A modified Raupach's model applicable for shear‐stress partitioning on surfaces covered with dense and flat‐shaped gravel roughness elements

A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of...

Full description

Saved in:
Bibliographic Details
Published inEarth surface processes and landforms Vol. 46; no. 5; pp. 907 - 920
Main Authors Li, Huiru, Zou, Xueyong, Zhang, Mengcui, Kang, Liqiang, Zhang, Chunlai, Cheng, Hong, Wu, Xiaoxu
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning. The shear‐stress partitioning models represented by Raupach's model were established under the conditions of surfaces covered with smaller lateral coverage (λ < 0.10) of roughness elements with larger aspect ratio (normally H/W > 1.00), and were used to evaluate the efficiencies of soil protection provided by roughness elements such as plants or gravel. By adding the shear stress on the top surface of roughness elements to the total shear stress on rough surfaces, Raupach's model was modified to apply to wider ranges of λ < 0.32 and H/W > 0.2.
AbstractList A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ  < 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤  λ  ≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤  H / W  ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements ( τ c ) to the total shear stress ( τ ) is large; in this case, τ c plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating τ c into the calculation of τ . Under conditions of λ  < 0.32 and H / W  > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning.
A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning. The shear‐stress partitioning models represented by Raupach's model were established under the conditions of surfaces covered with smaller lateral coverage (λ < 0.10) of roughness elements with larger aspect ratio (normally H/W > 1.00), and were used to evaluate the efficiencies of soil protection provided by roughness elements such as plants or gravel. By adding the shear stress on the top surface of roughness elements to the total shear stress on rough surfaces, Raupach's model was modified to apply to wider ranges of λ < 0.32 and H/W > 0.2.
A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly, changing the airflow field near the surface and sharing the shear stress of wind. Similar to other roughness elements, the protective effect of gravel on soil is usually expressed in terms of the ratio of the shear stress on the exposed soil surface to the total shear stress on the rough surface due to wind, i.e. through a shear‐stress partitioning model. However, the existing shear‐stress partitioning models, represented by Raupach's model (RM93), are only applicable when the lateral coverage of the roughness elements, λ < 0.10, and the applicability of the models to flat‐shaped roughness elements is unclear. The purpose of this study is to verify the applicability of RM93 for dense and flat‐shaped gravel roughness elements by using shear‐stress data from wind‐tunnel measurements pertaining to roughness elements with different densities (0.013 ≤ λ ≤ 0.318) and flat shapes (height‐to‐width ratios in the range 0.20 ≤ H/W ≤ 0.63), and to modify RM93 to enhance its predictive ability. The results indicate that RM93 cannot accurately predict the shear‐stress partitioning for surfaces covered by densely distributed and flat‐shaped gravel roughness elements. This phenomenon occurs because, when roughness elements are distributed densely or are flat‐shaped, the proportion of the shear stress on the top surface of the roughness elements (τc) to the total shear stress (τ) is large; in this case, τc plays a dominant role and serves as an essential component in the shear‐stress partitioning model. Consequently, RM93 is modified by incorporating τc into the calculation of τ. Under conditions of λ < 0.32 and H/W > 0.2, the modified RM93 can yield satisfactory predictions regarding the shear‐stress partitioning.
Author Zhang, Mengcui
Cheng, Hong
Li, Huiru
Zou, Xueyong
Wu, Xiaoxu
Zhang, Chunlai
Kang, Liqiang
Author_xml – sequence: 1
  givenname: Huiru
  surname: Li
  fullname: Li, Huiru
  organization: Beijing Normal University
– sequence: 2
  givenname: Xueyong
  orcidid: 0000-0002-6409-5390
  surname: Zou
  fullname: Zou, Xueyong
  email: zouxy@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 3
  givenname: Mengcui
  surname: Zhang
  fullname: Zhang, Mengcui
  organization: Beijing Normal University
– sequence: 4
  givenname: Liqiang
  orcidid: 0000-0001-5446-6576
  surname: Kang
  fullname: Kang, Liqiang
  organization: Beijing Normal University
– sequence: 5
  givenname: Chunlai
  orcidid: 0000-0003-0630-3697
  surname: Zhang
  fullname: Zhang, Chunlai
  organization: Beijing Normal University
– sequence: 6
  givenname: Hong
  surname: Cheng
  fullname: Cheng, Hong
  organization: Beijing Normal University
– sequence: 7
  givenname: Xiaoxu
  surname: Wu
  fullname: Wu, Xiaoxu
  organization: Beijing Normal University
BookMark eNp1kMtO3DAUhi1EpQ4UqY9giQVsMvUlzsRLhIBWQmrFZR0dnJOJUcYOtgNixyPwjH2SOh1WCFbW8fn-70j_Htl13iEh3zlbcsbED4zjUjEldsiCM10VuparXbJgXK8KLeXqK9mL8Z4xzstaL8jrCd341nYWW3oF0wimP4rzFw4UxnGwBu4GpJ0PNPYI4e_La0wBY6QjhGST9c66NfWOxil0YDBS4x8xZN2TTT1t0UWk4FraDZDmdA9jXq4DPOYTwU_r3s06HHCDLsVv5EsHQ8SDt3ef3J6f3Zz-LC5_X_w6PbksQPJKFEq1KISp6qrFWlWSCSMwT0Iqzcq7ivFO5rUyHMtSqLJmBjlqJaFVWtYo98nh1jsG_zBhTM29n4LLJxuhuGZ1FvFMHW8pE3yMAbtmDHYD4bnhrJn7bnLfzdx3RpfvUGMTzAWlAHb4KFBsA092wOdPxc3Z9Z___D9edpaP
CitedBy_id crossref_primary_10_1029_2023JD040313
crossref_primary_10_3724_aauj_2024026
crossref_primary_10_1016_j_still_2024_106119
crossref_primary_10_1016_j_catena_2022_106633
crossref_primary_10_1016_j_catena_2024_107899
crossref_primary_10_1016_j_aeolia_2025_100973
crossref_primary_10_1002_esp_5649
Cites_doi 10.1002/(SICI)1096-9837(199607)21:7<607::AID-ESP660>3.0.CO;2-1
10.1029/93JD00396
10.1007/BF00140536
10.1002/2015JF003475
10.1007/s10546-012-9719-4
10.1007/BF00155238
10.1016/0002-1571(71)90116-6
10.1016/j.aeolia.2015.09.004
10.1029/95JD00690
10.1146/annurev.fluid.40.111406.102135
10.1525/9780520329584-003
10.1016/j.geomorph.2009.07.014
10.1002/(SICI)1096-9837(199607)21:7<589::AID-ESP659>3.0.CO;2-1
10.1016/j.aeolia.2016.09.006
10.1023/A:1022119909546
10.1029/2003JF000031
10.1016/j.geomorph.2006.05.004
10.1016/0167-6105(81)90051-9
10.1007/s10652-005-6022-7
10.1007/s10533-007-9142-y
10.1016/j.agrformet.2018.11.039
10.1029/JC080i024p03447
10.1002/(SICI)1096-9837(199801)23:1<69::AID-ESP823>3.0.CO;2-G
10.1007/s10546-011-9690-5
10.1023/A:1024179025508
10.1029/JD094iD10p12885
10.1002/2014JD021491
10.1016/j.envsoft.2003.12.010
10.1002/esp.3934
10.1007/s10546-016-0224-z
10.1016/j.jweia.2019.05.002
10.1007/s11430-014-5002-5
10.1007/s10546-018-0373-3
10.1002/ldr.3400020203
10.1029/2011EO290001
10.1029/92JD01922
10.1007/BF00155203
10.1071/SR9960309
10.1002/2016MS000823
10.1029/2001JD001259
10.1016/j.atmosenv.2007.03.037
10.1002/jgrf.20040
10.1139/e17-121
10.1029/2004JF000281
10.1016/j.atmosenv.2005.09.014
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
DOI 10.1002/esp.5052
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1096-9837
EndPage 920
ExternalDocumentID 10_1002_esp_5052
ESP5052
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41330746
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XKC
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
ID FETCH-LOGICAL-a3162-55de22c686de856302c2e686235904b601f32c65c1e4425480ce1e953ad5938e3
IEDL.DBID DR2
ISSN 0197-9337
IngestDate Fri Jul 25 10:14:34 EDT 2025
Tue Jul 01 01:27:43 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Jan 22 16:29:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3162-55de22c686de856302c2e686235904b601f32c65c1e4425480ce1e953ad5938e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0630-3697
0000-0001-5446-6576
0000-0002-6409-5390
PQID 2519083591
PQPubID 866381
PageCount 14
ParticipantIDs proquest_journals_2519083591
crossref_primary_10_1002_esp_5052
crossref_citationtrail_10_1002_esp_5052
wiley_primary_10_1002_esp_5052_ESP5052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationSubtitle The Journal of the British Geomorphological Research Group
PublicationTitle Earth surface processes and landforms
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1987; 32
2018; 169
2016; 75
2005; 20
1973
2014; 29
1936; 7
2017; 9
1996; 34
1971; 8
1986; 9
2010; 114
2010; 115
2013; 118
2002; 107
1941
2016; 41
2017; 163
2008; 113
2005; 39
1996; 21
1975; 80
2014; 119
2015; 58
2012; 143
2012; 144
2015; 19
2019; 190
2005; 110
2010
2015; 120
1981; 7
2008
1996
2006; 6
2019; 266‐267
2004; 109
2006; 82
2015; 23
1990; 2
1989; 94
2003; 108
2003; 107
2011; 92
1993; 98
1997; 34
2019
2016
2015
1998; 1
1995; 100
2007; 41
2007; 85
1973; 5
2008; 40
1992; 60
2016; 23
Fryrear D.W. (e_1_2_11_15_1) 1998; 1
King J. (e_1_2_11_23_1) 2005; 110
e_1_2_11_32_1
e_1_2_11_55_1
Zou X. (e_1_2_11_61_1) 2014; 29
e_1_2_11_57_1
Du H. (e_1_2_11_12_1) 2016; 75
e_1_2_11_36_1
e_1_2_11_34_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
Lancaster N. (e_1_2_11_26_1) 2010; 115
e_1_2_11_41_1
Wagner LE (e_1_2_11_53_1) 2010
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
Shao Y. (e_1_2_11_48_1) 2008; 113
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
Dong G. (e_1_2_11_11_1) 1987; 32
Bagnold R.A. (e_1_2_11_3_1) 1941
Okin G.S. (e_1_2_11_37_1) 2008; 113
e_1_2_11_50_1
Shao Y. (e_1_2_11_43_1) 2008
e_1_2_11_10_1
Popovic M.B. (e_1_2_11_39_1) 2019
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_49_1
ELD Initiative (e_1_2_11_13_1) 2015
e_1_2_11_21_1
e_1_2_11_44_1
UNEP (e_1_2_11_51_1) 2016
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
Brown S. (e_1_2_11_4_1) 2008; 113
e_1_2_11_18_1
e_1_2_11_16_1
Livingstone I. (e_1_2_11_30_1) 1996
Schlichting H. (e_1_2_11_42_1) 1936; 7
References_xml – volume: 107
  start-page: 445
  issue: 2
  year: 2003
  end-page: 468
  article-title: Drag partition for regularly‐arrayed rough surfaces
  publication-title: Boundary‐Layer Meteorology
– start-page: 1
  year: 2015
  end-page: 158
– volume: 120
  start-page: 1824
  issue: 9
  year: 2015
  end-page: 1840
  article-title: A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface‐mounted obstacle
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 19
  start-page: 37
  year: 2015
  end-page: 54
  article-title: A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics
  publication-title: Aeolian Research
– start-page: 6.56
  year: 2010
  end-page: 6.98
– volume: 82
  start-page: 229
  issue: 3‐4
  year: 2006
  end-page: 244
  article-title: Aeolian shear stress ratio measurements within mesquite‐dominated landscapes of the Chihuahuan Desert, New Mexico, USA
  publication-title: Geomorphology
– volume: 29
  start-page: 875
  issue: 8
  year: 2014
  end-page: 889
  article-title: Classification and representation of factors affecting soil wind erosion in a model
  publication-title: Advances in Earth Science
– volume: 34
  start-page: 309
  issue: 3
  year: 1996
  end-page: 342
  article-title: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region
  publication-title: Australian Journal of Soil Research
– start-page: 1
  year: 1973
  end-page: 374
– volume: 21
  start-page: 589
  issue: 7
  year: 1996
  end-page: 605
  article-title: Wind‐tunnel modelling of the influence of vegetation structure on saltation threshold
  publication-title: Earth Surface Processes and Landforms
– volume: 34
  start-page: 1486
  issue: 11
  year: 1997
  end-page: 1498
  article-title: Drag and shear stress partitioning in sparse desert creosote communities
  publication-title: Canadian Journal of Earth Sciences
– volume: 85
  start-page: 317
  issue: 3
  year: 2007
  end-page: 332
  article-title: Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA
  publication-title: Biogeochemistry
– volume: 119
  start-page: 6066
  issue: 10
  year: 2014
  end-page: 6084
  article-title: The effect of roughness elements on wind erosion: The importance of surface shear stress distribution
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 41
  start-page: 1421
  issue: 10
  year: 2016
  end-page: 1436
  article-title: Characterizing turbulent wind flow around dryland vegetation
  publication-title: Earth Surface Processes and Landforms
– volume: 266‐267
  start-page: 29
  year: 2019
  end-page: 42
  article-title: Transition model for airflow fields from single plants to multiple plants
  publication-title: Agricultural and Forest Meteorology
– volume: 92
  start-page: 241
  issue: 29
  year: 2011
  end-page: 242
  article-title: Dust: Small‐scale processes with global consequences
  publication-title: Eos, Transactions of the American Geophysical Union
– volume: 144
  start-page: 217
  issue: 2
  year: 2012
  end-page: 241
  article-title: Shear‐stress partitioning in live plant canopies and modifications to Raupach's model
  publication-title: Boundary‐Layer Meteorology
– volume: 163
  start-page: 273
  issue: 2
  year: 2017
  end-page: 286
  article-title: Estimating sediment mass fluxes on surfaces sheltered by live vegetation
  publication-title: Boundary‐Layer Meteorology
– volume: 110
  year: 2005
  article-title: Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 8
  start-page: 269
  year: 1971
  end-page: 292
  article-title: Drag measurements in roughness arrays of varying density and distribution
  publication-title: Agricultural Meteorology
– volume: 114
  start-page: 319
  issue: 3
  year: 2010
  end-page: 325
  article-title: Spatial distribution of threshold wind speeds for dust outbreaks in Northeast Asia
  publication-title: Geomorphology
– volume: 7
  start-page: 219
  issue: 3
  year: 1981
  end-page: 239
  article-title: A simple omnidirectional sensor for wind‐tunnel studies of pedestrian‐level winds
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– volume: 98
  start-page: 3023
  issue: D2
  year: 1993
  end-page: 3029
  article-title: The effect of roughness elements on wind erosion threshold
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 80
  start-page: 3447
  issue: 24
  year: 1975
  end-page: 3454
  article-title: A drag partition theory for determining the large‐scale roughness parameter and wind stress on the Arctic pack ice
  publication-title: Journal of Geophysical Research: Oceans
– volume: 107
  start-page: 4760
  issue: D24
  year: 2002
  article-title: Drag coefficient and plant form response to wind speed in three plant species: Burning bush ( ), Colorado blue spruce ( .), and fountain grass ( )
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 98
  start-page: 12719
  issue: D7
  year: 1993
  end-page: 12726
  article-title: Effect of saltation bombardment on the entrainment of dust by wind
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 39
  start-page: 7351
  issue: 38
  year: 2005
  end-page: 7361
  article-title: A scheme for drag partition over rough surfaces
  publication-title: Atmospheric Environment
– volume: 94
  start-page: 12885
  issue: D10
  year: 1989
  end-page: 12893
  article-title: The effect of nonerodible particles on wind erosion of erodible surfaces
