Field investigation of the fetch effect and essential conditions for saturated sand flow

Several models of classical aeolian sand transport mechanism have been developed to predict the rate of sand transport. However, the values predicted through modeling almost always display large and significant differences from the measured values. The reason for such discrepancies is not fully unde...

Full description

Saved in:
Bibliographic Details
Published inEarth surface processes and landforms Vol. 47; no. 9; pp. 2299 - 2309
Main Authors Zhang, Chunlai, Wang, Xuesong, Zou, Xueyong, Shen, Yaping, Wang, Rende, Wang, Hongtao
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several models of classical aeolian sand transport mechanism have been developed to predict the rate of sand transport. However, the values predicted through modeling almost always display large and significant differences from the measured values. The reason for such discrepancies is not fully understood. By studying the effects of wind velocities and fetch lengths on the C values in the model proposed by Lettau and Lettau in 1978, we found that the saturation level of the measured sand flow can significantly affect the accuracy of the predicted value. To solve this problem, we introduced an index (δ) to represent the saturation level. The closer the δ value is to 1, the greater the chance that the sand flow is saturated. This new approach only requires measurement of the saturated sand flow data to verify the robustness of the aeolian sand transport model, a step that has been neglected by previous researchers. Our results suggest that the value of C = 6.7 proposed in the Lettau and Lettau model is sound and reliable if the sand flow is saturated. We proposed the conditions required for the sand flow to reach saturation and generated an equation to predict the sand transport saturation length (Lsat). Accordingly, we estimated Lsat to be approximately 92 m when u* = 0.47 m s−1 for the studied sand surface, which is also the minimum wind shear velocity at which the sand flow can potentially reach saturation. Our results suggest that the value of C = 6.7 proposed by Lettau and Lettau in 1978 is sound and reliable if sand flow is saturated.
AbstractList Several models of classical aeolian sand transport mechanism have been developed to predict the rate of sand transport. However, the values predicted through modeling almost always display large and significant differences from the measured values. The reason for such discrepancies is not fully understood. By studying the effects of wind velocities and fetch lengths on the C values in the model proposed by Lettau and Lettau in 1978, we found that the saturation level of the measured sand flow can significantly affect the accuracy of the predicted value. To solve this problem, we introduced an index (δ) to represent the saturation level. The closer the δ value is to 1, the greater the chance that the sand flow is saturated. This new approach only requires measurement of the saturated sand flow data to verify the robustness of the aeolian sand transport model, a step that has been neglected by previous researchers. Our results suggest that the value of C = 6.7 proposed in the Lettau and Lettau model is sound and reliable if the sand flow is saturated. We proposed the conditions required for the sand flow to reach saturation and generated an equation to predict the sand transport saturation length (Lsat). Accordingly, we estimated Lsat to be approximately 92 m when u* = 0.47 m s−1 for the studied sand surface, which is also the minimum wind shear velocity at which the sand flow can potentially reach saturation. Our results suggest that the value of C = 6.7 proposed by Lettau and Lettau in 1978 is sound and reliable if sand flow is saturated.
Several models of classical aeolian sand transport mechanism have been developed to predict the rate of sand transport. However, the values predicted through modeling almost always display large and significant differences from the measured values. The reason for such discrepancies is not fully understood. By studying the effects of wind velocities and fetch lengths on the C values in the model proposed by Lettau and Lettau in 1978, we found that the saturation level of the measured sand flow can significantly affect the accuracy of the predicted value. To solve this problem, we introduced an index (δ) to represent the saturation level. The closer the δ value is to 1, the greater the chance that the sand flow is saturated. This new approach only requires measurement of the saturated sand flow data to verify the robustness of the aeolian sand transport model, a step that has been neglected by previous researchers. Our results suggest that the value of C = 6.7 proposed in the Lettau and Lettau model is sound and reliable if the sand flow is saturated. We proposed the conditions required for the sand flow to reach saturation and generated an equation to predict the sand transport saturation length (Lsat). Accordingly, we estimated Lsat to be approximately 92 m when u* = 0.47 m s−1 for the studied sand surface, which is also the minimum wind shear velocity at which the sand flow can potentially reach saturation.
Several models of classical aeolian sand transport mechanism have been developed to predict the rate of sand transport. However, the values predicted through modeling almost always display large and significant differences from the measured values. The reason for such discrepancies is not fully understood. By studying the effects of wind velocities and fetch lengths on the C values in the model proposed by Lettau and Lettau in 1978, we found that the saturation level of the measured sand flow can significantly affect the accuracy of the predicted value. To solve this problem, we introduced an index ( δ ) to represent the saturation level. The closer the δ value is to 1, the greater the chance that the sand flow is saturated. This new approach only requires measurement of the saturated sand flow data to verify the robustness of the aeolian sand transport model, a step that has been neglected by previous researchers. Our results suggest that the value of C  = 6.7 proposed in the Lettau and Lettau model is sound and reliable if the sand flow is saturated. We proposed the conditions required for the sand flow to reach saturation and generated an equation to predict the sand transport saturation length ( L sat ). Accordingly, we estimated L sat to be approximately 92 m when  = 0.47 m s −1 for the studied sand surface, which is also the minimum wind shear velocity at which the sand flow can potentially reach saturation.
Author Wang, Rende
Wang, Hongtao
Zou, Xueyong
Shen, Yaping
Zhang, Chunlai
Wang, Xuesong
Author_xml – sequence: 1
  givenname: Chunlai
  orcidid: 0000-0002-3502-6150
  surname: Zhang
  fullname: Zhang, Chunlai
  organization: Beijing Normal University
– sequence: 2
  givenname: Xuesong
  orcidid: 0000-0003-4910-4495
  surname: Wang
  fullname: Wang, Xuesong
  email: xswang@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 3
  givenname: Xueyong
  orcidid: 0000-0002-6409-5390
  surname: Zou
  fullname: Zou, Xueyong
  organization: Beijing Normal University
– sequence: 4
  givenname: Yaping
  surname: Shen
  fullname: Shen, Yaping
  organization: Southwest Jiaotong University
– sequence: 5
  givenname: Rende
  surname: Wang
  fullname: Wang, Rende
  organization: Hebei Academy Sciences/Hebei Engineering Research Center for Geographic Information Application
– sequence: 6
  givenname: Hongtao
  surname: Wang
  fullname: Wang, Hongtao
  organization: Chinese Academy of Sciences
BookMark eNp10E1LAzEQBuAgFWyr4E8IePGyNdm0m-QopVWhoKCCtyWfNmVNapJa-u9NW0-iuUwOz8ww7wD0fPAGgEuMRhih-sak9WhCKDsBfYx4U3FGaA_0Eea04oTQMzBIaYUQxmPG--Bt7kynofNfJmX3LrILHgYL89JAa7JaQmOtURkKr6FJyfjsRAdV8NrtbYI2RJhE3kSRjS6_4mwXtufg1IoumYufOgSv89nL9L5aPN49TG8XlSC4YZVG3DJMpUS6KW_MCce15sry2lJpkamlkhhhychkImXDsVIIq7G2kiFEJRmCq-PcdQyfm3JEuwqb6MvKtm4Y55MGM1rU6KhUDClFY1vl8uHYHIXrWozafXptSa_dp1carn81rKP7EHH3F62OdOs6s_vXtbPnp4P_BltugPI
CitedBy_id crossref_primary_10_1002_esp_5784
crossref_primary_10_1016_j_still_2023_105674
Cites_doi 10.1016/j.aeolia.2021.100725
10.1002/esp.3290200504
10.1002/(SICI)1096-9837(199607)21:7<641::AID-ESP662>3.0.CO;2-9
10.1016/S0169-555X(97)00062-7
10.1007/s11368-021-02883-5
10.1002/esp.1033
10.1111/j.1365-3091.1995.tb00381.x
10.1016/j.geomorph.2015.03.041
10.1103/PhysRevE.64.031305
10.1007/s11430-014-5002-5
10.1016/j.geomorph.2020.107193
10.1111/ejss.12929
10.1046/j.1365-3091.1999.00245.x
10.1016/j.geomorph.2004.03.009
10.1029/JD094iD10p12885
10.1017/S0022112064001173
10.1038/s41561-019-0336-4
10.1016/j.catena.2018.12.020
10.1016/j.aeolia.2016.03.002
10.1016/j.geomorph.2021.107616
10.1126/science.241.4867.820
10.1002/2017GL076937
10.1002/esp.4019
10.1046/j.1365-3091.1998.00179.x
10.1098/rspa.1936.0218
10.1016/j.geomorph.2010.08.002
10.1016/j.still.2018.10.005
10.1097/00010694-199606000-00007
10.1029/92JD02011
10.1016/j.still.2019.104306
10.1029/2009JF001408
10.1002/jgrd.50687
10.1016/j.aeolia.2011.06.002
10.1016/S0037-0738(02)00396-2
10.1016/j.epsl.2020.116373
10.1002/esp.3310
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
DOI 10.1002/esp.5378
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1096-9837
EndPage 2309
ExternalDocumentID 10_1002_esp_5378
ESP5378
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41630747
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XKC
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
ID FETCH-LOGICAL-a3168-d09f817bb0d6666493912d9cf92f7bf0e2bcb101b8355bb691cc01c4dfb8007b3
IEDL.DBID DR2
ISSN 0197-9337
IngestDate Mon Aug 25 17:42:21 EDT 2025
Tue Jul 01 01:27:45 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Wed Jan 22 16:25:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3168-d09f817bb0d6666493912d9cf92f7bf0e2bcb101b8355bb691cc01c4dfb8007b3
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 41630747
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4910-4495
0000-0002-6409-5390
0000-0002-3502-6150
PQID 2689956187
PQPubID 866381
PageCount 11
ParticipantIDs proquest_journals_2689956187
crossref_citationtrail_10_1002_esp_5378
crossref_primary_10_1002_esp_5378
wiley_primary_10_1002_esp_5378_ESP5378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationSubtitle The Journal of the British Geomorphological Research Group
PublicationTitle Earth surface processes and landforms
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 63
2017; 42
2015; 58
2021; 21
2009; 21
2015; 244
1936; 157
2019; 12
2010; 123
1999; 46
1996; 161
2020; 544
1964; 20
1988; 241
2020; 366
2018; 45
1992; 97
2021; 52
1951; 5
1953; 34
1998; 45
1998; 22
2019; 186
1978
2001; 64
1995; 20
1995; 42
1989; 94
2012; 3
2013; 38
1990
2021; 378
2020; 71
2010; 115
2013; 118
2016; 21
2003; 161
1941
2003; 28
2019; 194
1996; 21
2019; 175
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Nickling W. (e_1_2_9_21_1) 1990
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Zingg A.W. (e_1_2_9_41_1) 1953; 34
Bagnold R.A. (e_1_2_9_5_1) 1941
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
Kawamura R. (e_1_2_9_13_1) 1951; 5
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Kok J.F. (e_1_2_9_14_1) 2009; 21
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 21
  start-page: 641
  year: 2009
  end-page: 659
  article-title: A comprehensive numerical model of steady state saltation
  publication-title: Earth Surface Processes and Landforms
– volume: 20
  start-page: 423
  issue: 5
  year: 1995
  end-page: 435
  article-title: Aeolian sediment flux decay: non‐linear behaviour on developing deflation lag surfaces
  publication-title: Earth Surface Processes and Landforms
– year: 1941
– volume: 46
  start-page: 723
  issue: 4
  year: 1999
  end-page: 731
  article-title: The effect of wind speed and bed slope on sand transport
  publication-title: Sedimentology
– volume: 115
  issue: F03027
  year: 2010
  article-title: Sand transport by wind on complex surfaces: field studies in the McMurdo Dry Valleys, Antarctica
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 22
  start-page: 113
  issue: 2
  year: 1998
  end-page: 133
  article-title: Wind‐blown sand on beaches: an evaluation of models
  publication-title: Geomorphology
– volume: 5
  start-page: 95
  issue: 3
  year: 1951
  end-page: 112
  article-title: Study on sand movement by wind (relationship between sand flow and wind friction, and vertical density distribution of sand)
  publication-title: Tokyo Daigaku Rikogaku Kenkyusho Hokoku, Tokyo
– volume: 544
  year: 2020
  article-title: The effect of wind speed averaging time on the calculation of sand drift potential: new scaling laws
  publication-title: Earth and Planetary Science Letters
– volume: 186
  start-page: 94
  year: 2019
  end-page: 104
  article-title: Effects of ridge height and spacing on the near‐surface airflow field and on wind erosion of a sandy soil: Results of a wind tunnel study
  publication-title: Soil and Tillage Research
– volume: 42
  start-page: 403
  issue: 3
  year: 1995
  end-page: 414
  article-title: Development of deflation lag surfaces
  publication-title: Sedimentology
– volume: 244
  start-page: 74
  year: 2015
  end-page: 94
  article-title: Laboratory studies of aeolian sediment transport processes on planetary surfaces
  publication-title: Geomorphology
– volume: 28
  start-page: 1163
  issue: 11
  year: 2003
  end-page: 1188
  article-title: Measurement and data analysis methods for field‐scale wind erosion studies and model validation
  publication-title: Earth Surface Processes and Landforms
– volume: 12
  start-page: 345
  issue: 5
  year: 2019
  end-page: 350
  article-title: A unified model of ripples and dunes in water and planetary environments
  publication-title: Nature Geoscience
– volume: 21
  start-page: 53
  year: 2016
  end-page: 60
  article-title: Aeolian sediment transport over gobi: field studies atop the Mogao Grottoes, China
  publication-title: Aeolian Research
– volume: 378
  year: 2021
  article-title: A model of the sand transport rate that accounts for temporal evolution of the bed
  publication-title: Geomorphology
– volume: 241
  start-page: 820
  issue: 4867
  year: 1988
  end-page: 823
  article-title: Simulation of eolian saltation
  publication-title: Science
– year: 1990
– volume: 366
  year: 2020
  article-title: Understanding wind‐blown sand: six vexations
  publication-title: Geomorphology
– volume: 38
  start-page: 169
  issue: 2
  year: 2013
  end-page: 178
  article-title: Recalibrating aeolian sand transport models
  publication-title: Earth Surface Processes and Landforms
– volume: 161
  start-page: 398
  issue: 6
  year: 1996
  end-page: 404
  article-title: Wind erosion: field length
  publication-title: Soil Science
– volume: 157
  start-page: 594
  issue: 892
  year: 1936
  end-page: 620
  article-title: The movement of desert sand. Proceedings of the Royal Society of London
  publication-title: Series a, Mathematical and Physical Sciences
– volume: 45
  start-page: 789
  issue: 4
  year: 1998
  end-page: 800
  article-title: On the efficiency of vertical array aeolian field traps
  publication-title: Sedimentology
– volume: 21
  start-page: 1815
  issue: 4
  year: 2021
  end-page: 1825
  article-title: Field observations of sand flux and dust emission above a gobi desert surface
  publication-title: Journal of Soils and Sediments
– volume: 161
  start-page: 71
  issue: 1–2
  year: 2003
  end-page: 83
  article-title: Aeolian sand transport: a wind tunnel model
  publication-title: Sedimentary Geology
– volume: 21
  start-page: 641
  issue: 7
  year: 1996
  end-page: 659
  article-title: Causes of the fetch effect in wind erosion
  publication-title: Earth Surface Processes and Landforms
– volume: 45
  start-page: 1838
  issue: 4
  year: 2018
  end-page: 1844
  article-title: Aeolian sand transport in out‐of‐equilibrium regimes
  publication-title: Geophysical Research Letters
– volume: 63
  start-page: 103
  issue: 1
  year: 2004
  end-page: 113
  article-title: Comparison of aerodynamically and model‐derived roughness lengths ( ) over diverse surfaces, central Mojave Desert, California, USA
  publication-title: Geomorphology
– volume: 52
  year: 2021
  article-title: Comparison of equilibrium sand transport rate model predictions with an extended dataset of field experiments at dry beaches with long fetch distance
  publication-title: Aeolian Research
– volume: 118
  start-page: 9078
  issue: 16
  year: 2013
  end-page: 9092
  article-title: Timescale dependence of aeolian sand flux observations under atmospheric turbulence
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 34
  start-page: 111
  year: 1953
  end-page: 135
  article-title: Wind tunnel studies of the movement of sedimentary material
  publication-title: Proceedings of the 5th Hydraulic Conference Bulletin
– volume: 58
  start-page: 462
  issue: 3
  year: 2015
  end-page: 473
  article-title: Cogitation on developing a dynamic model of soil wind erosion
  publication-title: Science in China Earth Sciences
– volume: 3
  start-page: 371
  issue: 4
  year: 2012
  end-page: 378
  article-title: Predicting aeolian sand transport rates: a reevaluation of models
  publication-title: Aeolian Research
– volume: 123
  start-page: 343
  issue: 3
  year: 2010
  end-page: 348
  article-title: Measurements of the aeolian sand transport saturation length
  publication-title: Geomorphology
– volume: 94
  start-page: 12885
  issue: D10
  year: 1989
  end-page: 12893
  article-title: The effect of nonerodible particles on wind erosion of erodible surfaces
  publication-title: Journal of Geophysical Research: Atmospheres
– start-page: 110
  year: 1978
  end-page: 147
– volume: 42
  start-page: 749
  issue: 5
  year: 2017
  end-page: 762
  article-title: A wind tunnel investigation of particle segregation, ripple formation and armouring within sand beds of systematically varied texture
  publication-title: Earth Surface Processes and Landforms
– volume: 194
  year: 2019
  article-title: Logistic growth models for describing the fetch effect of aeolian sand transport
  publication-title: Soil and Tillage Research
– volume: 64
  issue: 3
  year: 2001
  article-title: Continuum saltation model for sand dunes
  publication-title: Physical Review E
– volume: 97
  start-page: 20559
  issue: D18
  year: 1992
  end-page: 20564
  article-title: The Overshoot and Equilibration of Saltation
  publication-title: Journal of Geophysical Research
– volume: 20
  start-page: 225
  issue: 2
  year: 1964
  end-page: 242
  article-title: Saltation of uniform grains in air
  publication-title: Journal of Fluid Mechanics
– volume: 71
  start-page: 898
  issue: 5
  year: 2020
  end-page: 908
  article-title: Studying the spatial and temporal changes in aeolian sand transport in a wind tunnel using 3D terrestrial laser scanning
  publication-title: European Journal of Soil Science
– volume: 175
  start-page: 286
  year: 2019
  end-page: 293
  article-title: The effect of wind speed averaging time on sand transport estimates
  publication-title: Catena
– ident: e_1_2_9_34_1
  doi: 10.1016/j.aeolia.2021.100725
– volume-title: The physics of blown sand and desert dunes
  year: 1941
  ident: e_1_2_9_5_1
– volume: 21
  start-page: 641
  year: 2009
  ident: e_1_2_9_14_1
  article-title: A comprehensive numerical model of steady state saltation
  publication-title: Earth Surface Processes and Landforms
– ident: e_1_2_9_20_1
  doi: 10.1002/esp.3290200504
– volume: 34
  start-page: 111
  year: 1953
  ident: e_1_2_9_41_1
  article-title: Wind tunnel studies of the movement of sedimentary material
  publication-title: Proceedings of the 5th Hydraulic Conference Bulletin
– ident: e_1_2_9_8_1
  doi: 10.1002/(SICI)1096-9837(199607)21:7<641::AID-ESP662>3.0.CO;2-9
– ident: e_1_2_9_31_1
  doi: 10.1016/S0169-555X(97)00062-7
– ident: e_1_2_9_37_1
  doi: 10.1007/s11368-021-02883-5
– ident: e_1_2_9_42_1
  doi: 10.1002/esp.1033
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-3091.1995.tb00381.x
– ident: e_1_2_9_25_1
  doi: 10.1016/j.geomorph.2015.03.041
– ident: e_1_2_9_26_1
  doi: 10.1103/PhysRevE.64.031305
– ident: e_1_2_9_43_1
  doi: 10.1007/s11430-014-5002-5
– ident: e_1_2_9_30_1
  doi: 10.1016/j.geomorph.2020.107193
– ident: e_1_2_9_38_1
  doi: 10.1111/ejss.12929
– ident: e_1_2_9_11_1
  doi: 10.1046/j.1365-3091.1999.00245.x
– ident: e_1_2_9_17_1
  doi: 10.1016/j.geomorph.2004.03.009
– ident: e_1_2_9_9_1
  doi: 10.1029/JD094iD10p12885
– ident: e_1_2_9_16_1
– ident: e_1_2_9_23_1
  doi: 10.1017/S0022112064001173
– ident: e_1_2_9_36_1
  doi: 10.1038/s41561-019-0336-4
– ident: e_1_2_9_29_1
  doi: 10.1016/j.catena.2018.12.020
– ident: e_1_2_9_35_1
  doi: 10.1016/j.aeolia.2016.03.002
– ident: e_1_2_9_39_1
  doi: 10.1016/j.geomorph.2021.107616
– ident: e_1_2_9_2_1
  doi: 10.1126/science.241.4867.820
– ident: e_1_2_9_27_1
  doi: 10.1002/2017GL076937
– ident: e_1_2_9_19_1
  doi: 10.1002/esp.4019
– ident: e_1_2_9_24_1
  doi: 10.1046/j.1365-3091.1998.00179.x
– ident: e_1_2_9_4_1
  doi: 10.1098/rspa.1936.0218
– ident: e_1_2_9_3_1
  doi: 10.1016/j.geomorph.2010.08.002
– ident: e_1_2_9_12_1
  doi: 10.1016/j.still.2018.10.005
– volume-title: Aeolian Sediment Transport on Beaches and Coastal Sand dunes
  year: 1990
  ident: e_1_2_9_21_1
– ident: e_1_2_9_7_1
  doi: 10.1097/00010694-199606000-00007
– ident: e_1_2_9_28_1
  doi: 10.1029/92JD02011
– ident: e_1_2_9_10_1
  doi: 10.1016/j.still.2019.104306
– ident: e_1_2_9_15_1
  doi: 10.1029/2009JF001408
– ident: e_1_2_9_18_1
  doi: 10.1002/jgrd.50687
– ident: e_1_2_9_32_1
  doi: 10.1016/j.aeolia.2011.06.002
– ident: e_1_2_9_6_1
  doi: 10.1016/S0037-0738(02)00396-2
– volume: 5
  start-page: 95
  issue: 3
  year: 1951
  ident: e_1_2_9_13_1
  article-title: Study on sand movement by wind (relationship between sand flow and wind friction, and vertical density distribution of sand)
  publication-title: Tokyo Daigaku Rikogaku Kenkyusho Hokoku, Tokyo
– ident: e_1_2_9_40_1
  doi: 10.1016/j.epsl.2020.116373
– ident: e_1_2_9_33_1
  doi: 10.1002/esp.3310
SSID ssj0011489
Score 2.3764677
Snippet Several models of classical aeolian sand transport mechanism have been developed to predict the rate of sand transport. However, the values predicted through...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2299
SubjectTerms degree of sand transport
Eolian sands
Fetch
fetch effect
field experiment
Field investigations
Modelling
Sand
Sand transport
Saturated flow
Saturation
Sediment transport
Wind effects
Wind shear
Wind speed
Wind velocities
Title Field investigation of the fetch effect and essential conditions for saturated sand flow
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.5378
https://www.proquest.com/docview/2689956187
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kIHrxoypWq6wgekqbbD42exRpLR5E1ELBQ8hmsyiWpJgWqb_emWzSqiiIp-QwC0lmZvdNePOGkFObKx4HTmrFri8sDw5cK3aUawH0EIhIMZKQbXETDIbe9cgfVaxK7IUx-hCLH26YGeV-jQkey6K7FA1Ni0nHdzn2-SJVC_HQ3UI5ClG-MJ3S3IKande6szbr1gu_nkRLePkZpJanTH-TPNbPZ8glL53ZVHaS92_Sjf97gS2yUYFPemGiZZuspFmTrFVz0J_mTbJ6VQ76ne-QUR-pbfR5KcORZzTXFPAi1ehqapggNM4URf3xDLaKMYXqWhkSGAU0TAuUDQU0q-AO7PQ4f9slw37v4XJgVVMYwH1OEFrKFjp0uJS2glIn8IQrHKZEogXTXGo7ZTKRkNgSsJwvZSCcJLGdxFNaAhjl0t0jjSzP0n1C7UDpWLgQG4AqQqj0vBT1wtJYMhlIT7XIee2RKKkkynFSxjgy4sosgm8W4TdrkZOF5cTIcvxg066dGlWJWUQsCMte3pC3yFnpnV_XR737W7we_NXwkKwzbI4oybxt0pi-ztIjgCxTeVwG5weK7-fA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qInrxLdbnCqKntHk1m8WTiLW-imgLPQghm82iWFKxLVJ_vTN5tCoK4ik5zEKyM7PzzTLzDcCByRUPPSs2QqcmDBcDrhFayjEQeghCpGRJVG3R9Bpt97JT65TguOiFyfghxhdu5BnpeU0OThfS1QlraNx_qdQc7k_BDA30TvOpuzF3FOF8kfVKcwOzdl4wz5p2tVj5NRZNAOZnmJrGmfoiPBRfmJWXPFeGA1mJ3r-RN_7zF5ZgIcef7CQzmGUoxckKzOWj0B9HKzB7ns76Ha1Cp07VbexpwsTRS1hPM4SMTJO2WVYMwsJEMaIgT_C06DJMsFVWB8YQELM-MYcioFX4hnK623tbg3b9rHXaMPJBDKhBy_MNZQrtW1xKU2G247nCEZatRKSFrbnUZmzLSKJvS4RzNSk9YUWRaUWu0hLxKJfOOkwnvSTeAGZ6SofCQfNAYOFjsufGRBkWh9KWnnRVGY4KlQRRzlJOwzK6QcavbAe4ZwHtWRn2x5IvGTPHDzLbhVaD3Df7ge35aTuvz8twmKrn1_XB2f0tPTf_KrgHc43WzXVwfdG82oJ5m3ol0trebZgevA7jHUQwA7mbWuoHBCTr2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB488HjxFqtVVxB9Spuru9lHUeuJiAcUfAjZbBbFkhZbkfrrncnRqiiIT8nDLCSZmd1vwjffAOzaQouIO4kVeQ1p-XjgWpGjPQuhhyRESpFEbIsrfnrvn7carYJVSb0wuT7E8IcbZUa2X1OCd7Wpj0RDk1631vBEMA6TPrcDiuijm6F0FMF8mbdKCwuLdlEKz9puvVz59Sga4cvPKDU7Zprz8FA-YM4uea699lUtfv-m3fi_N1iAuQJ9soM8XBZhLEmXYKYYhP44WIKpk2zS72AZWk3itrGnkQ5HJ2UdwxAwMkO-ZjkVhEWpZiRAnuJe0WZYXuucBcYQDrMe6YYinNV4h3am3Xlbgfvm8d3hqVWMYUD_OTywtC1N4AilbI21DvelJx1Xy9hI1whl7MRVscLMVgjmGkpx6cSx7cS-NgrRqFDeKkyknTRZA2ZzbSLpYXAgrAiw1PMTEgxLIuUqrnxdgf3SI2FcaJTTqIx2mKsruyF-s5C-WQV2hpbdXJfjB5tq6dSwyMxe6PIga-YNRAX2Mu_8uj48vr2m6_pfDbdh-vqoGV6eXV1swKxLjRIZsbcKE_2X12QT4UtfbWVx-gFxSeqT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+investigation+of+the+fetch+effect+and+essential+conditions+for+saturated+sand+flow&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Zhang%2C+Chunlai&rft.au=Wang%2C+Xuesong&rft.au=Zou%2C+Xueyong&rft.au=Shen%2C+Yaping&rft.date=2022-07-01&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=47&rft.issue=9&rft.spage=2299&rft.epage=2309&rft_id=info:doi/10.1002%2Fesp.5378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_5378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon