Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)
Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between termi...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 46; no. 8; pp. 1367 - 1388 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
10.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Summary
The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd. The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd. Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two-terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single-degree-of-freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non-conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non-conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd. |
Author | Basili, M. Pietrosanti, D. De Angelis, M. |
Author_xml | – sequence: 1 givenname: D. orcidid: 0000-0001-8927-3723 surname: Pietrosanti fullname: Pietrosanti, D. email: daniele.pietrosanti@uniroma1.it organization: Sapienza University of Rome – sequence: 2 givenname: M. surname: De Angelis fullname: De Angelis, M. organization: Sapienza University of Rome – sequence: 3 givenname: M. surname: Basili fullname: Basili, M. organization: Sapienza University of Rome |
BookMark | eNp1kM9PwjAYhhuDiYAm_glNvOBh2B9j644GUEkgxAQvXpbSfdWRrRttkfDfW8CT0dN7ed73y_f0UMc0BhC6pWRICWEPsIUhEwm9QF1KsiTKRDzqoC4hmYiEiNMr1HNuQwjhCUm76H3Z-rKWFS7AlR8GS1PgFqxubC2NAgxfstpJXzYGNxq7g_NQO7wv_Sde7QwUeCGdwxNZhxKeGbA-5GC1mMzur9GllpWDm5_so7en6Wr8Es2Xz7Px4zySnCY00qCETpRkiikKQGOx1gqIKghPga2lTignOgupOUm1TCAesZAx4-tYUsX76O6829pmuwPn802zsyaczKnIsjAz4ixQwzOlbOOcBZ2r0p8e81aWVU5JfvSXB3_50V8oDH4VWhtM2cNfaHRG92UFh3-5fPo6PfHfPeWBXw |
CitedBy_id | crossref_primary_10_3389_fbuil_2022_944026 crossref_primary_10_1002_stc_3106 crossref_primary_10_1016_j_jobe_2024_111101 crossref_primary_10_1016_j_jweia_2024_105706 crossref_primary_10_1080_13632469_2023_2291127 crossref_primary_10_1016_j_engstruct_2020_111422 crossref_primary_10_1016_j_iintel_2023_100038 crossref_primary_10_1016_j_jfranklin_2019_04_012 crossref_primary_10_1061_JENMDT_EMENG_6850 crossref_primary_10_1016_j_ymssp_2019_106337 crossref_primary_10_1177_1077546320943801 crossref_primary_10_1007_s11071_023_09163_6 crossref_primary_10_1016_j_soildyn_2024_108557 crossref_primary_10_1016_j_oceaneng_2024_119553 crossref_primary_10_1007_s00707_023_03556_9 crossref_primary_10_1007_s10518_022_01457_1 crossref_primary_10_1016_j_engstruct_2021_112488 crossref_primary_10_1016_j_istruc_2024_107257 crossref_primary_10_1155_2018_6019495 crossref_primary_10_1007_s12206_024_0107_z crossref_primary_10_1016_j_engstruct_2019_109339 crossref_primary_10_1142_S0219455422501371 crossref_primary_10_3390_app13085017 crossref_primary_10_1002_stc_2800 crossref_primary_10_1142_S0219455424500585 crossref_primary_10_1016_j_ymssp_2021_107607 crossref_primary_10_1016_j_engstruct_2020_111554 crossref_primary_10_1007_s10518_021_01236_4 crossref_primary_10_1016_j_ijmecsci_2021_106805 crossref_primary_10_1002_stc_2368 crossref_primary_10_1016_j_istruc_2024_107804 crossref_primary_10_1016_j_soildyn_2019_105924 crossref_primary_10_1142_S0219455420501400 crossref_primary_10_1016_j_engstruct_2022_114831 crossref_primary_10_1016_j_proeng_2017_09_062 crossref_primary_10_1002_stc_2929 crossref_primary_10_1016_j_jsv_2019_06_019 crossref_primary_10_1016_j_ijmecsci_2018_05_025 crossref_primary_10_1016_j_jcsr_2022_107233 crossref_primary_10_1016_j_jsv_2023_118166 crossref_primary_10_1016_j_engstruct_2019_109470 crossref_primary_10_1016_j_engstruct_2024_118522 crossref_primary_10_1016_j_engstruct_2025_119895 crossref_primary_10_3390_buildings12060781 crossref_primary_10_1002_stc_2474 crossref_primary_10_1016_j_soildyn_2018_06_015 crossref_primary_10_1016_j_engstruct_2019_03_030 crossref_primary_10_1002_stc_2357 crossref_primary_10_1016_j_soildyn_2023_107832 