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 113
  issue: F2
  year: 2008
  article-title: A new model of wind erosion in the presence of vegetation
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 9
  start-page: 585
  issue: 1
  year: 2017
  end-page: 608
  article-title: Development and evaluation of a physics‐based windblown dust emission scheme implemented in the CMAQ modeling system
  publication-title: Journal of Advances in Modeling Earth Systems
– year: 2019
– volume: 58
  start-page: 462
  year: 2015
  end-page: 473
  article-title: Cogitation on developing a dynamic model of soil wind erosion
  publication-title: Science China: Earth Sciences
– volume: 23
  start-page: 69
  issue: 1
  year: 2015
  end-page: 82
  article-title: Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California
  publication-title: Earth Surface Processes and Landforms
– volume: 169
  start-page: 251
  issue: 2
  year: 2018
  end-page: 273
  article-title: Experimental investigation on shear‐stress partitioning for flexible plants with approximately zero basal‐to‐frontal area ratio in a wind tunnel
  publication-title: Boundary‐Layer Meteorology
– year: 1941
– volume: 108
  start-page: 317
  issue: 3
  year: 2003
  end-page: 342
  article-title: Numerical simulation of drag partition over rough surfaces
  publication-title: Boundary‐Layer Meteorology
– volume: 40
  start-page: 141
  year: 2008
  end-page: 168
  article-title: Effects of wind on plants
  publication-title: Annual Review of Fluid Mechanics
– volume: 21
  start-page: 607
  issue: 7
  year: 1996
  end-page: 619
  article-title: Shear stress partitioning in sparsely vegetated desert canopies
  publication-title: Earth Surface Processes and Landforms
– volume: 109
  issue: F4
  year: 2004
  article-title: Sand flux in the northern Chihuahuan desert, New Mexico, USA, and the influence of mesquite‐dominated landscapes
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 6
  start-page: 241
  issue: 3
  year: 2006
  end-page: 275
  article-title: Wind characteristics of mesquite streets in the northern Chihuahuan Desert, New Mexico, USA
  publication-title: Environmental Fluid Mechanics
– volume: 75
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  article-title: Wind erosion occurrence probabilities maps in the watershed of the Ningxia–Inner Mongolia reach of the Yellow River, China
  publication-title: Environmental Earth Ences
– volume: 5
  start-page: 285
  issue: 3
  year: 1973
  end-page: 308
  article-title: Drag due to regular arrays of roughness elements of varying geometry
  publication-title: Boundary‐Layer Meteorology
– year: 1996
– volume: 60
  start-page: 375
  issue: 4
  year: 1992
  end-page: 395
  article-title: Drag and drag partition on rough surfaces
  publication-title: Boundary‐Layer Meteorology
– volume: 23
  start-page: 63
  year: 2016
  end-page: 78
  article-title: Using albedo to reform wind erosion modelling, mapping and monitoring
  publication-title: Aeolian Research
– volume: 1
  start-page: 1
  year: 1998
  end-page: 175
  article-title: Revised wind erosion equation. Wind erosion and water conservation research unit
  publication-title: USDA‐ARS, Technical Bulletin
– volume: 20
  start-page: 69
  issue: 1
  year: 2005
  end-page: 84
  article-title: Wind erosion modelling in a Sahelian environment
  publication-title: Environmental Modelling & Software
– volume: 115
  issue: F3
  year: 2010
  article-title: Sand transport by wind on complex surfaces: Field studies in the McMurdo dry valleys, Antarctica
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 190
  start-page: 183
  year: 2019
  end-page: 189
  article-title: The effect of roughness density of gobi beds on the entrainment of sediment by wind: A wind tunnel study
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– volume: 9
  start-page: 195
  issue: 1–2
  year: 1986
  end-page: 208
  article-title: Wind erosion climatic erosivity
  publication-title: Climatic Change
– volume: 113
  issue: F2
  year: 2008
  article-title: A theory for drag partition over rough surfaces
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 143
  start-page: 337
  issue: 2
  year: 2012
  end-page: 356
  article-title: Spatio‐temporal surface shear‐stress variability in live plant canopies and cube arrays
  publication-title: Boundary‐Layer Meteorology
– volume: 113
  issue: F2
  year: 2008
  article-title: A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 7
  start-page: 1
  issue: 1
  year: 1936
  end-page: 34
  article-title: Experimentelle untersuchungen zum rauhigkeits problem
  publication-title: Archive of Applied Mechanics
– volume: 118
  start-page: 288
  issue: 1
  year: 2013
  end-page: 306
  article-title: Evaluation of a new model of aeolian transport in the presence of vegetation
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 41
  start-page: 5817
  issue: 28
  year: 2007
  end-page: 5830
  article-title: Using illumination and shadow to model aerodynamic resistance and flow separation: An isotropic study
  publication-title: Atmospheric Environment
– start-page: 1
  year: 2016
  end-page: 114
– volume: 32
  start-page: 1703
  issue: 24
  year: 1987
  end-page: 1709
  article-title: Some results of the simulant experiment on wind erosion soil in wind tunnel
  publication-title: Chinese Science Bulletin
– volume: 100
  start-page: 16415
  issue: D8
  year: 1995
  end-page: 16430
  article-title: Modeling the atmospheric dust cycle: 1. Design of a soil‐derived dust emission scheme
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 2
  start-page: 87
  issue: 2
  year: 1990
  end-page: 94
  article-title: Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion
  publication-title: Land Degradation & Development
– start-page: 303
  year: 2008
  end-page: 360
– ident: e_1_2_11_58_1
  doi: 10.1002/(SICI)1096-9837(199607)21:7<607::AID-ESP660>3.0.CO;2-1
– volume: 32
  start-page: 1703
  issue: 24
  year: 1987
  ident: e_1_2_11_11_1
  article-title: Some results of the simulant experiment on wind erosion soil in wind tunnel
  publication-title: Chinese Science Bulletin
– start-page: 6.56
  volume-title: Wind erosion prediction system: WEPS 1.0 User Manual
  year: 2010
  ident: e_1_2_11_53_1
– ident: e_1_2_11_46_1
  doi: 10.1029/93JD00396
– ident: e_1_2_11_49_1
  doi: 10.1007/BF00140536
– volume: 113
  start-page: F02S10
  issue: 2
  year: 2008
  ident: e_1_2_11_37_1
  article-title: A new model of wind erosion in the presence of vegetation
  publication-title: Journal of Geophysical Research: Earth Surface
– start-page: 303
  volume-title: Physics and modelling of wind erosion
  year: 2008
  ident: e_1_2_11_43_1
– volume: 115
  issue: 3
  year: 2010
  ident: e_1_2_11_26_1
  article-title: Sand transport by wind on complex surfaces: Field studies in the McMurdo dry valleys, Antarctica
  publication-title: Journal of Geophysical Research: Earth Surface
– volume-title: Aeolian geomorphology: an introduction
  year: 1996
  ident: e_1_2_11_30_1
– volume: 29
  start-page: 875
  issue: 8
  year: 2014
  ident: e_1_2_11_61_1
  article-title: Classification and representation of factors affecting soil wind erosion in a model
  publication-title: Advances in Earth Science
– ident: e_1_2_11_34_1
  doi: 10.1002/2015JF003475
– ident: e_1_2_11_55_1
  doi: 10.1007/s10546-012-9719-4
– ident: e_1_2_11_59_1
  doi: 10.1007/BF00155238
– ident: e_1_2_11_31_1
  doi: 10.1016/0002-1571(71)90116-6
– ident: e_1_2_11_45_1
  doi: 10.1016/j.aeolia.2015.09.004
– ident: e_1_2_11_32_1
  doi: 10.1029/95JD00690
– ident: e_1_2_11_10_1
  doi: 10.1146/annurev.fluid.40.111406.102135
– ident: e_1_2_11_8_1
  doi: 10.1525/9780520329584-003
– ident: e_1_2_11_22_1
  doi: 10.1016/j.geomorph.2009.07.014
– ident: e_1_2_11_36_1
  doi: 10.1002/(SICI)1096-9837(199607)21:7<589::AID-ESP659>3.0.CO;2-1
– ident: e_1_2_11_6_1
  doi: 10.1016/j.aeolia.2016.09.006
– ident: e_1_2_11_9_1
  doi: 10.1023/A:1022119909546
– ident: e_1_2_11_17_1
  doi: 10.1029/2003JF000031
– ident: e_1_2_11_24_1
  doi: 10.1016/j.geomorph.2006.05.004
– ident: e_1_2_11_20_1
  doi: 10.1016/0167-6105(81)90051-9
– ident: e_1_2_11_16_1
  doi: 10.1007/s10652-005-6022-7
– ident: e_1_2_11_28_1
  doi: 10.1007/s10533-007-9142-y
– ident: e_1_2_11_7_1
  doi: 10.1016/j.agrformet.2018.11.039
– volume: 75
  start-page: 1
  issue: 1
  year: 2016
  ident: e_1_2_11_12_1
  article-title: Wind erosion occurrence probabilities maps in the watershed of the Ningxia–Inner Mongolia reach of the Yellow River, China
  publication-title: Environmental Earth Ences
– ident: e_1_2_11_2_1
  doi: 10.1029/JC080i024p03447
– volume: 113
  start-page: F02S06
  issue: 2
  year: 2008
  ident: e_1_2_11_4_1
  article-title: A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions
  publication-title: Journal of Geophysical Research: Earth Surface
– ident: e_1_2_11_25_1
  doi: 10.1002/(SICI)1096-9837(199801)23:1<69::AID-ESP823>3.0.CO;2-G
– volume-title: Biomechatronics
  year: 2019
  ident: e_1_2_11_39_1
– ident: e_1_2_11_54_1
  doi: 10.1007/s10546-011-9690-5
– ident: e_1_2_11_27_1
  doi: 10.1023/A:1024179025508
– ident: e_1_2_11_18_1
  doi: 10.1029/JD094iD10p12885
– start-page: 1
  volume-title: The value of land: Prosperous lands and positive rewards through sustainable land management
  year: 2015
  ident: e_1_2_11_13_1
– ident: e_1_2_11_57_1
  doi: 10.1002/2014JD021491
– ident: e_1_2_11_52_1
  doi: 10.1016/j.envsoft.2003.12.010
– ident: e_1_2_11_33_1
  doi: 10.1002/esp.3934
– ident: e_1_2_11_56_1
  doi: 10.1007/s10546-016-0224-z
– volume: 113
  start-page: F02S05
  issue: 2
  year: 2008
  ident: e_1_2_11_48_1
  article-title: A theory for drag partition over rough surfaces
  publication-title: Journal of Geophysical Research: Earth Surface
– ident: e_1_2_11_50_1
  doi: 10.1016/j.jweia.2019.05.002
– ident: e_1_2_11_62_1
  doi: 10.1007/s11430-014-5002-5
– ident: e_1_2_11_21_1
  doi: 10.1007/s10546-018-0373-3
– volume: 7
  start-page: 1
  issue: 1
  year: 1936
  ident: e_1_2_11_42_1
  article-title: Experimentelle untersuchungen zum rauhigkeits problem
  publication-title: Archive of Applied Mechanics
– ident: e_1_2_11_35_1
  doi: 10.1002/ldr.3400020203
– ident: e_1_2_11_38_1
  doi: 10.1029/2011EO290001
– start-page: 1
  volume-title: Global assessment of sand and dust storms
  year: 2016
  ident: e_1_2_11_51_1
– ident: e_1_2_11_41_1
  doi: 10.1029/92JD01922
– volume-title: The Physics of Blown Sand and Desert Dunes
  year: 1941
  ident: e_1_2_11_3_1
– ident: e_1_2_11_40_1
  doi: 10.1007/BF00155203
– ident: e_1_2_11_44_1
  doi: 10.1071/SR9960309
– ident: e_1_2_11_14_1
  doi: 10.1002/2016MS000823
– ident: e_1_2_11_19_1
  doi: 10.1029/2001JD001259
– ident: e_1_2_11_5_1
  doi: 10.1016/j.atmosenv.2007.03.037
– ident: e_1_2_11_29_1
  doi: 10.1002/jgrf.20040
– ident: e_1_2_11_60_1
  doi: 10.1139/e17-121
– volume: 110
  start-page: F04015
  year: 2005
  ident: e_1_2_11_23_1
  article-title: Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold
  publication-title: Journal of Geophysical Research: Earth Surface
  doi: 10.1029/2004JF000281
– ident: e_1_2_11_47_1
  doi: 10.1016/j.atmosenv.2005.09.014
– volume: 1
  start-page: 1
  year: 1998
  ident: e_1_2_11_15_1
  article-title: Revised wind erosion equation. Wind erosion and water conservation research unit
  publication-title: USDA‐ARS, Technical Bulletin
SSID ssj0011489
Score 2.3591123
Snippet A commonly used measure to prevent soil wind erosion is to cover the surface with gravel. Gravel can inhibit soil erosion by covering the surface directly,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 907
SubjectTerms Air flow
Gravel
gravel coverage
lateral coverage
Partitioning
Roughness
Shear stress
shear‐stress ratio
Soil erosion
Soil stresses
Soil surfaces
soil wind erosion
Wind erosion
Wind measurement
Wind stress
wind tunnel
Title A modified Raupach's model applicable for shear‐stress partitioning on surfaces covered with dense and flat‐shaped gravel roughness elements
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.5052
https://www.proquest.com/docview/2519083591
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1EEL34LVarjCB6Sk2ySZo9FmkVQZGqIHgI2c2GijUtpj3oyZ_Q3-gvcWaT1A8UxFMOuxuS3dnJm83Me4ztO-j1FLdTC0MFz8Kd6FhCNW1LhDJIcclTlVLt8PlFcHrjnd36t2VWJdXCFPwQ0wM32hnGX9MGj2V-9EEaqvNhg1TY0P1Sqhbhoe6UOYpQvigqpZsWxuzNinfWdo-qgV-_RB_w8jNINV-ZzhK7q56vSC55aIxHsqFevlE3_u8FltliCT6hVVjLCpvR2SqbL3XQe8-rbO7ECP0-r7FJCx4HyX2KCBW68Rgj695hDkY3B8qf3rKvASEv5CSK_fY6KcpOYEjGWB7zwiCDfPyUUt4XKMoWxdvR0S-gu8s1xFkCaT8e0ehePMRGI4fUByMeRF4YdJHfnq-zm077-vjUKtUbrJg7AUa4fqJdVwVhkOiQWMhc5WqqR-G-sD2JgWDKsdlXjvbQcXihrbSjhc_jxBc81HyDzWaDTG8yUJ7kCo1NhjzxgtCVAscidPGVcHQS-jV2WK1kpEpqc1LY6EcFKbMb4VxHNNc1tjftOSzoPH7oU6-MISo3dB5RgS-hVeHU2IFZ1V_HR-2rS7pu_bXjNltwKVPG5APV2ezoaax3EOqM5K4x6nfCxv4R
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUAUXXi1ieQ4SKqcsSZxkY3FCvJanKgoSh0pR4jhaxJJdkd0DnPgJ_EZ-CTNOstCqlaqecrAdJfZ48o0z830Amw55PSXszKJQwbNoJzqWVC3bkmESZLTkmcq4dvj8Imhfeyc3_s0Y7NS1MCU_xOjAjXeG8de8wflAevudNVQX_SbLsH2CCRb0ZuL8_csRdxTjfFnWSrcsitpbNfOs7W7XI3_9Fr0DzI8w1XxnDmfgZ_2EZXrJXXM4SJrq6Tfyxv98hVmYrvAn7pYGMwdjOp-HyUoKvfM4D5-PjNbv4xd42cX7XnqbEUjFy3hIwXVnq0AjnYPVf--kq5FQLxasi_36_FJWnmCf7bE66cVejsXwIePUL1ScMEq349NfJI9XaIzzFLNuPODRnbhPjUYRqYtGP4gdMeoyxb34CteHB1d7basScLBi4QQU5Pqpdl0VhEGqQyYic5WruSRF-NL2EooFM0HNvnK0R77DC22lHS19Eae-FKEWCzCe93K9CKi8RCiytyQUqReEbiJpLKEXX0lHp6HfgK16KSNVsZuzyEY3KnmZ3YjmOuK5bsDGqGe_ZPT4Q5-V2hqiak8XEdf4MmCVTgO-mWX96_jo4Md3vi79a8d1mGxfnZ9FZ8cXp8sw5XLijEkPWoHxwcNQrxLyGSRrxsLfAI76Ajw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RUAuX0lJQl0I7lSo4ZUniJBsfEbDlo0WIgoTUQ5Q4trbqNhuR3QOc-An8xv6SzjjJQhFIVU852I4Sezx548y8B_DJI6-nhGscChUCh3ai50jVcx0ZZ5GhJTfKcO3w1-No_zw4vAgvmqxKroWp-SGmB268M6y_5g1e5mbrjjRUV2WXVdiewVwQuZJlG3ZPp9RRDPNlXSrdcyho77XEs66_1Y78-1N0hy_vo1T7mekvwvf2Aevskp_dyTjrqusH3I3_9wav4GWDPnG7NpfXMKOLJZhvhNAHV0vw_LNV-r16A7fb-GuU_zAEUfE0nVBoPdis0ArnYPPXOxtqJMyLFati_765retOsGRrbM55cVRgNbk0nPiFitNF6XZ89ovk7yqNaZGjGaZjHj1IS2q0ekhDtOpB7IZR1wnu1TKc9_fOdvadRr7BSYUXUYgb5tr3VRRHuY6ZhsxXvuaCFBFKN8goEjSCmkPl6YA8RxC7SntahiLNQyliLVZgthgV-i2gCjKhyNqyWORBFPuZpLGEXUIlPZ3HYQc225VMVMNtzhIbw6RmZfYTmuuE57oDH6c9y5rP45E-a60xJM2OrhKu8GW4Kr0ObNhVfXJ8svfthK-r_9rxA7w42e0nXw6Oj97Bgs9ZMzY3aA1mx5cTvU6wZ5y9t_b9B5coAOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+Raupach%27s+model+applicable+for+shear%E2%80%90stress+partitioning+on+surfaces+covered+with+dense+and+flat%E2%80%90shaped+gravel+roughness+elements&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Li%2C+Huiru&rft.au=Zou%2C+Xueyong&rft.au=Zhang%2C+Mengcui&rft.au=Kang%2C+Liqiang&rft.date=2021-04-01&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=46&rft.issue=5&rft.spage=907&rft.epage=920&rft_id=info:doi/10.1002%2Fesp.5052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_5052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon