General Charge Transfer Dipole Model for AMOEBA-Like Force Fields

The development of highly accurate force fields is always an importance aspect in molecular modeling. In this work, we introduce a general damping-based charge transfer dipole (D-CTD) model to describe the charge transfer energy and the corresponding charge flow for H, C, N, O, P, S, F, Cl, and Br e...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 19; no. 9; pp. 2518 - 2534
Main Authors Wang, Wei, Yan, Dengjie, Cai, Yao, Xu, Dingguo, Ma, Jianyi, Wang, Qiantao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of highly accurate force fields is always an importance aspect in molecular modeling. In this work, we introduce a general damping-based charge transfer dipole (D-CTD) model to describe the charge transfer energy and the corresponding charge flow for H, C, N, O, P, S, F, Cl, and Br elements in common bio-organic systems. Then, two effective schemes to evaluate the charge flow from the corresponding induced dipole moment between the interacting molecules were also proposed and discussed. The potential applicability of the D-CTD model in ion-containing systems was also demonstrated in a series of ion–water complexes including Li+, Na+, K+, Mg2+, Ca2+, Fe2+, Zn2+, Pt2+, F–, Cl–, Br–, and I– ions. In general, the D-CTD model demonstrated good accuracy and good transferability in both charge transfer energy and the corresponding charge flow for a wide range of model systems. By distinguishing the intermolecular charge redistribution (charge transfer) under the influence of an external electric field from the accompanying intramolecular charge redistribution (polarization), the D-CTD model is theoretically consistent with current induced dipole-based polarizable dipole models and hence can be easily implemented and parameterized. Along with our previous work in charge penetration-corrected electrostatics, a bottom-up approach constructed water model was also proposed and demonstrated. The structure-maker and structure-breaker roles of cations and anions were also correctly reproduced using Na+, K+, Cl–, and I– ions in the new water model, respectively. This work demonstrates a cost-effective approach to describe the charge transfer phenomena. The water and ion models also show the feasibility of a modulated development approach for future force fields.
AbstractList The development of highly accurate force fields is always an importance aspect in molecular modeling. In this work, we introduce a general damping-based charge transfer dipole (D-CTD) model to describe the charge transfer energy and the corresponding charge flow for H, C, N, O, P, S, F, Cl, and Br elements in common bio-organic systems. Then, two effective schemes to evaluate the charge flow from the corresponding induced dipole moment between the interacting molecules were also proposed and discussed. The potential applicability of the D-CTD model in ion-containing systems was also demonstrated in a series of ion-water complexes including Li , Na , K , Mg , Ca , Fe , Zn , Pt , F , Cl , Br , and I ions. In general, the D-CTD model demonstrated good accuracy and good transferability in both charge transfer energy and the corresponding charge flow for a wide range of model systems. By distinguishing the intermolecular charge redistribution (charge transfer) under the influence of an external electric field from the accompanying intramolecular charge redistribution (polarization), the D-CTD model is theoretically consistent with current induced dipole-based polarizable dipole models and hence can be easily implemented and parameterized. Along with our previous work in charge penetration-corrected electrostatics, a bottom-up approach constructed water model was also proposed and demonstrated. The structure-maker and structure-breaker roles of cations and anions were also correctly reproduced using Na , K , Cl , and I ions in the new water model, respectively. This work demonstrates a cost-effective approach to describe the charge transfer phenomena. The water and ion models also show the feasibility of a modulated development approach for future force fields.
The development of highly accurate force fields is always an importance aspect in molecular modeling. In this work, we introduce a general damping-based charge transfer dipole (D-CTD) model to describe the charge transfer energy and the corresponding charge flow for H, C, N, O, P, S, F, Cl, and Br elements in common bio-organic systems. Then, two effective schemes to evaluate the charge flow from the corresponding induced dipole moment between the interacting molecules were also proposed and discussed. The potential applicability of the D-CTD model in ion-containing systems was also demonstrated in a series of ion–water complexes including Li+, Na+, K+, Mg2+, Ca2+, Fe2+, Zn2+, Pt2+, F–, Cl–, Br–, and I– ions. In general, the D-CTD model demonstrated good accuracy and good transferability in both charge transfer energy and the corresponding charge flow for a wide range of model systems. By distinguishing the intermolecular charge redistribution (charge transfer) under the influence of an external electric field from the accompanying intramolecular charge redistribution (polarization), the D-CTD model is theoretically consistent with current induced dipole-based polarizable dipole models and hence can be easily implemented and parameterized. Along with our previous work in charge penetration-corrected electrostatics, a bottom-up approach constructed water model was also proposed and demonstrated. The structure-maker and structure-breaker roles of cations and anions were also correctly reproduced using Na+, K+, Cl–, and I– ions in the new water model, respectively. This work demonstrates a cost-effective approach to describe the charge transfer phenomena. The water and ion models also show the feasibility of a modulated development approach for future force fields.
Author Ma, Jianyi
Yan, Dengjie
Cai, Yao
Xu, Dingguo
Wang, Wei
Wang, Qiantao
AuthorAffiliation College of Chemistry
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy
Institute of Atomic and Molecular Physics
AuthorAffiliation_xml – name: Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy
– name: Institute of Atomic and Molecular Physics
– name: College of Chemistry
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-1889-022X
  surname: Wang
  fullname: Wang, Wei
  organization: Institute of Atomic and Molecular Physics
– sequence: 2
  givenname: Dengjie
  surname: Yan
  fullname: Yan, Dengjie
  organization: Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy
– sequence: 3
  givenname: Yao
  surname: Cai
  fullname: Cai, Yao
  organization: College of Chemistry
– sequence: 4
  givenname: Dingguo
  orcidid: 0000-0002-9834-8296
  surname: Xu
  fullname: Xu, Dingguo
  organization: College of Chemistry
– sequence: 5
  givenname: Jianyi
  surname: Ma
  fullname: Ma, Jianyi
  email: majianyi81@163.com
  organization: Institute of Atomic and Molecular Physics
– sequence: 6
  givenname: Qiantao
  orcidid: 0000-0002-5553-6246
  surname: Wang
  fullname: Wang, Qiantao
  email: qwang@scu.edu.cn
  organization: Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37125725$$D View this record in MEDLINE/PubMed
BookMark eNp1kDtPwzAURi1URB-wM6FILAyk-BE7zhhKW5BadSmz5To3kJLGxW4G_j0uLR2QWHw9nO-7V6ePOo1tAKFrgocEU_KgjR-uzc4MqcEEy-QM9QhPsjgTVHROfyK7qO_9GmPGEsouUJelhPKU8h7Kp9CA03U0etfuDaKl040vwUVP1dbWEM1tAXVUWhfl88X4MY9n1QdEE-tMeCuoC3-Jzktde7g6zgF6nYyXo-d4tpi-jPJZrBlJd3HCdSlJQQzLUpGkBRQZ05KzLJFQcIxLozmIJCGQEY2FMJzwFcOZlitaGsPZAN0derfOfrbgd2pTeQN1rRuwrVdUYklJigUO6O0fdG1b14TrAkUJDtVSBAofKOOs9w5KtXXVRrsvRbDa61VBr9rrVUe9IXJzLG5XGyhOgV-fAbg_AD_R36X_9n0DaMSEhg
Cites_doi 10.1021/jp510896n
10.1063/1.439795
10.1007/BF00549096
10.1021/jz501238v
10.1002/qua.560220118
10.1021/ja9912325
10.1021/acs.jctc.1c00628
10.1002/jcc.20244
10.1007/s00214-012-1138-6
10.1021/ja037005r
10.1063/1.438628
10.1021/ct501115m
10.1021/ct301091z
10.1016/j.bmc.2016.07.062
10.1063/1.481613
10.1021/acs.jctc.8b00529
10.1063/1.1466829
10.1021/acs.jctc.9b00261
10.1088/0953-8984/21/33/333102
10.1021/acs.jctc.5b00267
10.1002/jcc.21367
10.1002/jcc.24864
10.1021/ja980564r
10.1021/jp202560d
10.1021/acs.jctc.1c00537
10.1063/1.5081060
10.1021/acs.jpca.1c01412
10.1007/BF00555018
10.1021/ja0429115
10.1063/5.0006002
10.1063/1.2912041
10.1021/acs.jctc.7b00225
10.1021/acs.jctc.2c00029
10.1039/C6CP03784D
10.1002/jcc.22885
10.1063/1.1523915
10.1021/jp0477147
10.1021/ct400863t
10.1063/1.4736851
10.1039/C6CP06017J
10.1016/0009-2614(87)80143-4
10.1021/j100624a025
10.1021/acs.jctc.0c01337
10.1021/jp027815+
10.1021/acs.jctc.7b01256
10.1002/jcc.540160705
10.1063/1.1461829
10.1002/(SICI)1096-987X(19980730)19:10<1179::AID-JCC6>3.0.CO;2-J
10.1021/jp964020s
10.1021/cr00031a008
10.1021/jp994395o
10.1063/1.480729
10.1063/1.3589419
10.1021/acs.jctc.1c01005
10.1016/0263-7855(96)00018-5
10.1063/1.481185
10.1021/acs.jctc.9b00478
10.1063/1.1408302
10.1021/ja993058q
10.1080/00268976.2014.952696
10.1002/jcc.21048
10.1021/ct501173n
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society May 9, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society May 9, 2023
DBID NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.2c01084
DatabaseName PubMed
CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 2534
ExternalDocumentID 10_1021_acs_jctc_2c01084
37125725
c064554855
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ABJNI
BAANH
CUPRZ
NPM
AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a317t-45af81d1c397647ded93a853948ed500fca5e6441e91a066c515b309a8b2fcc53
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Sat Aug 17 04:08:54 EDT 2024
Thu Oct 10 19:31:30 EDT 2024
Fri Aug 23 02:39:10 EDT 2024
Sat Sep 28 08:15:16 EDT 2024
Thu Jul 06 08:30:33 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a317t-45af81d1c397647ded93a853948ed500fca5e6441e91a066c515b309a8b2fcc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9834-8296
0000-0002-1889-022X
0000-0002-5553-6246
PMID 37125725
PQID 2821051586
PQPubID 2048741
PageCount 17
ParticipantIDs proquest_miscellaneous_2808217060
proquest_journals_2821051586
crossref_primary_10_1021_acs_jctc_2c01084
pubmed_primary_37125725
acs_journals_10_1021_acs_jctc_2c01084
PublicationCentury 2000
PublicationDate 20230509
2023-May-09
2023-05-09
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 20230509
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
Bashford A. (ref58/cit58) 2012
ref16/cit16
Jan R. (ref51/cit51) 2015; 11
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
Arjan V. (ref9/cit9) 2002; 116
ref48/cit48
ref60/cit60
ref17/cit17
Lee A. J. (ref21/cit21) 2011; 134
ref35/cit35
ref53/cit53
ref19/cit19
Kumar R. (ref20/cit20) 2010; 132
ref42/cit42
Nadig G. (ref6/cit6) 1998; 120
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref36/cit36
Berkowitz M. L. (ref10/cit10) 2014; 5
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
Zhu T. (ref24/cit24) 2013; 9
ref14/cit14
ref57/cit57
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
Vanommeslaeghe K. (ref15/cit15) 2009; 31
ref26/cit26
ref55/cit55
ref12/cit12
Hemmingsen L. (ref4/cit4) 2014; 104
ref62/cit62
ref41/cit41
ref22/cit22
Halgren T. A. (ref39/cit39) 1992; 114
ref33/cit33
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref53/cit53
  doi: 10.1021/jp510896n
– ident: ref57/cit57
  doi: 10.1063/1.439795
– ident: ref45/cit45
  doi: 10.1007/BF00549096
– volume: 5
  start-page: 2711
  year: 2014
  ident: ref10/cit10
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501238v
  contributor:
    fullname: Berkowitz M. L.
– ident: ref11/cit11
  doi: 10.1002/qua.560220118
– ident: ref7/cit7
  doi: 10.1021/ja9912325
– ident: ref26/cit26
  doi: 10.1021/acs.jctc.1c00628
– ident: ref14/cit14
  doi: 10.1002/jcc.20244
– ident: ref41/cit41
  doi: 10.1007/s00214-012-1138-6
– ident: ref65/cit65
  doi: 10.1021/ja037005r
– ident: ref56/cit56
  doi: 10.1063/1.438628
– volume: 11
  start-page: 528
  year: 2015
  ident: ref51/cit51
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/ct501115m
  contributor:
    fullname: Jan R.
– volume: 9
  start-page: 1788
  year: 2013
  ident: ref24/cit24
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/ct301091z
  contributor:
    fullname: Zhu T.
– ident: ref40/cit40
  doi: 10.1016/j.bmc.2016.07.062
– ident: ref55/cit55
  doi: 10.1063/1.481613
– ident: ref47/cit47
  doi: 10.1021/acs.jctc.8b00529
– volume: 116
  start-page: 7380
  year: 2002
  ident: ref9/cit9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1466829
  contributor:
    fullname: Arjan V.
– ident: ref25/cit25
  doi: 10.1021/acs.jctc.9b00261
– ident: ref2/cit2
  doi: 10.1088/0953-8984/21/33/333102
– ident: ref32/cit32
  doi: 10.1021/acs.jctc.5b00267
– volume: 31
  start-page: 671
  year: 2009
  ident: ref15/cit15
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21367
  contributor:
    fullname: Vanommeslaeghe K.
– ident: ref27/cit27
  doi: 10.1002/jcc.24864
– volume: 120
  start-page: 307
  year: 1998
  ident: ref6/cit6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja980564r
  contributor:
    fullname: Nadig G.
– ident: ref50/cit50
  doi: 10.1021/jp202560d
– ident: ref30/cit30
  doi: 10.1021/acs.jctc.1c00537
– ident: ref52/cit52
  doi: 10.1063/1.5081060
– ident: ref5/cit5
  doi: 10.1021/acs.jpca.1c01412
– ident: ref12/cit12
  doi: 10.1007/BF00555018
– ident: ref18/cit18
  doi: 10.1021/ja0429115
– ident: ref37/cit37
  doi: 10.1063/5.0006002
– volume: 114
  start-page: 7827
  year: 1992
  ident: ref39/cit39
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Halgren T. A.
– volume: 132
  start-page: 2309
  year: 2010
  ident: ref20/cit20
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Kumar R.
– ident: ref35/cit35
  doi: 10.1063/1.2912041
– ident: ref44/cit44
  doi: 10.1021/acs.jctc.7b00225
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.2c00029
– ident: ref36/cit36
  doi: 10.1039/C6CP03784D
– ident: ref46/cit46
  doi: 10.1002/jcc.22885
– ident: ref62/cit62
  doi: 10.1063/1.1523915
– ident: ref63/cit63
  doi: 10.1021/jp0477147
– ident: ref38/cit38
  doi: 10.1021/ct400863t
– ident: ref22/cit22
  doi: 10.1063/1.4736851
– ident: ref42/cit42
  doi: 10.1039/C6CP06017J
– ident: ref1/cit1
  doi: 10.1016/0009-2614(87)80143-4
– ident: ref64/cit64
  doi: 10.1021/j100624a025
– ident: ref16/cit16
  doi: 10.1021/acs.jctc.0c01337
– ident: ref34/cit34
  doi: 10.1021/jp027815+
– ident: ref31/cit31
  doi: 10.1021/acs.jctc.7b01256
– ident: ref13/cit13
  doi: 10.1002/jcc.540160705
– ident: ref59/cit59
  doi: 10.1063/1.1461829
– ident: ref60/cit60
  doi: 10.1002/(SICI)1096-987X(19980730)19:10<1179::AID-JCC6>3.0.CO;2-J
– ident: ref61/cit61
  doi: 10.1021/jp964020s
– ident: ref28/cit28
  doi: 10.1021/cr00031a008
– volume: 104
  start-page: 4095
  year: 2014
  ident: ref4/cit4
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp994395o
  contributor:
    fullname: Hemmingsen L.
– ident: ref3/cit3
  doi: 10.1063/1.480729
– volume: 134
  start-page: 184507
  year: 2011
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3589419
  contributor:
    fullname: Lee A. J.
– ident: ref33/cit33
  doi: 10.1021/acs.jctc.1c01005
– ident: ref48/cit48
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref49/cit49
  doi: 10.1063/1.481185
– ident: ref29/cit29
  doi: 10.1021/acs.jctc.9b00478
– ident: ref54/cit54
  doi: 10.1063/1.1408302
– ident: ref8/cit8
  doi: 10.1021/ja993058q
– ident: ref43/cit43
  doi: 10.1080/00268976.2014.952696
– ident: ref19/cit19
  doi: 10.1002/jcc.21048
– volume-title: Crc Handbook of Chemistry and Physics
  year: 2012
  ident: ref58/cit58
  contributor:
    fullname: Bashford A.
– ident: ref23/cit23
  doi: 10.1021/ct501173n
SSID ssj0033423
Score 2.4419212
Snippet The development of highly accurate force fields is always an importance aspect in molecular modeling. In this work, we introduce a general damping-based charge...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2518
SubjectTerms Amoeba
Calcium ions
Charge transfer
Damping
Dipole moments
Electric fields
Electrostatics
Fluid dynamics
Model accuracy
Molecular Mechanics
Physical simulation
Sodium
System effectiveness
Title General Charge Transfer Dipole Model for AMOEBA-Like Force Fields
URI http://dx.doi.org/10.1021/acs.jctc.2c01084
https://www.ncbi.nlm.nih.gov/pubmed/37125725
https://www.proquest.com/docview/2821051586
https://search.proquest.com/docview/2808217060
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxYNe_P0DRVMTPXgYsq3djyMihBjRg5JwW9quNQgBwuDiX-97ZUD8GS47rE239rV7n-Z130fIlfS05EHMHB0Y5jAZSUcYaZw0kBzDXqEv8Qfn1lPQbLOHDu8sZXK-R_A991aorPyuUG5Qwd4hYutkwwthbSAG1V7mX10fleysNipDxUk3ykOSv7WAjkhlXx3RH3RpvUxjZ5auKLPihHi4pFeeTmRZffyUblyhA7tkO4dNWp3Njj2ypgf7ZLM2z_F2QKq56jTFqPubptZzGT2m993RsK8pZkrrU-BaWm091--qzmO3p2ljOFZwxbNv2SFpN-qvtaaTJ1VwBKDCxGFcGGBUVyGIsDDVaewL8Nkxi3TKKxWjBNcISTp2BfCIAuCRfiUWkfSMUtw_IoXBcKBPCAXza85kzAIRMSiKmJbGyFCkgFFM8CK5hr4n-aLIEhvv9tzE3oQBSfIBKZKbuSWS0Uxj45-6pbmplg3DttHFXDVRUCSXi2IYSgx-iIEeTrEOwI7VCiqS45mJFw_zQ8C80OOnK77wGdnCrPP23GNcIoXJeKrPgU0m8sJOyk851NwJ
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxoxEB1RcqCXNmnSloYmjpQcctiUZe39OFIaRBogUhOk3Fa2165SECAWLv31nTG7oEZN1Fz2YFtee2Z251kzfgNwqlpGiTDhngkt97iKlSetsl4WKkFhryhQdMF5MAx7I_79XtxXwC_vwuAicpwpd0H8LbuA_4XafmliHdR4hIj5K9gREfpLQkOd2_LnGxChnaNI5UQ86cdFZPJfM5A_0vnf_ugJkOmcTfct_Ngs0-WYjC9WS3Whfz9icHzRPnbhTQE9WXttK3tQMdN3UOuUFd_2oV1wUDOKwf80zPkxaxbs28N8NjGM6qZNGKJc1h7cXH5te_2HsWHd2ULjkzLh8gMYdS_vOj2vKLHgSQQOS48LaRGx-ppgCY8ykyWBRA-e8Nhkotm0WgpDkMkkvkRpa4Q_KmgmMlYtq7UI3kN1Opuaj8DQGIzgKuGhjDl2xdwoa1UkMwRVXIo6nOHe0-ITyVMX_W75qWtEgaSFQOpwXiokna8ZN54Z2yg1tp0YD5E-Va6JwzqcbLpRlBQKkVMzW9EYhD6OOagOH9aa3rwsiBD0RS3x6T8XfAy13t2gn_avhteH8Jrq0buMyKQB1eViZT4jalmqI2enfwB1ieRu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xILF7Wd5seRoJDhxSmsbO4xgKFW9WWkDcItuxEQtqq6a98OuZcZMiECC45GBbjt_zWd_4G4Bt1TRKhAn3TGi5x1WsPGmV9fJQCaK9okDRA-fzi_Domp_citsJENVbGGxEgTUVjsSnXd3Lbakw4O9R-n9NyoMarxEx_wFTIvIdO5u2_lUHcECidk4mlZP4pB-X7OR7NZBN0sVrm_QB0HQGpz0DN-OmOj-Th_pwoOr66Y2K47f7Mgu_SwjK0tGamYMJ05mHn60q8tsCpKUWNSMu_s4wZ8-s6bOD-1730TCKn_bIEO2y9PzycD_1zu4fDGt3-xq_5BFXLMJ1-_CqdeSVoRY8iQBi4HEhLSJXXxM84VFu8iSQaMkTHptcNBpWS2EIOpnEl4hSNMIgFTQSGaum1VoESzDZ6XbMH2C4KIzgKuGhjDlmxdwoa1UkcwRXXIoa7GDfs3KrFJljwZt-5hJxQLJyQGqwW01K1hspb3xSdq2atZeK8TLpUwSbOKzB1jgbh5IoEdkx3SGVQQjkFIRqsDya7fHPggjBX9QUK19s8CZM_z1oZ2fHF6er8IvC0jvHyGQNJgf9oVlH8DJQG26pPgPz1ubo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Charge+Transfer+Dipole+Model+for+AMOEBA-Like+Force+Fields&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Wang%2C+Wei&rft.au=Yan%2C+Dengjie&rft.au=Cai%2C+Yao&rft.au=Xu%2C+Dingguo&rft.date=2023-05-09&rft.eissn=1549-9626&rft.volume=19&rft.issue=9&rft.spage=2518&rft_id=info:doi/10.1021%2Facs.jctc.2c01084&rft_id=info%3Apmid%2F37125725&rft.externalDocID=37125725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon