SLIM: A Scalable Light-Weight Root Cause Analysis for Imbalanced Data in Microservice
The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization rarely consider the imbalanced fault classification in change service. This paper proposes a novel method that utilizes decision rule sets to...
Saved in:
Published in | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) pp. 328 - 330 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
14.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization rarely consider the imbalanced fault classification in change service. This paper proposes a novel method that utilizes decision rule sets to deal with highly imbalanced data by optimizing the F1 score subject to cardinality constraints. The proposed method greedily generates the rule with maximal marginal gain and uses an efficient minorize-maximization (MM) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt to the imbalanced fault scenario of change service, and provide interpretable fault causes which are easy to understand and verify. Our method can also be deployed in the online training setting, with only about 15% training overhead compared to the current SOTA methods. Empirical studies showcase that our algorithm outperforms existing fault localization algorithms in both accuracy and model interpretability. |
---|---|
AbstractList | The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization rarely consider the imbalanced fault classification in change service. This paper proposes a novel method that utilizes decision rule sets to deal with highly imbalanced data by optimizing the F1 score subject to cardinality constraints. The proposed method greedily generates the rule with maximal marginal gain and uses an efficient minorize-maximization (MM) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt to the imbalanced fault scenario of change service, and provide interpretable fault causes which are easy to understand and verify. Our method can also be deployed in the online training setting, with only about 15% training overhead compared to the current SOTA methods. Empirical studies showcase that our algorithm outperforms existing fault localization algorithms in both accuracy and model interpretability. |
Author | Yang, Linxiao Gu, Xinyue Sun, Liang Ren, Rui Yang, Jingbang |
Author_xml | – sequence: 1 givenname: Rui surname: Ren fullname: Ren, Rui email: renrui2019@ict.ac.cn organization: Alibaba Group,DAMO Academy,Hangzhou,China – sequence: 2 givenname: Jingbang surname: Yang fullname: Yang, Jingbang email: jingbang.yjb@taobao.com organization: Alibaba Group,DAMO Academy,Hangzhou,China – sequence: 3 givenname: Linxiao surname: Yang fullname: Yang, Linxiao email: linxiao.ylx@alibaba-inc.com organization: Alibaba Group,DAMO Academy,Hangzhou,China – sequence: 4 givenname: Xinyue surname: Gu fullname: Gu, Xinyue email: guxinyue.gxy@alibaba-inc.com organization: Alibaba Group,DAMO Academy,Hangzhou,China – sequence: 5 givenname: Liang surname: Sun fullname: Sun, Liang email: liang.sun@alibaba-inc.com organization: Alibaba Group,DAMO Academy,Hangzhou,China |
BookMark | eNotjk1Lw0AUAFdRsNacvXjYP5D6Nm83m_VW6lcgRbAWj-Vl-6IraSLZKPTfW9HTXIZhzsVJ13csxKWCmVLaXGOOTttihrlGcMWRSJx1hQawYCBTx2KSGatT5VCfiSTGDwDADFA7OxHrVVUub-Rcrjy1VLcsq_D2Pqav_Av53PejXNBXZDnvqN3HEGXTD7Lc1Qe987yVtzSSDJ1cBj_0kYfv4PlCnDbURk7-ORXr-7uXxWNaPT2Ui3mVEio7pqrestpmOuf8MEOeHRvy3qPijBVDZll5QAJkTY5Ze2RutG-wMUVuHU7F1V83MPPmcwg7GvYbBcboIjf4A2qCUmg |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK ESBDL RIE RIL |
DOI | 10.1145/3639478.3643098 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Open Access Journals IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798400705021 |
EISSN | 2574-1934 |
EndPage | 330 |
ExternalDocumentID | 10554865 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO ESBDL IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-a317t-1bde1d246e6497ace9e5accc31e2e1e027e1c03a03e4a9ee4c3eef4cf3f586793 |
IEDL.DBID | RIE |
IngestDate | Thu May 08 06:04:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a317t-1bde1d246e6497ace9e5accc31e2e1e027e1c03a03e4a9ee4c3eef4cf3f586793 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10554865 |
PageCount | 3 |
ParticipantIDs | ieee_primary_10554865 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-14 |
PublicationDateYYYYMMDD | 2024-04-14 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) |
PublicationTitleAbbrev | ICSE-COMPANION |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssj0003203497 ssib055574197 |
Score | 2.2605054 |
Snippet | The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 328 |
SubjectTerms | Accuracy Classification algorithms imbalanced classification interpretability Location awareness microserivce fault localization Microservice architectures minorize-maximization Root cause analysis Software engineering submodular optimization Training |
Title | SLIM: A Scalable Light-Weight Root Cause Analysis for Imbalanced Data in Microservice |
URI | https://ieeexplore.ieee.org/document/10554865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT55UrPhmD16TZl95eJNqqWKLWIu9lc1mAiImxSYXf72zm0RRELyFPS0zYb5vdma-IeTCQJZmgck94KHGBCVQnpV182TOE5brXHO363A6CycLebdUy3ZY3c3CAIBrPgPffrpaflaa2j6VDe0yRxmHqkd6mLk1w1rdz6OUQnBsS2I2DAtupVeiVs6HSTUUiMYyin2BKBwk8Y99Kg5Oxjtk1l2k6SJ59esq9c3HL43Gf990lwy-J_fowxcm7ZEtKPbJYo4h6pJe0Tk6xI5K0XsnH_LsnkXpY1lWdKTrDdBOooQilaW3b6nte0Q702tdafpS0Klt39s04WVAFuObp9HEa9cpeBpJQuWxNAOWcRlCiHbRBhJQ2hgjGHBggPkpMBMIHQiQOgGQRgDk0uQiV9Z_4oD0i7KAQ0IBSUyIzC-KdSxFbJIIrOhLkhmDDCoNjsjA2mS1bhQzVp05jv84PyHbHMmCrdIweUr61XsNZwj2VXrunPwJ8aSngw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3HliTJn7kwYYKVQtthWgr2CrHuUgIkSCaLPx6zk4CAgmJzfJk3Vn3ffbdfUfIhYY0ST2dOcAChQ8UTzpG1s0RGYv9TGWK2VmHk2kwXIjbJ_nUNKvbXhgAsMVn4JqlzeWnha7MV1nPDHMUUSDXyQYCv2R1u1Z7faSUCI9NUswEYs6M-ErYCPr4QvY44rEII5cjDntx9GOiigWUwTaZtkep60he3KpMXP3xS6Xx32fdId3v3j16_4VKu2QN8j2ymGGQuqRXdIYuMc1SdGwFRB7txyh9KIqS9lW1AtqKlFAks3T0mpjKR7Q0vValos85nZgCvlUdYLpkMbiZ94dOM1DBUUgTSsdPUvBTJgII0C5KQwxSaa25Dwx8wBcq-NrjyuMgVAwgNAfIhM54Jo0H-T7p5EUOB4QC0pgAuV8YqUjwSMchGNmXONUaOVTiHZKuscnyrdbMWLbmOPpj_5xsDueT8XI8mt4dky2G1MHkbHxxQjrlewWnCP1lcmYd_gnklKrN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=SLIM%3A+A+Scalable+Light-Weight+Root+Cause+Analysis+for+Imbalanced+Data+in+Microservice&rft.au=Ren%2C+Rui&rft.au=Yang%2C+Jingbang&rft.au=Yang%2C+Linxiao&rft.au=Gu%2C+Xinyue&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=2574-1934&rft.spage=328&rft.epage=330&rft_id=info:doi/10.1145%2F3639478.3643098&rft.externalDocID=10554865 |