Applying Molecular Dynamics Simulations to Unveil the Anisotropic Growth Mechanism of Gold Nanorods: Advances and Perspectives
The unique properties of gold nanorods (AuNRs), combined with their relatively straightforward production, good yields, and satisfactory control over size and shape, have sparked considerable interest in their potential applications. However, the mechanism behind these particles’ formation continues...
Saved in:
Published in | Journal of chemical information and modeling Vol. 65; no. 6; pp. 2730 - 2740 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The unique properties of gold nanorods (AuNRs), combined with their relatively straightforward production, good yields, and satisfactory control over size and shape, have sparked considerable interest in their potential applications. However, the mechanism behind these particles’ formation continues to be a subject of significant interest and debate. Many experimental studies have been designed and undertaken to understand how AuNRs can be produced through seed-mediated methods. In recent years, quantum mechanics and molecular dynamics simulations have added to the repertoire of tools for investigating this topic. By comparing simulations with experimental data, essential aspects of the anisotropic growth of AuNRs can be revealed. This review presents an overview of the mechanisms proposed for creating AuNRs through seed-mediated methods, grounded in both experimental and simulation studies, and also highlights some remaining gaps in our understanding of the anisotropic growth process that need further exploration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 1549-9596 1549-960X 1549-960X |
DOI: | 10.1021/acs.jcim.4c02009 |