Kβ X‑ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H2O2 Activation

Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu­(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 29; pp. 16015 - 16025
Main Authors Lim, Hyeongtaek, Brueggemeyer, Magdalene T., Transue, Wesley J., Meier, Katlyn K., Jones, Stephen M., Kroll, Thomas, Sokaras, Dimosthenis, Kelemen, Bradley, Hedman, Britt, Hodgson, Keith O., Solomon, Edward I.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.07.2023
American Chemical Society (ACS)
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.3c04048

Cover

Loading…
Abstract Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu­(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu­(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu­(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu­(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu­(I)-LPMO site is activated for rapid reactivity with H2O2.
AbstractList Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. Here, this study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.
Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.
Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu­(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu­(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu­(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu­(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu­(I)-LPMO site is activated for rapid reactivity with H2O2.
Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu­(I) active site with a three-coordinate T-shaped “His-brace” configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d¹⁰ Cu­(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu­(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu­(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H₂O₂ O–O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu­(I)-LPMO site is activated for rapid reactivity with H₂O₂.
Author Transue, Wesley J.
Hodgson, Keith O.
Solomon, Edward I.
Kroll, Thomas
Sokaras, Dimosthenis
Meier, Katlyn K.
Brueggemeyer, Magdalene T.
Kelemen, Bradley
Hedman, Britt
Lim, Hyeongtaek
Jones, Stephen M.
AuthorAffiliation Department of Chemistry
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
IFF Health and Biosciences
AuthorAffiliation_xml – name: IFF Health and Biosciences
– name: Department of Chemistry
– name: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
Author_xml – sequence: 1
  givenname: Hyeongtaek
  orcidid: 0000-0003-3470-8296
  surname: Lim
  fullname: Lim, Hyeongtaek
  organization: Department of Chemistry
– sequence: 2
  givenname: Magdalene T.
  orcidid: 0000-0002-0205-8033
  surname: Brueggemeyer
  fullname: Brueggemeyer, Magdalene T.
  organization: Department of Chemistry
– sequence: 3
  givenname: Wesley J.
  orcidid: 0000-0001-7445-5663
  surname: Transue
  fullname: Transue, Wesley J.
  organization: Department of Chemistry
– sequence: 4
  givenname: Katlyn K.
  orcidid: 0000-0002-8316-9199
  surname: Meier
  fullname: Meier, Katlyn K.
  organization: Department of Chemistry
– sequence: 5
  givenname: Stephen M.
  orcidid: 0000-0003-2045-1661
  surname: Jones
  fullname: Jones, Stephen M.
  organization: Department of Chemistry
– sequence: 6
  givenname: Thomas
  surname: Kroll
  fullname: Kroll, Thomas
  organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
– sequence: 7
  givenname: Dimosthenis
  surname: Sokaras
  fullname: Sokaras, Dimosthenis
  organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
– sequence: 8
  givenname: Bradley
  surname: Kelemen
  fullname: Kelemen, Bradley
  organization: IFF Health and Biosciences
– sequence: 9
  givenname: Britt
  surname: Hedman
  fullname: Hedman, Britt
  organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
– sequence: 10
  givenname: Keith O.
  surname: Hodgson
  fullname: Hodgson, Keith O.
  organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
– sequence: 11
  givenname: Edward I.
  orcidid: 0000-0003-0291-3199
  surname: Solomon
  fullname: Solomon, Edward I.
  email: edward.solomon@stanford.edu
  organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory
BackLink https://www.osti.gov/servlets/purl/1996542$$D View this record in Osti.gov
BookMark eNqFkUtOHDEYhK2ISBkeOw5gsYJFEz_6mR0ahoeYaJAAiZ3ldv_OeNTYE9uN0rtcgVXukYPkEJwkngxSlqx-_dJXJVXVLtqxzgJCh5ScUsLo55VU4ZQrkpO8_oAmtGAkKygrd9CEEMKyqi75J7Qbwiq9OavpBP26-fMbP77-fPFyxLMnE4JxFt-tQUXvgnLrETuNp8Px9Uk2H6NR-Nb1Y5BKLaU3HeCvzjr3Y_wGVgb4gs-NT1K8aAP4Zxk3Zkkfl4AvvLPRgE-KHtTQS48XvjVR9lg7j6_YguEzFc1WtY8-atkHOHi7e-jhYnY_vcrmi8vr6dk8k5w2MeNtxXLe5YQVpICykSXRrNJMt1UHZUdaCUQS2QFvWdvkWndVRbjkXHPa6Rz4Hjra-roQjQjKRFBL5axNKQRtmrLIWYKOt9Dau-8DhChSUQr6XlpwQxD8X-NFwt9FWc1rtqm-_o-m1cTKDd6moIISsdlSbLYUb1vyv4qFlqk
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID 7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/jacs.3c04048
DatabaseName MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 16025
ExternalDocumentID 1996542
d012882937
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
7X8
AAHBH
ABBLG
ABJNI
ABLBI
ACBEA
CUPRZ
7S9
L.6
AGHSJ
OIOZB
OTOTI
ID FETCH-LOGICAL-a319t-3b7243d402505e69a60f27f2fb7de6d0bae0a0ade3b2b94ffd7703a33f31df4e3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Jul 22 05:29:10 EDT 2024
Thu Jul 10 22:41:44 EDT 2025
Fri Jul 11 14:26:32 EDT 2025
Fri Jul 28 03:16:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a319t-3b7243d402505e69a60f27f2fb7de6d0bae0a0ade3b2b94ffd7703a33f31df4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-76SF00515; P30GM133894
USDOE Office of Science (SC), Basic Energy Sciences (BES)
National Institutes of Health (NIH)
ORCID 0000-0002-8316-9199
0000-0001-7445-5663
0000-0003-0291-3199
0000-0002-0205-8033
0000-0003-2045-1661
0000-0003-3470-8296
0000000174455663
0000000202058033
0000000302913199
0000000334708296
0000000283169199
0000000320451661
OpenAccessLink https://www.osti.gov/servlets/purl/1996542
PQID 2838242818
PQPubID 23479
PageCount 11
ParticipantIDs osti_scitechconnect_1996542
proquest_miscellaneous_3040485199
proquest_miscellaneous_2838242818
acs_journals_10_1021_jacs_3c04048
PublicationCentury 2000
PublicationDate 2023-07-26
PublicationDateYYYYMMDD 2023-07-26
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
SSID ssj0004281
Score 2.5248594
Snippet Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by...
SourceID osti
proquest
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 16015
SubjectTerms active sites
crystal cleavage
density functional theory
electronic structure
energy
geometry
histidine
homolytic cleavage
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ligands
molecular structure
polysaccharides
spectroscopy
X-radiation
Title Kβ X‑ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H2O2 Activation
URI http://dx.doi.org/10.1021/jacs.3c04048
https://www.proquest.com/docview/2838242818
https://www.proquest.com/docview/3040485199
https://www.osti.gov/servlets/purl/1996542
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTuMwFLUYWMCG14B4yyOxYBapEtt1EnaoohQY6EgDUneRnxICNahNF2XFL7DiP_gQPoIv4d40AQmEmK0VP2Tf63vi-ziE7EZKagGWLnCW-0BEoQmUilWQALb12oPB5Zg7fHYuO5fipNfsvQfIfvTgM6wPZIYNbkDYRPKDzDAJCBshUOvfe_4jS6Ia5saJ5FWA-8feaIAMlvfMQXs-3b2lQWkvkKM6LWcSR3LdGBW6Ye4-V2n8Zq2LZL7ClPRgIgRLZMr1l8lsq6Zy-0keT5-faO_l_mGgxvQQWvGJjCL1fIHFLPPbMc09bY32jn8Hf8YwCv2b34yHymBO1pV1FDQ_h2WCsIHR26eTe5J29duTLvYHKEnbWA8BLC30qGh3aXegkZiEAjqmHdZl9MDUlGor5LJ9eNHqBBUjQ6BAVYuA65gJbkUJnJxMlQw9iz3zOrZO2lArF6pQWcc106nw3sZwoyjOPY-sF46vkul-3ndrhIaJj12cGOlDIbwA4KqlNVGYqjRVXpp18gs2M6s0apiVznIGPyvYWm3xOtnEo8wALGDFW4OhQabIMLC6KRiMUJ9wBjuLjhDVd_lomAGkShgKTfL1N7ycAfBtuvEfK9kkc8hDj4--TG6R6WIwctuAVgq9U4rqKy475-k
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NThsxELYoHOilhRZUSAEj9dAeNtq1He8utygiSsgfEiDltvKvVLXKVtnNIZz6Cj31PfogfQiepDObDUhUSLlaa3tkj2e-tWe-IeRTpKQW4OkCZ7kPRBSaQKlYBQlgW689OFyOucOjsezdiatpa1onq2MuDAhRwEhF9Yj_xC6ANEHQyA3onEhekR3AIQwj-Nqdm6c0SJZEa7QbJ5LXce7Pe6MfMsjymcMh-s8EV36l-5aMHyWqwkm-NRelbpr7Z2SNG4u8R97UCJO2VyqxT7bc7B3Z7awLu70nvwd__9Dpw89fc7Wkl9CKF2YUC9GXSG2Z_1jS3NPO4nP_SzBcwij0Ov--LJTBDK2v1lGwAzlIC6oHLvCCrqwmnejHC17sD8CSdpEdAfwu9KiL8NLJXGOZEgpYmfbYhNG2WRdYOyB33cvbTi-o6zMECg5uGXAdM8GtqGCUk6mSoWexZ17H1kkbauVCFSrruGY6Fd7bGOyL4tzzyHrh-CHZnuUz94HQMPGxixMjfSiEFwBjtbQmClOVpspLc0TOYTGz-nwVWfV0zuDXBVvrJT4iDdzRDKAD8t8aDBQyZYZh1i3BYIT1RmewsvgsomYuXxQZAKyEoe4kL3_DqxkA7abHG0hyRnZ7t6NhNuyPBw3yGivU43Uwkx_JdjlfuBPAMaU-rbT3H1GA8Eo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qrVTYQFtAlD4wEgu6SJXYrpOwGw0dTeljKqDS7CI_JQSaVJPMYljxC131P_gQPoIv6b1p0kqtKsHWiZ0r-z5OfF8A7xKtjERLF3knQiST2EZapzrKENsGE9DgCsodPj5RwzP5abw3XoCky4VBIipcqWqc-CTV5y60FQaoVBA-EBb5TmaPYIk8dhTF1-t_uU2F5FnSId40U6KNdb87m2yRpUqfJQrSPTXc2JbBM_h8Q1UTUvJ9d1abXfvzTsHG_yJ7BZ62SJP1rlljFRb8ZA0e97sGb8_h8vDPbzb---tiqudsH0fp4oxRQ_qaSlyW53NWBtafvT_YiY7muAo7LX_MK20pU-ub8wz1QYkUIwuiKfzArrUnG5mbi16ajwCTDahKAtpfnNE242WjqaF2JQwxMxvyEWc92zVaewFng_2v_WHU9mmINApwHQmTcimcbOCUV7lWceBp4MGkzisXG-1jHWvnheEmlyG4FPWMFiKIxAXpxUtYnJQT_wpYnIXUp5lVIZYySISzRjmbxLnOcx2UXYe3uJlFK2dV0bjQOf7C0Gi7xeuwQadaIISgOriWAoZsXVC49Z7kuEJ32AXuLLlH9MSXs6pAoJVx4p_s4XdE8wVEvfnrf6DkDSyffhwURwcnhxvwhBrV060wV5uwWE9nfgvhTG22Gwa-Ag3m8s0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K%CE%B2+X-ray+Emission+Spectroscopy+of+Cu%28I%29-Lytic+Polysaccharide+Monooxygenase%3A+Direct+Observation+of+the+Frontier+Molecular+Orbital+for+H2O2+Activation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lim%2C+Hyeongtaek&rft.au=Brueggemeyer%2C+Magdalene+T.&rft.au=Transue%2C+Wesley+J.&rft.au=Meier%2C+Katlyn+K.&rft.date=2023-07-26&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=145&rft.issue=29&rft_id=info:doi/10.1021%2Fjacs.3c04048&rft.externalDocID=1996542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon