A modified Raupach's model applicable for shear‐stress partitioning on surfaces covered with dense and flat‐shaped gravel roughness elements
A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of...
Saved in:
Published in | Earth surface processes and landforms Vol. 46; no. 5; pp. 907 - 920 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning.
The shear‐stress partitioning models represented by Raupach's model were established under the conditions of surfaces covered with smaller lateral coverage (λ < 0.10) of roughness elements with larger aspect ratio (normally H/W > 1.00), and were used to evaluate the efficiencies of soil protection provided by roughness elements such as plants or gravel. By adding the shear stress on the top surface of roughness elements to the total shear stress on rough surfaces, Raupach's model was modified to apply to wider ranges of λ < 0.32 and H/W > 0.2. |
---|---|
AbstractList | A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements,
λ
< 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤
λ
≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤
H
/
W
≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements (
τ
c
) to the total shear stress (
τ
) is large; in this case,
τ
c
plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating
τ
c
into the calculation of
τ
. Under conditions of
λ
< 0.32 and
H
/
W
> 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning. A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning. The shear‐stress partitioning models represented by Raupach's model were established under the conditions of surfaces covered with smaller lateral coverage (λ < 0.10) of roughness elements with larger aspect ratio (normally H/W > 1.00), and were used to evaluate the efficiencies of soil protection provided by roughness elements such as plants or gravel. By adding the shear stress on the top surface of roughness elements to the total shear stress on rough surfaces, Raupach's model was modified to apply to wider ranges of λ < 0.32 and H/W > 0.2. A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning. |
Author | Zhang, Mengcui Cheng, Hong Li, Huiru Zou, Xueyong Wu, Xiaoxu Zhang, Chunlai Kang, Liqiang |
Author_xml | – sequence: 1 givenname: Huiru surname: Li fullname: Li, Huiru organization: Beijing Normal University – sequence: 2 givenname: Xueyong orcidid: 0000-0002-6409-5390 surname: Zou fullname: Zou, Xueyong email: zouxy@bnu.edu.cn organization: Beijing Normal University – sequence: 3 givenname: Mengcui surname: Zhang fullname: Zhang, Mengcui organization: Beijing Normal University – sequence: 4 givenname: Liqiang orcidid: 0000-0001-5446-6576 surname: Kang fullname: Kang, Liqiang organization: Beijing Normal University – sequence: 5 givenname: Chunlai orcidid: 0000-0003-0630-3697 surname: Zhang fullname: Zhang, Chunlai organization: Beijing Normal University – sequence: 6 givenname: Hong surname: Cheng fullname: Cheng, Hong organization: Beijing Normal University – sequence: 7 givenname: Xiaoxu surname: Wu fullname: Wu, Xiaoxu organization: Beijing Normal University |
BookMark | eNp1kMtO3DAUhi1EpQ4UqY9giQVsMvUlzsRLhIBWQmrFZR0dnJOJUcYOtgNixyPwjH2SOh1WCFbW8fn-70j_Htl13iEh3zlbcsbED4zjUjEldsiCM10VuparXbJgXK8KLeXqK9mL8Z4xzstaL8jrCd341nYWW3oF0wimP4rzFw4UxnGwBu4GpJ0PNPYI4e_La0wBY6QjhGST9c66NfWOxil0YDBS4x8xZN2TTT1t0UWk4FraDZDmdA9jXq4DPOYTwU_r3s06HHCDLsVv5EsHQ8SDt3ef3J6f3Zz-LC5_X_w6PbksQPJKFEq1KISp6qrFWlWSCSMwT0Iqzcq7ivFO5rUyHMtSqLJmBjlqJaFVWtYo98nh1jsG_zBhTM29n4LLJxuhuGZ1FvFMHW8pE3yMAbtmDHYD4bnhrJn7bnLfzdx3RpfvUGMTzAWlAHb4KFBsA092wOdPxc3Z9Z___D9edpaP |
CitedBy_id | crossref_primary_10_1029_2023JD040313 crossref_primary_10_3724_aauj_2024026 crossref_primary_10_1016_j_still_2024_106119 crossref_primary_10_1016_j_catena_2022_106633 crossref_primary_10_1016_j_catena_2024_107899 crossref_primary_10_1016_j_aeolia_2025_100973 crossref_primary_10_1002_esp_5649 |
Cites_doi | 10.1002/(SICI)1096-9837(199607)21:7<607::AID-ESP660>3.0.CO;2-1 10.1029/93JD00396 10.1007/BF00140536 10.1002/2015JF003475 10.1007/s10546-012-9719-4 10.1007/BF00155238 10.1016/0002-1571(71)90116-6 10.1016/j.aeolia.2015.09.004 10.1029/95JD00690 10.1146/annurev.fluid.40.111406.102135 10.1525/9780520329584-003 10.1016/j.geomorph.2009.07.014 10.1002/(SICI)1096-9837(199607)21:7<589::AID-ESP659>3.0.CO;2-1 10.1016/j.aeolia.2016.09.006 10.1023/A:1022119909546 10.1029/2003JF000031 10.1016/j.geomorph.2006.05.004 10.1016/0167-6105(81)90051-9 10.1007/s10652-005-6022-7 10.1007/s10533-007-9142-y 10.1016/j.agrformet.2018.11.039 10.1029/JC080i024p03447 10.1002/(SICI)1096-9837(199801)23:1<69::AID-ESP823>3.0.CO;2-G 10.1007/s10546-011-9690-5 10.1023/A:1024179025508 10.1029/JD094iD10p12885 10.1002/2014JD021491 10.1016/j.envsoft.2003.12.010 10.1002/esp.3934 10.1007/s10546-016-0224-z 10.1016/j.jweia.2019.05.002 10.1007/s11430-014-5002-5 10.1007/s10546-018-0373-3 10.1002/ldr.3400020203 10.1029/2011EO290001 10.1029/92JD01922 10.1007/BF00155203 10.1071/SR9960309 10.1002/2016MS000823 10.1029/2001JD001259 10.1016/j.atmosenv.2007.03.037 10.1002/jgrf.20040 10.1139/e17-121 10.1029/2004JF000281 10.1016/j.atmosenv.2005.09.014 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G |
DOI | 10.1002/esp.5052 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1096-9837 |
EndPage | 920 |
ExternalDocumentID | 10_1002_esp_5052 ESP5052 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 41330746 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TEORI UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XKC XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G |
ID | FETCH-LOGICAL-a3162-55de22c686de856302c2e686235904b601f32c65c1e4425480ce1e953ad5938e3 |
IEDL.DBID | DR2 |
ISSN | 0197-9337 |
IngestDate | Fri Jul 25 10:14:34 EDT 2025 Tue Jul 01 01:27:43 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Jan 22 16:29:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3162-55de22c686de856302c2e686235904b601f32c65c1e4425480ce1e953ad5938e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0630-3697 0000-0001-5446-6576 0000-0002-6409-5390 |
PQID | 2519083591 |
PQPubID | 866381 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2519083591 crossref_primary_10_1002_esp_5052 crossref_citationtrail_10_1002_esp_5052 wiley_primary_10_1002_esp_5052_ESP5052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationSubtitle | The Journal of the British Geomorphological Research Group |
PublicationTitle | Earth surface processes and landforms |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1987; 32 2018; 169 2016; 75 2005; 20 1973 2014; 29 1936; 7 2017; 9 1996; 34 1971; 8 1986; 9 2010; 114 2010; 115 2013; 118 2002; 107 1941 2016; 41 2017; 163 2008; 113 2005; 39 1996; 21 1975; 80 2014; 119 2015; 58 2012; 143 2012; 144 2015; 19 2019; 190 2005; 110 2010 2015; 120 1981; 7 2008 1996 2006; 6 2019; 266‐267 2004; 109 2006; 82 2015; 23 1990; 2 1989; 94 2003; 108 2003; 107 2011; 92 1993; 98 1997; 34 2019 2016 2015 1998; 1 1995; 100 2007; 41 2007; 85 1973; 5 2008; 40 1992; 60 2016; 23 Fryrear D.W. (e_1_2_11_15_1) 1998; 1 King J. (e_1_2_11_23_1) 2005; 110 e_1_2_11_32_1 e_1_2_11_55_1 Zou X. (e_1_2_11_61_1) 2014; 29 e_1_2_11_57_1 Du H. (e_1_2_11_12_1) 2016; 75 e_1_2_11_36_1 e_1_2_11_34_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 Lancaster N. (e_1_2_11_26_1) 2010; 115 e_1_2_11_41_1 Wagner LE (e_1_2_11_53_1) 2010 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 Shao Y. (e_1_2_11_48_1) 2008; 113 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 Dong G. (e_1_2_11_11_1) 1987; 32 Bagnold R.A. (e_1_2_11_3_1) 1941 Okin G.S. (e_1_2_11_37_1) 2008; 113 e_1_2_11_50_1 Shao Y. (e_1_2_11_43_1) 2008 e_1_2_11_10_1 Popovic M.B. (e_1_2_11_39_1) 2019 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_49_1 ELD Initiative (e_1_2_11_13_1) 2015 e_1_2_11_21_1 e_1_2_11_44_1 UNEP (e_1_2_11_51_1) 2016 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 Brown S. (e_1_2_11_4_1) 2008; 113 e_1_2_11_18_1 e_1_2_11_16_1 Livingstone I. (e_1_2_11_30_1) 1996 Schlichting H. (e_1_2_11_42_1) 1936; 7 |
References_xml | – volume: 107 start-page: 445 issue: 2 year: 2003 end-page: 468 article-title: Drag partition for regularly‐arrayed rough surfaces publication-title: Boundary‐Layer Meteorology – start-page: 1 year: 2015 end-page: 158 – volume: 120 start-page: 1824 issue: 9 year: 2015 end-page: 1840 article-title: A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface‐mounted obstacle publication-title: Journal of Geophysical Research: Earth Surface – volume: 19 start-page: 37 year: 2015 end-page: 54 article-title: A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics publication-title: Aeolian Research – start-page: 6.56 year: 2010 end-page: 6.98 – volume: 82 start-page: 229 issue: 3‐4 year: 2006 end-page: 244 article-title: Aeolian shear stress ratio measurements within mesquite‐dominated landscapes of the Chihuahuan Desert, New Mexico, USA publication-title: Geomorphology – volume: 29 start-page: 875 issue: 8 year: 2014 end-page: 889 article-title: Classification and representation of factors affecting soil wind erosion in a model publication-title: Advances in Earth Science – volume: 34 start-page: 309 issue: 3 year: 1996 end-page: 342 article-title: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region publication-title: Australian Journal of Soil Research – start-page: 1 year: 1973 end-page: 374 – volume: 21 start-page: 589 issue: 7 year: 1996 end-page: 605 article-title: Wind‐tunnel modelling of the influence of vegetation structure on saltation threshold publication-title: Earth Surface Processes and Landforms – volume: 34 start-page: 1486 issue: 11 year: 1997 end-page: 1498 article-title: Drag and shear stress partitioning in sparse desert creosote communities publication-title: Canadian Journal of Earth Sciences – volume: 85 start-page: 317 issue: 3 year: 2007 end-page: 332 article-title: Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA publication-title: Biogeochemistry – volume: 119 start-page: 6066 issue: 10 year: 2014 end-page: 6084 article-title: The effect of roughness elements on wind erosion: The importance of surface shear stress distribution publication-title: Journal of Geophysical Research: Atmospheres – volume: 41 start-page: 1421 issue: 10 year: 2016 end-page: 1436 article-title: Characterizing turbulent wind flow around dryland vegetation publication-title: Earth Surface Processes and Landforms – volume: 266‐267 start-page: 29 year: 2019 end-page: 42 article-title: Transition model for airflow fields from single plants to multiple plants publication-title: Agricultural and Forest Meteorology – volume: 92 start-page: 241 issue: 29 year: 2011 end-page: 242 article-title: Dust: Small‐scale processes with global consequences publication-title: Eos, Transactions of the American Geophysical Union – volume: 144 start-page: 217 issue: 2 year: 2012 end-page: 241 article-title: Shear‐stress partitioning in live plant canopies and modifications to Raupach's model publication-title: Boundary‐Layer Meteorology – volume: 163 start-page: 273 issue: 2 year: 2017 end-page: 286 article-title: Estimating sediment mass fluxes on surfaces sheltered by live vegetation publication-title: Boundary‐Layer Meteorology – volume: 110 year: 2005 article-title: Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold publication-title: Journal of Geophysical Research: Earth Surface – volume: 8 start-page: 269 year: 1971 end-page: 292 article-title: Drag measurements in roughness arrays of varying density and distribution publication-title: Agricultural Meteorology – volume: 114 start-page: 319 issue: 3 year: 2010 end-page: 325 article-title: Spatial distribution of threshold wind speeds for dust outbreaks in Northeast Asia publication-title: Geomorphology – volume: 7 start-page: 219 issue: 3 year: 1981 end-page: 239 article-title: A simple omnidirectional sensor for wind‐tunnel studies of pedestrian‐level winds publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 98 start-page: 3023 issue: D2 year: 1993 end-page: 3029 article-title: The effect of roughness elements on wind erosion threshold publication-title: Journal of Geophysical Research: Atmospheres – volume: 80 start-page: 3447 issue: 24 year: 1975 end-page: 3454 article-title: A drag partition theory for determining the large‐scale roughness parameter and wind stress on the Arctic pack ice publication-title: Journal of Geophysical Research: Oceans – volume: 107 start-page: 4760 issue: D24 year: 2002 article-title: Drag coefficient and plant form response to wind speed in three plant species: Burning bush ( ), Colorado blue spruce ( .), and fountain grass ( ) publication-title: Journal of Geophysical Research: Atmospheres – volume: 98 start-page: 12719 issue: D7 year: 1993 end-page: 12726 article-title: Effect of saltation bombardment on the entrainment of dust by wind publication-title: Journal of Geophysical Research: Atmospheres – volume: 39 start-page: 7351 issue: 38 year: 2005 end-page: 7361 article-title: A scheme for drag partition over rough surfaces publication-title: Atmospheric Environment – volume: 94 start-page: 12885 issue: D10 year: 1989 end-page: 12893 article-title: The effect of nonerodible particles on wind erosion of erodible surfaces publication-title: Journal of Geophysical Research: Atmospheres – volume: 113 issue: F2 year: 2008 article-title: A new model of wind erosion in the presence of vegetation publication-title: Journal of Geophysical Research: Earth Surface – volume: 9 start-page: 585 issue: 1 year: 2017 end-page: 608 article-title: Development and evaluation of a physics‐based windblown dust emission scheme implemented in the CMAQ modeling system publication-title: Journal of Advances in Modeling Earth Systems – year: 2019 – volume: 58 start-page: 462 year: 2015 end-page: 473 article-title: Cogitation on developing a dynamic model of soil wind erosion publication-title: Science China: Earth Sciences – volume: 23 start-page: 69 issue: 1 year: 2015 end-page: 82 article-title: Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California publication-title: Earth Surface Processes and Landforms – volume: 169 start-page: 251 issue: 2 year: 2018 end-page: 273 article-title: Experimental investigation on shear‐stress partitioning for flexible plants with approximately zero basal‐to‐frontal area ratio in a wind tunnel publication-title: Boundary‐Layer Meteorology – year: 1941 – volume: 108 start-page: 317 issue: 3 year: 2003 end-page: 342 article-title: Numerical simulation of drag partition over rough surfaces publication-title: Boundary‐Layer Meteorology – volume: 40 start-page: 141 year: 2008 end-page: 168 article-title: Effects of wind on plants publication-title: Annual Review of Fluid Mechanics – volume: 21 start-page: 607 issue: 7 year: 1996 end-page: 619 article-title: Shear stress partitioning in sparsely vegetated desert canopies publication-title: Earth Surface Processes and Landforms – volume: 109 issue: F4 year: 2004 article-title: Sand flux in the northern Chihuahuan desert, New Mexico, USA, and the influence of mesquite‐dominated landscapes publication-title: Journal of Geophysical Research: Earth Surface – volume: 6 start-page: 241 issue: 3 year: 2006 end-page: 275 article-title: Wind characteristics of mesquite streets in the northern Chihuahuan Desert, New Mexico, USA publication-title: Environmental Fluid Mechanics – volume: 75 start-page: 1 issue: 1 year: 2016 end-page: 14 article-title: Wind erosion occurrence probabilities maps in the watershed of the Ningxia–Inner Mongolia reach of the Yellow River, China publication-title: Environmental Earth Ences – volume: 5 start-page: 285 issue: 3 year: 1973 end-page: 308 article-title: Drag due to regular arrays of roughness elements of varying geometry publication-title: Boundary‐Layer Meteorology – year: 1996 – volume: 60 start-page: 375 issue: 4 year: 1992 end-page: 395 article-title: Drag and drag partition on rough surfaces publication-title: Boundary‐Layer Meteorology – volume: 23 start-page: 63 year: 2016 end-page: 78 article-title: Using albedo to reform wind erosion modelling, mapping and monitoring publication-title: Aeolian Research – volume: 1 start-page: 1 year: 1998 end-page: 175 article-title: Revised wind erosion equation. Wind erosion and water conservation research unit publication-title: USDA‐ARS, Technical Bulletin – volume: 20 start-page: 69 issue: 1 year: 2005 end-page: 84 article-title: Wind erosion modelling in a Sahelian environment publication-title: Environmental Modelling & Software – volume: 115 issue: F3 year: 2010 article-title: Sand transport by wind on complex surfaces: Field studies in the McMurdo dry valleys, Antarctica publication-title: Journal of Geophysical Research: Earth Surface – volume: 190 start-page: 183 year: 2019 end-page: 189 article-title: The effect of roughness density of gobi beds on the entrainment of sediment by wind: A wind tunnel study publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 9 start-page: 195 issue: 1–2 year: 1986 end-page: 208 article-title: Wind erosion climatic erosivity publication-title: Climatic Change – volume: 113 issue: F2 year: 2008 article-title: A theory for drag partition over rough surfaces publication-title: Journal of Geophysical Research: Earth Surface – volume: 143 start-page: 337 issue: 2 year: 2012 end-page: 356 article-title: Spatio‐temporal surface shear‐stress variability in live plant canopies and cube arrays publication-title: Boundary‐Layer Meteorology – volume: 113 issue: F2 year: 2008 article-title: A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions publication-title: Journal of Geophysical Research: Earth Surface – volume: 7 start-page: 1 issue: 1 year: 1936 end-page: 34 article-title: Experimentelle untersuchungen zum rauhigkeits problem publication-title: Archive of Applied Mechanics – volume: 118 start-page: 288 issue: 1 year: 2013 end-page: 306 article-title: Evaluation of a new model of aeolian transport in the presence of vegetation publication-title: Journal of Geophysical Research: Earth Surface – volume: 41 start-page: 5817 issue: 28 year: 2007 end-page: 5830 article-title: Using illumination and shadow to model aerodynamic resistance and flow separation: An isotropic study publication-title: Atmospheric Environment – start-page: 1 year: 2016 end-page: 114 – volume: 32 start-page: 1703 issue: 24 year: 1987 end-page: 1709 article-title: Some results of the simulant experiment on wind erosion soil in wind tunnel publication-title: Chinese Science Bulletin – volume: 100 start-page: 16415 issue: D8 year: 1995 end-page: 16430 article-title: Modeling the atmospheric dust cycle: 1. Design of a soil‐derived dust emission scheme publication-title: Journal of Geophysical Research: Atmospheres – volume: 2 start-page: 87 issue: 2 year: 1990 end-page: 94 article-title: Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion publication-title: Land Degradation & Development – start-page: 303 year: 2008 end-page: 360 – ident: e_1_2_11_58_1 doi: 10.1002/(SICI)1096-9837(199607)21:7<607::AID-ESP660>3.0.CO;2-1 – volume: 32 start-page: 1703 issue: 24 year: 1987 ident: e_1_2_11_11_1 article-title: Some results of the simulant experiment on wind erosion soil in wind tunnel publication-title: Chinese Science Bulletin – start-page: 6.56 volume-title: Wind erosion prediction system: WEPS 1.0 User Manual year: 2010 ident: e_1_2_11_53_1 – ident: e_1_2_11_46_1 doi: 10.1029/93JD00396 – ident: e_1_2_11_49_1 doi: 10.1007/BF00140536 – volume: 113 start-page: F02S10 issue: 2 year: 2008 ident: e_1_2_11_37_1 article-title: A new model of wind erosion in the presence of vegetation publication-title: Journal of Geophysical Research: Earth Surface – start-page: 303 volume-title: Physics and modelling of wind erosion year: 2008 ident: e_1_2_11_43_1 – volume: 115 issue: 3 year: 2010 ident: e_1_2_11_26_1 article-title: Sand transport by wind on complex surfaces: Field studies in the McMurdo dry valleys, Antarctica publication-title: Journal of Geophysical Research: Earth Surface – volume-title: Aeolian geomorphology: an introduction year: 1996 ident: e_1_2_11_30_1 – volume: 29 start-page: 875 issue: 8 year: 2014 ident: e_1_2_11_61_1 article-title: Classification and representation of factors affecting soil wind erosion in a model publication-title: Advances in Earth Science – ident: e_1_2_11_34_1 doi: 10.1002/2015JF003475 – ident: e_1_2_11_55_1 doi: 10.1007/s10546-012-9719-4 – ident: e_1_2_11_59_1 doi: 10.1007/BF00155238 – ident: e_1_2_11_31_1 doi: 10.1016/0002-1571(71)90116-6 – ident: e_1_2_11_45_1 doi: 10.1016/j.aeolia.2015.09.004 – ident: e_1_2_11_32_1 doi: 10.1029/95JD00690 – ident: e_1_2_11_10_1 doi: 10.1146/annurev.fluid.40.111406.102135 – ident: e_1_2_11_8_1 doi: 10.1525/9780520329584-003 – ident: e_1_2_11_22_1 doi: 10.1016/j.geomorph.2009.07.014 – ident: e_1_2_11_36_1 doi: 10.1002/(SICI)1096-9837(199607)21:7<589::AID-ESP659>3.0.CO;2-1 – ident: e_1_2_11_6_1 doi: 10.1016/j.aeolia.2016.09.006 – ident: e_1_2_11_9_1 doi: 10.1023/A:1022119909546 – ident: e_1_2_11_17_1 doi: 10.1029/2003JF000031 – ident: e_1_2_11_24_1 doi: 10.1016/j.geomorph.2006.05.004 – ident: e_1_2_11_20_1 doi: 10.1016/0167-6105(81)90051-9 – ident: e_1_2_11_16_1 doi: 10.1007/s10652-005-6022-7 – ident: e_1_2_11_28_1 doi: 10.1007/s10533-007-9142-y – ident: e_1_2_11_7_1 doi: 10.1016/j.agrformet.2018.11.039 – volume: 75 start-page: 1 issue: 1 year: 2016 ident: e_1_2_11_12_1 article-title: Wind erosion occurrence probabilities maps in the watershed of the Ningxia–Inner Mongolia reach of the Yellow River, China publication-title: Environmental Earth Ences – ident: e_1_2_11_2_1 doi: 10.1029/JC080i024p03447 – volume: 113 start-page: F02S06 issue: 2 year: 2008 ident: e_1_2_11_4_1 article-title: A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions publication-title: Journal of Geophysical Research: Earth Surface – ident: e_1_2_11_25_1 doi: 10.1002/(SICI)1096-9837(199801)23:1<69::AID-ESP823>3.0.CO;2-G – volume-title: Biomechatronics year: 2019 ident: e_1_2_11_39_1 – ident: e_1_2_11_54_1 doi: 10.1007/s10546-011-9690-5 – ident: e_1_2_11_27_1 doi: 10.1023/A:1024179025508 – ident: e_1_2_11_18_1 doi: 10.1029/JD094iD10p12885 – start-page: 1 volume-title: The value of land: Prosperous lands and positive rewards through sustainable land management year: 2015 ident: e_1_2_11_13_1 – ident: e_1_2_11_57_1 doi: 10.1002/2014JD021491 – ident: e_1_2_11_52_1 doi: 10.1016/j.envsoft.2003.12.010 – ident: e_1_2_11_33_1 doi: 10.1002/esp.3934 – ident: e_1_2_11_56_1 doi: 10.1007/s10546-016-0224-z – volume: 113 start-page: F02S05 issue: 2 year: 2008 ident: e_1_2_11_48_1 article-title: A theory for drag partition over rough surfaces publication-title: Journal of Geophysical Research: Earth Surface – ident: e_1_2_11_50_1 doi: 10.1016/j.jweia.2019.05.002 – ident: e_1_2_11_62_1 doi: 10.1007/s11430-014-5002-5 – ident: e_1_2_11_21_1 doi: 10.1007/s10546-018-0373-3 – volume: 7 start-page: 1 issue: 1 year: 1936 ident: e_1_2_11_42_1 article-title: Experimentelle untersuchungen zum rauhigkeits problem publication-title: Archive of Applied Mechanics – ident: e_1_2_11_35_1 doi: 10.1002/ldr.3400020203 – ident: e_1_2_11_38_1 doi: 10.1029/2011EO290001 – start-page: 1 volume-title: Global assessment of sand and dust storms year: 2016 ident: e_1_2_11_51_1 – ident: e_1_2_11_41_1 doi: 10.1029/92JD01922 – volume-title: The Physics of Blown Sand and Desert Dunes year: 1941 ident: e_1_2_11_3_1 – ident: e_1_2_11_40_1 doi: 10.1007/BF00155203 – ident: e_1_2_11_44_1 doi: 10.1071/SR9960309 – ident: e_1_2_11_14_1 doi: 10.1002/2016MS000823 – ident: e_1_2_11_19_1 doi: 10.1029/2001JD001259 – ident: e_1_2_11_5_1 doi: 10.1016/j.atmosenv.2007.03.037 – ident: e_1_2_11_29_1 doi: 10.1002/jgrf.20040 – ident: e_1_2_11_60_1 doi: 10.1139/e17-121 – volume: 110 start-page: F04015 year: 2005 ident: e_1_2_11_23_1 article-title: Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold publication-title: Journal of Geophysical Research: Earth Surface doi: 10.1029/2004JF000281 – ident: e_1_2_11_47_1 doi: 10.1016/j.atmosenv.2005.09.014 – volume: 1 start-page: 1 year: 1998 ident: e_1_2_11_15_1 article-title: Revised wind erosion equation. Wind erosion and water conservation research unit publication-title: USDA‐ARS, Technical Bulletin |
SSID | ssj0011489 |
Score | 2.3591123 |
Snippet | A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 907 |
SubjectTerms | Air flow Gravel gravel coverage lateral coverage Partitioning Roughness Shear stress shear‐stress ratio Soil erosion Soil stresses Soil surfaces soil wind erosion Wind erosion Wind measurement Wind stress wind tunnel |
Title | A modified Raupach's model applicable for shear‐stress partitioning on surfaces covered with dense and flat‐shaped gravel roughness elements |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.5052 https://www.proquest.com/docview/2519083591 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1EEL34LVarjCB6Sk2ySZo9FmkVQZGqIHgI2c2GijUtpj3oyZ_Q3-gvcWaT1A8UxFMOuxuS3dnJm83Me4ztO-j1FLdTC0MFz8Kd6FhCNW1LhDJIcclTlVLt8PlFcHrjnd36t2VWJdXCFPwQ0wM32hnGX9MGj2V-9EEaqvNhg1TY0P1Sqhbhoe6UOYpQvigqpZsWxuzNinfWdo-qgV-_RB_w8jNINV-ZzhK7q56vSC55aIxHsqFevlE3_u8FltliCT6hVVjLCpvR2SqbL3XQe8-rbO7ECP0-r7FJCx4HyX2KCBW68Rgj695hDkY3B8qf3rKvASEv5CSK_fY6KcpOYEjGWB7zwiCDfPyUUt4XKMoWxdvR0S-gu8s1xFkCaT8e0ehePMRGI4fUByMeRF4YdJHfnq-zm077-vjUKtUbrJg7AUa4fqJdVwVhkOiQWMhc5WqqR-G-sD2JgWDKsdlXjvbQcXihrbSjhc_jxBc81HyDzWaDTG8yUJ7kCo1NhjzxgtCVAscidPGVcHQS-jV2WK1kpEpqc1LY6EcFKbMb4VxHNNc1tjftOSzoPH7oU6-MISo3dB5RgS-hVeHU2IFZ1V_HR-2rS7pu_bXjNltwKVPG5APV2ezoaax3EOqM5K4x6nfCxv4R |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUAUXXi1ieQ4SKqcsSZxkY3FCvJanKgoSh0pR4jhaxJJdkd0DnPgJ_EZ-CTNOstCqlaqecrAdJfZ48o0z830Amw55PSXszKJQwbNoJzqWVC3bkmESZLTkmcq4dvj8Imhfeyc3_s0Y7NS1MCU_xOjAjXeG8de8wflAevudNVQX_SbLsH2CCRb0ZuL8_csRdxTjfFnWSrcsitpbNfOs7W7XI3_9Fr0DzI8w1XxnDmfgZ_2EZXrJXXM4SJrq6Tfyxv98hVmYrvAn7pYGMwdjOp-HyUoKvfM4D5-PjNbv4xd42cX7XnqbEUjFy3hIwXVnq0AjnYPVf--kq5FQLxasi_36_FJWnmCf7bE66cVejsXwIePUL1ScMEq349NfJI9XaIzzFLNuPODRnbhPjUYRqYtGP4gdMeoyxb34CteHB1d7basScLBi4QQU5Pqpdl0VhEGqQyYic5WruSRF-NL2EooFM0HNvnK0R77DC22lHS19Eae-FKEWCzCe93K9CKi8RCiytyQUqReEbiJpLKEXX0lHp6HfgK16KSNVsZuzyEY3KnmZ3YjmOuK5bsDGqGe_ZPT4Q5-V2hqiak8XEdf4MmCVTgO-mWX96_jo4Md3vi79a8d1mGxfnZ9FZ8cXp8sw5XLijEkPWoHxwcNQrxLyGSRrxsLfAI76Ajw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RUAuX0lJQl0I7lSo4ZUniJBsfEbDlo0WIgoTUQ5Q4trbqNhuR3QOc-An8xv6SzjjJQhFIVU852I4Sezx548y8B_DJI6-nhGscChUCh3ai50jVcx0ZZ5GhJTfKcO3w1-No_zw4vAgvmqxKroWp-SGmB268M6y_5g1e5mbrjjRUV2WXVdiewVwQuZJlG3ZPp9RRDPNlXSrdcyho77XEs66_1Y78-1N0hy_vo1T7mekvwvf2Aevskp_dyTjrqusH3I3_9wav4GWDPnG7NpfXMKOLJZhvhNAHV0vw_LNV-r16A7fb-GuU_zAEUfE0nVBoPdis0ArnYPPXOxtqJMyLFati_765retOsGRrbM55cVRgNbk0nPiFitNF6XZ89ovk7yqNaZGjGaZjHj1IS2q0ekhDtOpB7IZR1wnu1TKc9_fOdvadRr7BSYUXUYgb5tr3VRRHuY6ZhsxXvuaCFBFKN8goEjSCmkPl6YA8RxC7SntahiLNQyliLVZgthgV-i2gCjKhyNqyWORBFPuZpLGEXUIlPZ3HYQc225VMVMNtzhIbw6RmZfYTmuuE57oDH6c9y5rP45E-a60xJM2OrhKu8GW4Kr0ObNhVfXJ8svfthK-r_9rxA7w42e0nXw6Oj97Bgs9ZMzY3aA1mx5cTvU6wZ5y9t_b9B5coAOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+Raupach%27s+model+applicable+for+shear%E2%80%90stress+partitioning+on+surfaces+covered+with+dense+and+flat%E2%80%90shaped+gravel+roughness+elements&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Li%2C+Huiru&rft.au=Zou%2C+Xueyong&rft.au=Zhang%2C+Mengcui&rft.au=Kang%2C+Liqiang&rft.date=2021-04-01&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=46&rft.issue=5&rft.spage=907&rft.epage=920&rft_id=info:doi/10.1002%2Fesp.5052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_5052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon |