SLIM: A Scalable Light-Weight Root Cause Analysis for Imbalanced Data in Microservice

The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization rarely consider the imbalanced fault classification in change service. This paper proposes a novel method that utilizes decision rule sets to...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) pp. 328 - 330
Main Authors Ren, Rui, Yang, Jingbang, Yang, Linxiao, Gu, Xinyue, Sun, Liang
Format Conference Proceeding
LanguageEnglish
Published ACM 14.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization rarely consider the imbalanced fault classification in change service. This paper proposes a novel method that utilizes decision rule sets to deal with highly imbalanced data by optimizing the F1 score subject to cardinality constraints. The proposed method greedily generates the rule with maximal marginal gain and uses an efficient minorize-maximization (MM) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt to the imbalanced fault scenario of change service, and provide interpretable fault causes which are easy to understand and verify. Our method can also be deployed in the online training setting, with only about 15% training overhead compared to the current SOTA methods. Empirical studies showcase that our algorithm outperforms existing fault localization algorithms in both accuracy and model interpretability.
AbstractList The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization rarely consider the imbalanced fault classification in change service. This paper proposes a novel method that utilizes decision rule sets to deal with highly imbalanced data by optimizing the F1 score subject to cardinality constraints. The proposed method greedily generates the rule with maximal marginal gain and uses an efficient minorize-maximization (MM) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt to the imbalanced fault scenario of change service, and provide interpretable fault causes which are easy to understand and verify. Our method can also be deployed in the online training setting, with only about 15% training overhead compared to the current SOTA methods. Empirical studies showcase that our algorithm outperforms existing fault localization algorithms in both accuracy and model interpretability.
Author Yang, Linxiao
Gu, Xinyue
Sun, Liang
Ren, Rui
Yang, Jingbang
Author_xml – sequence: 1
  givenname: Rui
  surname: Ren
  fullname: Ren, Rui
  email: renrui2019@ict.ac.cn
  organization: Alibaba Group,DAMO Academy,Hangzhou,China
– sequence: 2
  givenname: Jingbang
  surname: Yang
  fullname: Yang, Jingbang
  email: jingbang.yjb@taobao.com
  organization: Alibaba Group,DAMO Academy,Hangzhou,China
– sequence: 3
  givenname: Linxiao
  surname: Yang
  fullname: Yang, Linxiao
  email: linxiao.ylx@alibaba-inc.com
  organization: Alibaba Group,DAMO Academy,Hangzhou,China
– sequence: 4
  givenname: Xinyue
  surname: Gu
  fullname: Gu, Xinyue
  email: guxinyue.gxy@alibaba-inc.com
  organization: Alibaba Group,DAMO Academy,Hangzhou,China
– sequence: 5
  givenname: Liang
  surname: Sun
  fullname: Sun, Liang
  email: liang.sun@alibaba-inc.com
  organization: Alibaba Group,DAMO Academy,Hangzhou,China
BookMark eNotjk1Lw0AUAFdRsNacvXjYP5D6Nm83m_VW6lcgRbAWj-Vl-6IraSLZKPTfW9HTXIZhzsVJ13csxKWCmVLaXGOOTttihrlGcMWRSJx1hQawYCBTx2KSGatT5VCfiSTGDwDADFA7OxHrVVUub-Rcrjy1VLcsq_D2Pqav_Av53PejXNBXZDnvqN3HEGXTD7Lc1Qe987yVtzSSDJ1cBj_0kYfv4PlCnDbURk7-ORXr-7uXxWNaPT2Ui3mVEio7pqrestpmOuf8MEOeHRvy3qPijBVDZll5QAJkTY5Ze2RutG-wMUVuHU7F1V83MPPmcwg7GvYbBcboIjf4A2qCUmg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
DOI 10.1145/3639478.3643098
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400705021
EISSN 2574-1934
EndPage 330
ExternalDocumentID 10554865
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
ESBDL
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-a317t-1bde1d246e6497ace9e5accc31e2e1e027e1c03a03e4a9ee4c3eef4cf3f586793
IEDL.DBID RIE
IngestDate Thu May 08 06:04:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a317t-1bde1d246e6497ace9e5accc31e2e1e027e1c03a03e4a9ee4c3eef4cf3f586793
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10554865
PageCount 3
ParticipantIDs ieee_primary_10554865
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online)
PublicationTitleAbbrev ICSE-COMPANION
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0003203497
ssib055574197
Score 2.2605054
Snippet The newly deployed service - one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization...
SourceID ieee
SourceType Publisher
StartPage 328
SubjectTerms Accuracy
Classification algorithms
imbalanced classification
interpretability
Location awareness
microserivce fault localization
Microservice architectures
minorize-maximization
Root cause analysis
Software engineering
submodular optimization
Training
Title SLIM: A Scalable Light-Weight Root Cause Analysis for Imbalanced Data in Microservice
URI https://ieeexplore.ieee.org/document/10554865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT55UrPhmD16TZl95eJNqqWKLWIu9lc1mAiImxSYXf72zm0RRELyFPS0zYb5vdma-IeTCQJZmgck94KHGBCVQnpV182TOE5brXHO363A6CycLebdUy3ZY3c3CAIBrPgPffrpaflaa2j6VDe0yRxmHqkd6mLk1w1rdz6OUQnBsS2I2DAtupVeiVs6HSTUUiMYyin2BKBwk8Y99Kg5Oxjtk1l2k6SJ59esq9c3HL43Gf990lwy-J_fowxcm7ZEtKPbJYo4h6pJe0Tk6xI5K0XsnH_LsnkXpY1lWdKTrDdBOooQilaW3b6nte0Q702tdafpS0Klt39s04WVAFuObp9HEa9cpeBpJQuWxNAOWcRlCiHbRBhJQ2hgjGHBggPkpMBMIHQiQOgGQRgDk0uQiV9Z_4oD0i7KAQ0IBSUyIzC-KdSxFbJIIrOhLkhmDDCoNjsjA2mS1bhQzVp05jv84PyHbHMmCrdIweUr61XsNZwj2VXrunPwJ8aSngw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3HliTJn7kwYYKVQtthWgr2CrHuUgIkSCaLPx6zk4CAgmJzfJk3Vn3ffbdfUfIhYY0ST2dOcAChQ8UTzpG1s0RGYv9TGWK2VmHk2kwXIjbJ_nUNKvbXhgAsMVn4JqlzeWnha7MV1nPDHMUUSDXyQYCv2R1u1Z7faSUCI9NUswEYs6M-ErYCPr4QvY44rEII5cjDntx9GOiigWUwTaZtkep60he3KpMXP3xS6Xx32fdId3v3j16_4VKu2QN8j2ymGGQuqRXdIYuMc1SdGwFRB7txyh9KIqS9lW1AtqKlFAks3T0mpjKR7Q0vValos85nZgCvlUdYLpkMbiZ94dOM1DBUUgTSsdPUvBTJgII0C5KQwxSaa25Dwx8wBcq-NrjyuMgVAwgNAfIhM54Jo0H-T7p5EUOB4QC0pgAuV8YqUjwSMchGNmXONUaOVTiHZKuscnyrdbMWLbmOPpj_5xsDueT8XI8mt4dky2G1MHkbHxxQjrlewWnCP1lcmYd_gnklKrN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=SLIM%3A+A+Scalable+Light-Weight+Root+Cause+Analysis+for+Imbalanced+Data+in+Microservice&rft.au=Ren%2C+Rui&rft.au=Yang%2C+Jingbang&rft.au=Yang%2C+Linxiao&rft.au=Gu%2C+Xinyue&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=2574-1934&rft.spage=328&rft.epage=330&rft_id=info:doi/10.1145%2F3639478.3643098&rft.externalDocID=10554865