Kβ X‑ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H2O2 Activation
Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 29; pp. 16015 - 16025 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.07.2023
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.3c04048 |
Cover
Loading…
Abstract | Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2. |
---|---|
AbstractList | Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. Here, this study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2. Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2. Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2. Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d¹⁰ Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H₂O₂ O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H₂O₂. |
Author | Transue, Wesley J. Hodgson, Keith O. Solomon, Edward I. Kroll, Thomas Sokaras, Dimosthenis Meier, Katlyn K. Brueggemeyer, Magdalene T. Kelemen, Bradley Hedman, Britt Lim, Hyeongtaek Jones, Stephen M. |
AuthorAffiliation | Department of Chemistry Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory IFF Health and Biosciences |
AuthorAffiliation_xml | – name: IFF Health and Biosciences – name: Department of Chemistry – name: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory |
Author_xml | – sequence: 1 givenname: Hyeongtaek orcidid: 0000-0003-3470-8296 surname: Lim fullname: Lim, Hyeongtaek organization: Department of Chemistry – sequence: 2 givenname: Magdalene T. orcidid: 0000-0002-0205-8033 surname: Brueggemeyer fullname: Brueggemeyer, Magdalene T. organization: Department of Chemistry – sequence: 3 givenname: Wesley J. orcidid: 0000-0001-7445-5663 surname: Transue fullname: Transue, Wesley J. organization: Department of Chemistry – sequence: 4 givenname: Katlyn K. orcidid: 0000-0002-8316-9199 surname: Meier fullname: Meier, Katlyn K. organization: Department of Chemistry – sequence: 5 givenname: Stephen M. orcidid: 0000-0003-2045-1661 surname: Jones fullname: Jones, Stephen M. organization: Department of Chemistry – sequence: 6 givenname: Thomas surname: Kroll fullname: Kroll, Thomas organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 7 givenname: Dimosthenis surname: Sokaras fullname: Sokaras, Dimosthenis organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 8 givenname: Bradley surname: Kelemen fullname: Kelemen, Bradley organization: IFF Health and Biosciences – sequence: 9 givenname: Britt surname: Hedman fullname: Hedman, Britt organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 10 givenname: Keith O. surname: Hodgson fullname: Hodgson, Keith O. organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory – sequence: 11 givenname: Edward I. orcidid: 0000-0003-0291-3199 surname: Solomon fullname: Solomon, Edward I. email: edward.solomon@stanford.edu organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory |
BackLink | https://www.osti.gov/servlets/purl/1996542$$D View this record in Osti.gov |
BookMark | eNqFkUtOHDEYhK2ISBkeOw5gsYJFEz_6mR0ahoeYaJAAiZ3ldv_OeNTYE9uN0rtcgVXukYPkEJwkngxSlqx-_dJXJVXVLtqxzgJCh5ScUsLo55VU4ZQrkpO8_oAmtGAkKygrd9CEEMKyqi75J7Qbwiq9OavpBP26-fMbP77-fPFyxLMnE4JxFt-tQUXvgnLrETuNp8Px9Uk2H6NR-Nb1Y5BKLaU3HeCvzjr3Y_wGVgb4gs-NT1K8aAP4Zxk3Zkkfl4AvvLPRgE-KHtTQS48XvjVR9lg7j6_YguEzFc1WtY8-atkHOHi7e-jhYnY_vcrmi8vr6dk8k5w2MeNtxXLe5YQVpICykSXRrNJMt1UHZUdaCUQS2QFvWdvkWndVRbjkXHPa6Rz4Hjra-roQjQjKRFBL5axNKQRtmrLIWYKOt9Dau-8DhChSUQr6XlpwQxD8X-NFwt9FWc1rtqm-_o-m1cTKDd6moIISsdlSbLYUb1vyv4qFlqk |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
CorporateAuthor | SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
DBID | 7X8 7S9 L.6 OIOZB OTOTI |
DOI | 10.1021/jacs.3c04048 |
DatabaseName | MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 16025 |
ExternalDocumentID | 1996542 d012882937 |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G 7X8 AAHBH ABBLG ABJNI ABLBI ACBEA CUPRZ 7S9 L.6 AGHSJ OIOZB OTOTI |
ID | FETCH-LOGICAL-a319t-3b7243d402505e69a60f27f2fb7de6d0bae0a0ade3b2b94ffd7703a33f31df4e3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Jul 22 05:29:10 EDT 2024 Thu Jul 10 22:41:44 EDT 2025 Fri Jul 11 14:26:32 EDT 2025 Fri Jul 28 03:16:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a319t-3b7243d402505e69a60f27f2fb7de6d0bae0a0ade3b2b94ffd7703a33f31df4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-76SF00515; P30GM133894 USDOE Office of Science (SC), Basic Energy Sciences (BES) National Institutes of Health (NIH) |
ORCID | 0000-0002-8316-9199 0000-0001-7445-5663 0000-0003-0291-3199 0000-0002-0205-8033 0000-0003-2045-1661 0000-0003-3470-8296 0000000174455663 0000000202058033 0000000302913199 0000000334708296 0000000283169199 0000000320451661 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1996542 |
PQID | 2838242818 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1996542 proquest_miscellaneous_3040485199 proquest_miscellaneous_2838242818 acs_journals_10_1021_jacs_3c04048 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-26 |
PublicationDateYYYYMMDD | 2023-07-26 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
SSID | ssj0004281 |
Score | 2.5248594 |
Snippet | Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by... |
SourceID | osti proquest acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 16015 |
SubjectTerms | active sites crystal cleavage density functional theory electronic structure energy geometry histidine homolytic cleavage INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ligands molecular structure polysaccharides spectroscopy X-radiation |
Title | Kβ X‑ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H2O2 Activation |
URI | http://dx.doi.org/10.1021/jacs.3c04048 https://www.proquest.com/docview/2838242818 https://www.proquest.com/docview/3040485199 https://www.osti.gov/servlets/purl/1996542 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTuMwFLUYWMCG14B4yyOxYBapEtt1EnaoohQY6EgDUneRnxICNahNF2XFL7DiP_gQPoIv4d40AQmEmK0VP2Tf63vi-ziE7EZKagGWLnCW-0BEoQmUilWQALb12oPB5Zg7fHYuO5fipNfsvQfIfvTgM6wPZIYNbkDYRPKDzDAJCBshUOvfe_4jS6Ia5saJ5FWA-8feaIAMlvfMQXs-3b2lQWkvkKM6LWcSR3LdGBW6Ye4-V2n8Zq2LZL7ClPRgIgRLZMr1l8lsq6Zy-0keT5-faO_l_mGgxvQQWvGJjCL1fIHFLPPbMc09bY32jn8Hf8YwCv2b34yHymBO1pV1FDQ_h2WCsIHR26eTe5J29duTLvYHKEnbWA8BLC30qGh3aXegkZiEAjqmHdZl9MDUlGor5LJ9eNHqBBUjQ6BAVYuA65gJbkUJnJxMlQw9iz3zOrZO2lArF6pQWcc106nw3sZwoyjOPY-sF46vkul-3ndrhIaJj12cGOlDIbwA4KqlNVGYqjRVXpp18gs2M6s0apiVznIGPyvYWm3xOtnEo8wALGDFW4OhQabIMLC6KRiMUJ9wBjuLjhDVd_lomAGkShgKTfL1N7ycAfBtuvEfK9kkc8hDj4--TG6R6WIwctuAVgq9U4rqKy475-k |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NThsxELYoHOilhRZUSAEj9dAeNtq1He8utygiSsgfEiDltvKvVLXKVtnNIZz6Cj31PfogfQiepDObDUhUSLlaa3tkj2e-tWe-IeRTpKQW4OkCZ7kPRBSaQKlYBQlgW689OFyOucOjsezdiatpa1onq2MuDAhRwEhF9Yj_xC6ANEHQyA3onEhekR3AIQwj-Nqdm6c0SJZEa7QbJ5LXce7Pe6MfMsjymcMh-s8EV36l-5aMHyWqwkm-NRelbpr7Z2SNG4u8R97UCJO2VyqxT7bc7B3Z7awLu70nvwd__9Dpw89fc7Wkl9CKF2YUC9GXSG2Z_1jS3NPO4nP_SzBcwij0Ov--LJTBDK2v1lGwAzlIC6oHLvCCrqwmnejHC17sD8CSdpEdAfwu9KiL8NLJXGOZEgpYmfbYhNG2WRdYOyB33cvbTi-o6zMECg5uGXAdM8GtqGCUk6mSoWexZ17H1kkbauVCFSrruGY6Fd7bGOyL4tzzyHrh-CHZnuUz94HQMPGxixMjfSiEFwBjtbQmClOVpspLc0TOYTGz-nwVWfV0zuDXBVvrJT4iDdzRDKAD8t8aDBQyZYZh1i3BYIT1RmewsvgsomYuXxQZAKyEoe4kL3_DqxkA7abHG0hyRnZ7t6NhNuyPBw3yGivU43Uwkx_JdjlfuBPAMaU-rbT3H1GA8Eo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qrVTYQFtAlD4wEgu6SJXYrpOwGw0dTeljKqDS7CI_JQSaVJPMYljxC131P_gQPoIv6b1p0kqtKsHWiZ0r-z5OfF8A7xKtjERLF3knQiST2EZapzrKENsGE9DgCsodPj5RwzP5abw3XoCky4VBIipcqWqc-CTV5y60FQaoVBA-EBb5TmaPYIk8dhTF1-t_uU2F5FnSId40U6KNdb87m2yRpUqfJQrSPTXc2JbBM_h8Q1UTUvJ9d1abXfvzTsHG_yJ7BZ62SJP1rlljFRb8ZA0e97sGb8_h8vDPbzb---tiqudsH0fp4oxRQ_qaSlyW53NWBtafvT_YiY7muAo7LX_MK20pU-ub8wz1QYkUIwuiKfzArrUnG5mbi16ajwCTDahKAtpfnNE242WjqaF2JQwxMxvyEWc92zVaewFng_2v_WHU9mmINApwHQmTcimcbOCUV7lWceBp4MGkzisXG-1jHWvnheEmlyG4FPWMFiKIxAXpxUtYnJQT_wpYnIXUp5lVIZYySISzRjmbxLnOcx2UXYe3uJlFK2dV0bjQOf7C0Gi7xeuwQadaIISgOriWAoZsXVC49Z7kuEJ32AXuLLlH9MSXs6pAoJVx4p_s4XdE8wVEvfnrf6DkDSyffhwURwcnhxvwhBrV060wV5uwWE9nfgvhTG22Gwa-Ag3m8s0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K%CE%B2+X-ray+Emission+Spectroscopy+of+Cu%28I%29-Lytic+Polysaccharide+Monooxygenase%3A+Direct+Observation+of+the+Frontier+Molecular+Orbital+for+H2O2+Activation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lim%2C+Hyeongtaek&rft.au=Brueggemeyer%2C+Magdalene+T.&rft.au=Transue%2C+Wesley+J.&rft.au=Meier%2C+Katlyn+K.&rft.date=2023-07-26&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=145&rft.issue=29&rft_id=info:doi/10.1021%2Fjacs.3c04048&rft.externalDocID=1996542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |