments and Applications year: 1993 ident: e_1_2_8_56_1 – ident: e_1_2_8_32_1 doi: 10.1016/S0037-0738(01)00088-4 – ident: e_1_2_8_84_1 doi: 10.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;2 – ident: e_1_2_8_29_1 doi: 10.1130/0016-7606(1997)109<1193:SOMPTE>2.3.CO;2 – ident: e_1_2_8_28_1 doi: 10.1306/02230908102 – ident: e_1_2_8_15_1 doi: 10.1016/j.geomorph.2015.05.011 – ident: e_1_2_8_95_1 doi: 10.1016/j.chemgeo.2011.04.014 – ident: e_1_2_8_66_1 doi: 10.2110/sepmsp.097.037 – ident: e_1_2_8_2_1 doi: 10.1111/sed.12230 – ident: e_1_2_8_52_1 doi: 10.1016/j.sedgeo.2018.05.009 – ident: e_1_2_8_11_1 doi: 10.1144/GSL.SP.1993.075.01.18 – ident: e_1_2_8_110_1 doi: 10.1016/j.earscirev.2014.05.004 – ident: e_1_2_8_62_1 doi: 10.1130/0016-7606(1991)103<1590:TSOTEP>2.3.CO;2 – ident: e_1_2_8_39_1 doi: 10.1130/GES00889.1 – ident: e_1_2_8_4_1 doi: 10.1130/B30657.1 – ident: e_1_2_8_97_1 doi: 10.1130/0016-7606(1968)79[1573:SCPCOT]2.0.CO;2 – ident: e_1_2_8_19_1 doi: 10.1130/0091-7613(2000)28<299:PTDVUS>2.0.CO;2 – ident: e_1_2_8_9_1 doi: 10.1002/9781444304374.ch2 – ident: e_1_2_8_90_1 doi: 10.2110/jsr.2009.066 – ident: e_1_2_8_22_1 doi: 10.1130/G32737C.1 – volume: 69 start-page: 220 year: 1990 ident: e_1_2_8_30_1 article-title: Braided fluvial to marine transition; the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California publication-title: J. Sed. Res. – ident: e_1_2_8_74_1 doi: 10.1016/j.gr.2017.04.001 – start-page: 305 volume-title: Carbonate Sequence Stratigraphy: Recent Developments and Applications year: 1993 ident: e_1_2_8_78_1 – ident: e_1_2_8_99_1 doi: 10.1016/S0037-0738(02)00313-5 – volume: 61 start-page: 1032 year: 1991 ident: e_1_2_8_31_1 article-title: Braided fluvial to marine transition: the Basal Lower Cambrian Wood Canyon Formation, Southern Marble Mountains, Mojave Desert, California: REPLY publication-title: J. Sed. Petrol. – ident: e_1_2_8_24_1 doi: 10.1111/j.1365-3091.2010.01215.x – ident: e_1_2_8_53_1 doi: 10.1038/s41561-018-0131-7 – ident: e_1_2_8_81_1 doi: 10.1016/j.sedgeo.2015.04.008 – ident: e_1_2_8_37_1 doi: 10.1111/nph.14664 – volume: 129 start-page: 1585 year: 2017 ident: e_1_2_8_80_1 article-title: Influence of textural parameters on detrital‐zircon age spectra with application to provenance and paleogeography during the Ediacaran‐Terreneuvian of southwestern Laurentia publication-title: Geol. Soc. Am. Bull. – ident: e_1_2_8_75_1 doi: 10.1016/0012-8252(77)90055-1 – ident: e_1_2_8_16_1 doi: 10.1016/0037-0738(93)90183-6 – ident: e_1_2_8_7_1 doi: 10.1306/010603730516 – ident: e_1_2_8_91_1 doi: 10.1016/j.precamres.2015.11.003 – start-page: 234 volume-title: Sedimentary Rocks in the Field year: 2003 ident: e_1_2_8_106_1 – ident: e_1_2_8_49_1 doi: 10.2110/jsr.2016.16 – ident: e_1_2_8_58_1 doi: 10.1111/j.1365-3091.1989.tb01540.x – ident: e_1_2_8_6_1 doi: 10.1180/000985598545507 – ident: e_1_2_8_65_1 doi: 10.1016/j.sedgeo.2006.05.006 – ident: e_1_2_8_89_1 doi: 10.1111/sed.12092 – ident: e_1_2_8_73_1 doi: 10.1130/0016-7606(1987)99<331:FABDVO>2.0.CO;2 – ident: e_1_2_8_40_1 doi: 10.1111/sed.12389 – ident: e_1_2_8_42_1 doi: 10.1016/j.sedgeo.2006.05.005 – ident: e_1_2_8_45_1 doi: 10.1086/661990 – ident: e_1_2_8_100_1 doi: 10.1126/science.1169659 – ident: e_1_2_8_5_1 doi: 10.1016/0024-4937(89)90021-2 – start-page: 227 volume-title: Paleozoic Paleogeography of the Western United States – II year: 1991 ident: e_1_2_8_33_1 – ident: e_1_2_8_109_1 doi: 10.1130/L218.1 – ident: e_1_2_8_85_1 doi: 10.1016/0037-0738(82)90060-4 – ident: e_1_2_8_104_1 doi: 10.1016/j.geomorph.2014.02.029 – volume: 55 start-page: 1 year: 1988 ident: e_1_2_8_38_1 article-title: Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments publication-title: Sedimentology – ident: e_1_2_8_96_1 doi: 10.1016/j.precamres.2012.02.017 – ident: e_1_2_8_44_1 doi: 10.1130/0016-7606(1977)88<199:DOTTSC>2.0.CO;2 – ident: e_1_2_8_76_1 doi: 10.1016/0012-8252(85)90001-7 – ident: e_1_2_8_46_1 doi: 10.1016/j.epsl.2015.10.018 – ident: e_1_2_8_67_1 doi: 10.1016/j.sedgeo.2013.11.002 – ident: e_1_2_8_26_1 – ident: e_1_2_8_94_1 doi: 10.1016/j.precamres.2012.01.001 – ident: e_1_2_8_34_1 doi: 10.1016/j.sedgeo.2017.12.022 – ident: e_1_2_8_12_1 doi: 10.1144/GSL.SP.1993.072.01.12 – start-page: 641 volume-title: Fluvial Sedimentology year: 1978 ident: e_1_2_8_8_1 – ident: e_1_2_8_50_1 doi: 10.1111/sed.12273 – ident: e_1_2_8_54_1 doi: 10.1002/9781444304374.ch4 – ident: e_1_2_8_61_1 doi: 10.1306/2DC40962-0E47-11D7-8643000102C1865D – start-page: 313 volume-title: Fluvial Sedimentology year: 1978 ident: e_1_2_8_64_1 – ident: e_1_2_8_41_1 doi: 10.1016/j.pgeola.2013.12.003 – ident: e_1_2_8_47_1 doi: 10.1016/j.sedgeo.2016.06.010 – volume: 550 start-page: C66 year: 1966 ident: e_1_2_8_101_1 article-title: Correlation of Lower Cambrian and some Precambrian strata in the southern Great Basin, California and Nevada publication-title: US Geol. Surv. Prof. Pap. – ident: e_1_2_8_87_1 doi: 10.1130/0091-7613(1992)020<0351:SLDZGO>2.3.CO;2 – ident: e_1_2_8_98_1 doi: 10.2110/pec.81.31.0019 – ident: e_1_2_8_72_1 doi: 10.1144/jgs2017-012 – ident: e_1_2_8_27_1 doi: 10.1016/S0037-0738(98)00026-8 – volume: 53 start-page: 629 year: 1983 ident: e_1_2_8_25_1 article-title: Two new methods of paleocurrent determination from trough cross‐stratification publication-title: J. Sed. Petrol. – ident: e_1_2_8_108_1 doi: 10.1111/sed.12478 – ident: e_1_2_8_17_1 doi: 10.1016/j.sedgeo.2019.01.011 – ident: e_1_2_8_43_1 doi: 10.2113/gscpgbull.64.4.538 – start-page: 361 volume-title: Fluvial Sedimentology year: 1978 ident: e_1_2_8_20_1 – ident: e_1_2_8_83_1 doi: 10.1130/0016-7606(1991)104<0505:DASSFO>2.3.CO;2 – volume: 129 start-page: 1408 year: 2017 ident: e_1_2_8_88_1 article-title: Zircon provenance data record the lateral extent of pancontinental, early Neoproterozoic rivers and erosional unroofing history of the Grenville orogen publication-title: Geol. Soc. Am. Bull. – ident: e_1_2_8_93_1 doi: 10.1144/jgs2016-063 – ident: e_1_2_8_48_1 doi: 10.1111/sed.12211 – ident: e_1_2_8_63_1 doi: 10.1016/j.precamres.2007.04.021 – ident: e_1_2_8_55_1 doi: 10.1130/G32002.1 – ident: e_1_2_8_35_1 doi: 10.1306/D426782F-2B26-11D7-8648000102C1865D – ident: e_1_2_8_71_1 doi: 10.1126/science.aan4660 – ident: e_1_2_8_3_1 doi: 10.1130/G37534.1 – ident: e_1_2_8_13_1 doi: 10.1007/s12182-011-0127-z – ident: e_1_2_8_14_1 doi: 10.1016/j.sedgeo.2017.03.013 – ident: e_1_2_8_69_1 doi: 10.1016/j.precamres.2014.12.005 – ident: e_1_2_8_51_1 doi: 10.1038/ncomms15250 |
SSID | ssj0016489 |
Score | 2.357677 |
Snippet | Architectural element analysis and detailed mapping of a 300 m along‐strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains,... Architectural element analysis and detailed mapping of a 300 m along‐strike exposure of the middle member Wood Canyon Formation, southern Marble Mountains,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1084 |
SubjectTerms | Accretion Aggradation Associations Braiding Braidplain Cambrian Canyons Deposition Environment models Eolian transport Flood stages Floodplains fluvial architecture Fluvial deposits Groundwater table Iron oxides Mapping Marble Marble Mountains Mountains Outcrops Overland flow pre‐vegetation Sand bars Sandstone Sedimentary facies Sedimentary rocks Sedimentary structures Strata Stratification Stratigraphy Structure from Motion Surface runoff Water table Wood Wood Canyon Formation |
Title | Architecture of a distal pre‐vegetation braidplain: Cambrian middle member of the Wood Canyon Formation, southern Marble Mountains, California, USA |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsed.12677 https://www.proquest.com/docview/2342965198 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pa9swFBchUOhlW9eNpU2LKD3sEAfbsmRnPYU1WSlkh7VhOQyMniWPstQOcTrITv0IvfQL9pPsSbaTtHRQdjP4PcmW3vP7Pfn9IeQYVBCJJA0dyRRzAqaEA0IqB22z4qH2uLT9U0Zfxdk4OJ_wSYOc1LkwZX2I1YGb0Qz7vTYKLqHYUPJCq67ni9BkkptYLQOIvq1KR6EXEJXQl5mjuEBUVYVMFM-K87EtWgPMTZhq7czwNflRP2EZXvKre7OAbvLnSfHG_3yFN-RVhT9pvxSYHdLQ2Vuy9cX2913ukvv-xo8FmqdUUmUQ5pTO5vrh9u63_lnFJ1Kc-ErNpvIq-0TLzC-Z0Wt73kGvtekzYvgRX9Lvea6QJFsi17BOluzQIrfR9RkdyTkg08i0rcDhig5dZ4x16Pii_46Mh4PLz2dO1bkBt9x30ex5GqFEJALO3DTUieAKtAQ3Eb3U7QEiehF6adATiisXwJR4B8ldhnfA9VPO3pNmlmf6A6FeJMAEjSJy0gEolB3GNEeXHiDRKgpa5GO9h3FSlTU33TWmce3e4CrHdpVb5GhFOitreTxH1K4FIa7UuYh9hmZbINiNcDq7o_8eIL4YnNqLvZeT7pNt3_jxNhq8TZqL-Y0-QLCzgEMr1X8BUsT8Vw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5REGov5VUE5WUhDhw2qySOnSzisgKWpWU5FFblUkV27CDUJVntLkhw4idw4Q_ySxg7ybKtWqnqLVJm7MSeyXyezANgR6og4kkaOoIq6gRUcUdyoRy0zYqF2mPC9k_pnPF2N_hyyS6nYL_KhSnqQ4wdbkYz7PfaKLhxSE9o-VCruufzMHwHM6ajt6mcf_htXDwKzwFRAX6pccYFvKwrZOJ4xqy_WqM3iDkJVK2lac3Bj-oZiwCTn_XbkawnD7-Vb_zfl5iHjyUEJc1CZhZgSmeLMHtsW_zeL8Fzc-LfAslTIogyILNH-gP98vh0p6_KEEWCM1-rfk9cZ3ukSP4SGbmxLg9yo02rEcOPEJN8z3OFJNk9crWqfMkaGeY2wD4jHTGQyNQxnStwuGGNvCWN1Uj3vPkJuq2ji4O2UzZvwF33XbR8nkY0EfGAUTcNdcKZklpIN-GN1G1IBPU89NKgwRVTrpSmyrsUzKV4R7p-yugyTGd5pleAeBGXJm4UwZMOpELxoVQzPNVLmWgVBauwW21inJSVzU2DjV5cnXBwlWO7yquwPSbtF-U8_kS0XklCXGr0MPYpWm6UskaE09kt_fsA8fnRob34_O-kW_C-fdE5jU9Pzr6uwQffHOttcPg6TI8Gt3oDsc9IbloRfwUOTACC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5RUCsuBfoQtDxWVQ89xJHtfdiBU0QI0DaoKo3KoZK1610jRLCjJFSCEz-BC3-QX8Ls2g5p1UpVb5Y8s2vvzni-Wc8D4L3SLBZpFnmSauoxqoWnhNQe2mbNIxNw6fqn9I7EQZ99POEnc7BT58KU9SGmB25WM9z32ir4UGczSj42uhmEIoqewAITfsv2beh8ndaOQjcgLrEvtWdxTFRlhWwYz5T1V2P0iDBncaozNN0l-FE_Yhlfct68nKhmev1b9cb_fIdleF4BUNIuJWYF5kz-Ap7uuwa_Vy_hrj3zZ4EUGZFEW4g5IMORub-5_WlOqwBFghOf6eFAnuXbpEz9kjm5cAce5MLYRiOWHwEm-V4UGknyK-Tq1tmSDTIuXHh9TnpypJCpZ_tW4HDjBnlMGWuQ_nH7FfS7e992D7yqdQPueeij3QsMYolYME79LDKp4FoZqfxUtDK_pRDSiyjIWEtorn2lbI13JblP8Y7yw4zT1zCfF7lZBRLEQtmoUYROhimNwkOp4ejTK5UaHbM1-FDvYZJWdc1te41BUvs3uMqJW-U1eDclHZbFPP5EtF4LQlLp8zgJKdptgWg3xuncjv59gOR4r-Mu3vw76RY8-9LpJp8Pjz69hcXQ-vQuMnwd5iejS7OBwGeiNp2APwAVb_8i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Architecture+of+a+distal+pre%E2%80%90vegetation+braidplain%3A+Cambrian+middle+member+of+the+Wood+Canyon+Formation%2C+southern+Marble+Mountains%2C+California%2C+USA&rft.jtitle=Sedimentology&rft.au=Muhlbauer%2C+Jason+G.&rft.au=Fedo%2C+Christopher+M.&rft.au=Moersch%2C+Jeffrey+E.&rft.date=2020-02-01&rft.issn=0037-0746&rft.eissn=1365-3091&rft.volume=67&rft.issue=2&rft.spage=1084&rft.epage=1113&rft_id=info:doi/10.1111%2Fsed.12677&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sed_12677 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-0746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-0746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-0746&client=summon |