crossref_primary_10_1002_stc_2234 crossref_primary_10_1177_1461348419876494 crossref_primary_10_1016_j_ijmecsci_2020_105762 crossref_primary_10_1016_j_ijmecsci_2023_108438 crossref_primary_10_1016_j_soildyn_2020_106474 crossref_primary_10_1016_j_ijmecsci_2023_108796 crossref_primary_10_1002_eqe_3625 crossref_primary_10_1016_j_jobe_2024_111676 crossref_primary_10_1016_j_engstruct_2020_110928 crossref_primary_10_1016_j_engstruct_2019_109464 crossref_primary_10_1016_j_engstruct_2019_109585 crossref_primary_10_1016_j_proeng_2017_09_035 crossref_primary_10_1016_j_engstruct_2019_05_091 crossref_primary_10_1016_j_jobe_2025_111853 crossref_primary_10_1016_j_engstruct_2020_110248 crossref_primary_10_32604_cmes_2024_056693 crossref_primary_10_1016_j_engstruct_2022_114137 crossref_primary_10_1080_15376494_2021_1922961 crossref_primary_10_1016_j_engstruct_2023_115761 crossref_primary_10_1016_j_jobe_2022_105488 crossref_primary_10_1016_j_jsv_2022_117104 crossref_primary_10_1016_j_ijmecsci_2024_109394 crossref_primary_10_1146_annurev_control_053018_023917 crossref_primary_10_1016_j_ijmecsci_2023_108440 crossref_primary_10_3390_buildings12122200 crossref_primary_10_1080_13632469_2024_2436109 crossref_primary_10_1016_j_jfranklin_2018_11_012 crossref_primary_10_1016_j_istruc_2024_107576 crossref_primary_10_1007_s42417_023_00918_4 crossref_primary_10_1016_j_soildyn_2024_109040 crossref_primary_10_3390_app12189153 crossref_primary_10_1038_s41598_024_75996_9 crossref_primary_10_1016_j_euromechsol_2024_105316 crossref_primary_10_1016_j_engstruct_2018_09_085 crossref_primary_10_1016_j_istruc_2024_107322 crossref_primary_10_3390_act9040139 crossref_primary_10_1007_s11071_021_06303_8 crossref_primary_10_3390_app14020695 crossref_primary_10_1007_s40435_019_00562_5 crossref_primary_10_1002_tal_1626 crossref_primary_10_1002_stc_2319 crossref_primary_10_1016_j_ijmecsci_2020_105849 crossref_primary_10_1016_j_soildyn_2021_106589 crossref_primary_10_1115_1_4049212 crossref_primary_10_1007_s11803_022_2090_7 crossref_primary_10_1007_s11012_022_01547_z crossref_primary_10_3390_buildings12050661 crossref_primary_10_1016_j_ijmecsci_2020_105840 crossref_primary_10_1016_j_ymssp_2024_111639 crossref_primary_10_1016_j_engstruct_2023_116662 crossref_primary_10_1007_s42417_021_00309_7 crossref_primary_10_1002_eqe_3098 crossref_primary_10_1016_j_mechrescom_2020_103513 crossref_primary_10_1016_j_net_2024_103394 crossref_primary_10_1115_1_4042934 crossref_primary_10_1007_s10518_022_01592_9 crossref_primary_10_1007_s42417_024_01301_7 crossref_primary_10_1016_j_engstruct_2021_113459 crossref_primary_10_3390_wind2040040 crossref_primary_10_1016_j_ymssp_2022_109986 crossref_primary_10_1016_j_engappai_2025_110058 crossref_primary_10_1016_j_ymssp_2023_110235 crossref_primary_10_1002_eqe_4199 crossref_primary_10_3390_buildings12050558 crossref_primary_10_3390_buildings12081154 crossref_primary_10_1177_13694332241252283 crossref_primary_10_1016_j_engstruct_2019_110011 crossref_primary_10_1016_j_ymssp_2024_112277 crossref_primary_10_1002_stc_2658 crossref_primary_10_1002_stc_2413 crossref_primary_10_1016_j_soildyn_2017_11_023 crossref_primary_10_1016_j_engstruct_2019_05_024 crossref_primary_10_1016_j_engstruct_2024_118586 crossref_primary_10_1016_j_jobe_2023_106554 crossref_primary_10_1007_s00419_022_02217_y crossref_primary_10_1016_j_jobe_2021_102194 crossref_primary_10_1002_stc_2775 crossref_primary_10_1007_s11071_021_07112_9 crossref_primary_10_1016_j_apm_2022_10_011 crossref_primary_10_1016_j_istruc_2024_107653 crossref_primary_10_1016_j_soildyn_2020_106099 crossref_primary_10_1016_j_engstruct_2018_08_074 crossref_primary_10_1007_s12206_023_0505_7 crossref_primary_10_1002_stc_2887 crossref_primary_10_1007_s42107_024_01238_y crossref_primary_10_1002_stc_2644 crossref_primary_10_1002_stc_2409 crossref_primary_10_1002_stc_2529 crossref_primary_10_1016_j_engstruct_2024_119325 crossref_primary_10_1002_stc_2763 crossref_primary_10_32604_cmes_2023_043936 crossref_primary_10_1016_j_istruc_2024_107405 crossref_primary_10_1016_j_engstruct_2024_117938 crossref_primary_10_1016_j_engstruct_2018_07_048 crossref_primary_10_1016_j_jfranklin_2019_02_022 crossref_primary_10_1016_j_rineng_2024_103552 crossref_primary_10_1007_s00419_024_02599_1 crossref_primary_10_1007_s11831_023_10040_z crossref_primary_10_3390_buildings14040955 crossref_primary_10_1016_j_ymssp_2019_04_047 crossref_primary_10_1177_13694332241247919 crossref_primary_10_1002_stc_2756 crossref_primary_10_3390_app122211527 crossref_primary_10_1007_s42417_024_01716_2 crossref_primary_10_1016_j_engstruct_2025_119818 crossref_primary_10_1115_1_4040045 crossref_primary_10_1016_j_engstruct_2023_115811 crossref_primary_10_1016_j_istruc_2024_107553 crossref_primary_10_1016_j_istruc_2023_06_112 crossref_primary_10_1016_j_engstruct_2022_115175 crossref_primary_10_1016_j_apm_2023_12_007 crossref_primary_10_1002_stc_2987 crossref_primary_10_1002_eqe_3469 crossref_primary_10_1016_j_jobe_2020_101927 crossref_primary_10_1155_2022_5630208 crossref_primary_10_1016_j_engstruct_2023_117420 crossref_primary_10_1016_j_istruc_2024_105925 crossref_primary_10_1142_S1758825123500096 crossref_primary_10_1142_S0219455425500154 crossref_primary_10_1016_j_soildyn_2022_107526 crossref_primary_10_1007_s41062_022_00904_x crossref_primary_10_1016_j_engstruct_2023_117419 crossref_primary_10_1007_s00419_023_02513_1 crossref_primary_10_1016_j_ymssp_2021_108681 crossref_primary_10_1016_j_jfranklin_2019_02_040 crossref_primary_10_1007_s11831_021_09583_w crossref_primary_10_1007_s10518_021_01279_7 crossref_primary_10_3390_app142311156 crossref_primary_10_1177_16878132221106296 crossref_primary_10_1016_j_ymssp_2025_112375 crossref_primary_10_1007_s10518_022_01376_1 crossref_primary_10_1002_stc_2853 crossref_primary_10_1016_j_renene_2023_119050 crossref_primary_10_1002_stc_3022 crossref_primary_10_1016_j_soildyn_2018_12_024 crossref_primary_10_3390_app9235045 crossref_primary_10_1007_s00419_023_02462_9 crossref_primary_10_3390_su10010099 crossref_primary_10_1016_j_engstruct_2024_117849 crossref_primary_10_1016_j_jcsr_2023_108096 crossref_primary_10_1088_1361_665X_ab3239 crossref_primary_10_1016_j_engstruct_2022_114583 crossref_primary_10_1016_j_ymssp_2023_110889 crossref_primary_10_1002_eqe_3034 crossref_primary_10_1002_eqe_4127 crossref_primary_10_1080_15397734_2024_2447755 crossref_primary_10_3390_app9153144 crossref_primary_10_33571_rpolitec_v18n35a10 crossref_primary_10_1002_stc_2604 crossref_primary_10_1016_j_engstruct_2024_118037 crossref_primary_10_1016_j_jsv_2018_07_025 crossref_primary_10_1016_j_soildyn_2021_106830 crossref_primary_10_1016_j_soildyn_2021_106954 crossref_primary_10_1155_2020_8875268 crossref_primary_10_1177_10775463231213893 crossref_primary_10_1016_j_ijmecsci_2022_107876 crossref_primary_10_3390_ma12081329 crossref_primary_10_1016_j_soildyn_2020_106463 crossref_primary_10_1177_1077546320940175 crossref_primary_10_1177_10775463221102254 crossref_primary_10_1002_eqe_3287 crossref_primary_10_1155_2023_1150525 crossref_primary_10_1016_j_istruc_2023_105818 crossref_primary_10_1016_j_engstruct_2024_119139 crossref_primary_10_1016_j_engstruct_2021_112654 crossref_primary_10_1016_j_ymssp_2018_10_023 crossref_primary_10_1155_2020_7608078 crossref_primary_10_1016_j_oceaneng_2021_109718 crossref_primary_10_1007_s10518_022_01378_z crossref_primary_10_1016_j_engstruct_2020_110833 crossref_primary_10_3390_app14031056 crossref_primary_10_1016_j_istruc_2024_106425 crossref_primary_10_3390_s22218581 crossref_primary_10_1142_S0219455421500668 crossref_primary_10_1177_10775463231156240 crossref_primary_10_1016_j_istruc_2023_105253 crossref_primary_10_1002_eqe_3011 crossref_primary_10_1007_s40435_022_00911_x crossref_primary_10_1016_j_ymssp_2022_109915 crossref_primary_10_1002_eqe_3496 crossref_primary_10_1016_j_istruc_2024_108163 crossref_primary_10_1016_j_engstruct_2021_113072 crossref_primary_10_1016_j_net_2024_02_019 crossref_primary_10_1016_j_jobe_2019_100847 crossref_primary_10_1016_j_istruc_2022_06_029 crossref_primary_10_1007_s11803_021_2066_z crossref_primary_10_1061__ASCE_ST_1943_541X_0003282 crossref_primary_10_1002_eqe_3948 crossref_primary_10_1016_j_engstruct_2018_11_020 crossref_primary_10_1016_j_jsv_2018_07_008 crossref_primary_10_1088_1361_665X_abd42a crossref_primary_10_1016_j_oceaneng_2025_120351 crossref_primary_10_3390_app142210565 crossref_primary_10_1016_j_engstruct_2018_12_067 crossref_primary_10_1016_j_jobe_2022_104993 crossref_primary_10_1016_j_ijmecsci_2022_107654 crossref_primary_10_1016_j_ijmecsci_2022_108068 |
Cites_doi | 10.1016/j.ijnonlinmec.2014.10.013 10.1002/(SICI)1096-9845(199801)27:1<49::AID-EQE718>3.0.CO;2-J 10.1016/j.jsv.2015.03.035 10.1002/eqe.1138 10.1006/jsvi.2000.3188 10.1061/(ASCE)0733-9399(1997)123:9(897) 10.1016/j.jsv.2007.05.012 10.1002/eqe.1117 10.1002/eqe.2355 10.1002/eqe.4290100304 10.1002/(SICI)1096-9845(199911)28:11<1255::AID-EQE865>3.0.CO;2-C 10.1016/0141-0296(95)00021-X 10.1002/eqe.2548 10.1115/1.1500335 10.1243/09544062JMES2199 10.1016/j.jsv.2006.09.027 10.1002/eqe.780 10.1016/j.jsv.2012.12.040 10.1109/TAC.2002.803532 10.1002/stc.1887 10.1002/eqe.2390 10.1016/j.ijmecsci.2015.06.003 10.1002/eqe.2304 10.1061/(ASCE)0733-9445(2008)134:1(3) 10.1016/j.probengmech.2014.03.007 10.1109/CDC.2005.1582679 10.1016/j.jsv.2013.12.006 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.2861 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 1388 |
ExternalDocumentID | 10_1002_eqe_2861 EQE2861 |
Genre | article |
GroupedDBID | -~X .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-a3161-fec8f6ca2c2c1ee148bfce0cd037e2baf6130f9af6f307fa6e4527fa423b4a1c3 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 05:58:00 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Wed Jan 22 16:27:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3161-fec8f6ca2c2c1ee148bfce0cd037e2baf6130f9af6f307fa6e4527fa423b4a1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8927-3723 |
PQID | 1899037532 |
PQPubID | 866380 |
PageCount | 22 |
ParticipantIDs | proquest_journals_1899037532 crossref_citationtrail_10_1002_eqe_2861 crossref_primary_10_1002_eqe_2861 wiley_primary_10_1002_eqe_2861_EQE2861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 July 2017 2017-07-10 20170710 |
PublicationDateYYYYMMDD | 2017-07-10 |
PublicationDate_xml | – month: 07 year: 2017 text: 10 July 2017 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 301 1998; 27 2007; 306 2001; 240 1995; 17 2015; 70 1999; 28 2010; 225 2013; 42 1982; 10 2015; 99 1997 2008; 37 2005 2015; 349 1934 2014; 43 2014; 333 2002; 47 1909 2002; 124 2015; 44 1997; 123 2013; 332 2014; 38 2014; 15 2016 2014 2008; 134 1946; 13 2012; 41 1967 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Frahm H (e_1_2_7_13_1) 1909 Basili M (e_1_2_7_3_1) 2014; 15 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Soong TT (e_1_2_7_20_1) 1997 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_11_1 Lin Y (e_1_2_7_36_1) 1967 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Den Hartog JP (e_1_2_7_15_1) 1934 Soong TT (e_1_2_7_12_1) 1997 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 Ormondroyd J (e_1_2_7_14_1) 1946; 13 Soong TT (e_1_2_7_2_1) 2014 |
References_xml | – volume: 37 start-page: 647 year: 2008 end-page: 658 article-title: Slide roof systems for dynamic response reduction publication-title: Earthquake Engineering and Structural Dynamics – volume: 43 start-page: 1129 issue: 8 year: 2014 end-page: 1147 article-title: Using an inerter‐based device for structural vibration suppression publication-title: Earthquake Engineering and Structural Dynamics – volume: 41 start-page: 41 issue: 1 year: 2012 end-page: 60 article-title: Dynamic response and optimal design of structure with large mass ratio TMD publication-title: Earthquake Engineering and Structural Dynamics – volume: 301 start-page: 106 issue: 1 year: 2007 end-page: 125 article-title: Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices publication-title: Journal of Sound and Vibration – volume: 306 start-page: 297 issue: 1 year: 2007 end-page: 317 article-title: A reduced order model for optimal design of 2‐mdof adjacent structures connected by hysteretic dampers publication-title: Journal of Sound and Vibration – volume: 41 start-page: 453 issue: 3 year: 2012 end-page: 474 article-title: Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper publication-title: Earthquake Engineering and Structural Dynamics – volume: 99 start-page: 297 year: 2015 end-page: 307 article-title: Performance evaluation for inerter‐based dynamic vibration absorbers publication-title: International Journal of Mechanical Sciences – volume: 332 start-page: 3113 issue: 13 year: 2013 end-page: 3133 article-title: Shaking table experimentation on adjacent structures controlled by passive and semi active MR dampers publication-title: Journal of Sound and Vibration – year: 1909 article-title: Device for damping vibrations of bodies publication-title: US Patent – volume: 47 start-page: 1648 issue: 10 year: 2002 end-page: 1662 article-title: Synthesis of mechanical networks: the inerter publication-title: IEEE Transactions on Automatic Control – volume: 70 start-page: 20 year: 2015 end-page: 29 article-title: The application of inerter in tuned mass absorber publication-title: International Journal of Non‐Linear Mechanics – volume: 13 start-page: A‐284 year: 1946 article-title: The theory of dynamic vibration absorber publication-title: Transactions of the American Society of Mechanical Engineers Journal of Applied Mechanics – volume: 44 start-page: 1623 issue: 10 year: 2015 end-page: 1642 article-title: Optimal energy‐based seismic design of non‐conventional Tuned Mass Damper (TMD) implemented via inter‐story isolation publication-title: Earthquake Engineering and Structural Dynamics – volume: 43 start-page: 507 issue: 4 year: 2014 end-page: 527 article-title: Seismic response control using electromagnetic inertial mass dampers publication-title: Earthquake Engineering and Structural Dynamics – year: 2016 article-title: Optimal configurations for a linear vibration suppression device in a multi‐storey building publication-title: Structural Control and Health Monitoring – volume: 333 start-page: 2386 issue: 9 year: 2014 end-page: 2403 article-title: Combined primary‐secondary system approach to the design of an equipment isolation system with High‐Damping Rubber Bearings publication-title: Journal of Sound and Vibration – year: 2014 – volume: 27 start-page: 49 year: 1998 end-page: 65 article-title: Partial mass isolation in tall buildings publication-title: Earthquake Engineering and Structural Dynamics – volume: 10 start-page: 381 issue: 3 year: 1982 end-page: 401 article-title: Optimum absorber parameters for various combinations of response and excitation parameters publication-title: Earthquake Engineering & Structural Dynamics – volume: 123 start-page: 897 issue: 9 year: 1997 end-page: 971 article-title: Structural control: past, present, and future publication-title: Journal of Engineering Mechanics – year: 1934 – start-page: 3351 year: 2005 end-page: 3356 article-title: Laboratory experimental testing of inerters publication-title: 44th IEEE Conference on Decision and Control and the European Control Conference. Seville, Spain – volume: 38 start-page: 156 year: 2014 end-page: 164 article-title: Optimal design of a novel tuned mass‐damper–inerter (TMDI) passive vibration control configuration for stochastically support‐excited structural systems publication-title: Probabilistic Engineering Mechanics – year: 1967 – year: 1997 – volume: 225 start-page: 66 issue: 1 year: 2010 end-page: 72 article-title: Designing and testing a hydraulic inerter publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of mechanical Engineering Science – volume: 134 start-page: 3 issue: 1 year: 2008 end-page: 21 article-title: Energy dissipation systems for seismic applications: current practice and recent developments publication-title: Journal of Structural Engineering – volume: 124 start-page: 576 issue: 4 year: 2002 end-page: 582 article-title: Closed‐form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors) publication-title: Journal of Vibration and Acoustics – volume: 240 start-page: 87 issue: 1 year: 2001 end-page: 115 article-title: Vibration control identification of seismically excited MDOF structure‐PTMD systems publication-title: Journal of Sound and Vibration – volume: 349 start-page: 56 year: 2015 end-page: 66 article-title: Novel type of tuned mass damper with inerter which enables changes of inertance publication-title: Journal of Sound and Vibration – volume: 42 start-page: 1907 issue: 13 year: 2013 end-page: 1930 article-title: Optimal design of an equipment isolation system with nonlinear hysteretic behaviour publication-title: Earthquake Engineering & Structural Dynamics – volume: 17 start-page: 381 issue: 5 year: 1995 end-page: 391 article-title: Design of yielding or friction based dissipative bracings for seismic protection of buildings publication-title: Engineering Structures – volume: 28 start-page: 1255 issue: 11 year: 1999 end-page: 1271 article-title: Influence of ground motion intensity on the effectiveness of tuned mass dampers publication-title: Earthquake Engineering & Structural Dynamics – volume: 15 start-page: 331 issue: 4 year: 2014 end-page: 343 article-title: Investigation on the optimal properties of semi active control devices with continuous control for equipment isolation publication-title: Scalable Computing: Practice and Experience – ident: e_1_2_7_33_1 doi: 10.1016/j.ijnonlinmec.2014.10.013 – volume-title: Passive Energy Dissipation Systems in Structural Engineering year: 1997 ident: e_1_2_7_20_1 – ident: e_1_2_7_24_1 doi: 10.1002/(SICI)1096-9845(199801)27:1<49::AID-EQE718>3.0.CO;2-J – ident: e_1_2_7_34_1 doi: 10.1016/j.jsv.2015.03.035 – ident: e_1_2_7_29_1 doi: 10.1002/eqe.1138 – ident: e_1_2_7_19_1 doi: 10.1006/jsvi.2000.3188 – ident: e_1_2_7_11_1 doi: 10.1061/(ASCE)0733-9399(1997)123:9(897) – ident: e_1_2_7_7_1 doi: 10.1016/j.jsv.2007.05.012 – ident: e_1_2_7_21_1 doi: 10.1002/eqe.1117 – ident: e_1_2_7_28_1 doi: 10.1002/eqe.2355 – volume-title: Mechanical Vibrations year: 1934 ident: e_1_2_7_15_1 – ident: e_1_2_7_17_1 doi: 10.1002/eqe.4290100304 – volume: 15 start-page: 331 issue: 4 year: 2014 ident: e_1_2_7_3_1 article-title: Investigation on the optimal properties of semi active control devices with continuous control for equipment isolation publication-title: Scalable Computing: Practice and Experience – ident: e_1_2_7_18_1 doi: 10.1002/(SICI)1096-9845(199911)28:11<1255::AID-EQE865>3.0.CO;2-C – ident: e_1_2_7_10_1 doi: 10.1016/0141-0296(95)00021-X – ident: e_1_2_7_22_1 doi: 10.1002/eqe.2548 – volume-title: Probabilistic Theory of Structural Dynamics year: 1967 ident: e_1_2_7_36_1 – volume: 13 start-page: A‐284 year: 1946 ident: e_1_2_7_14_1 article-title: The theory of dynamic vibration absorber publication-title: Transactions of the American Society of Mechanical Engineers Journal of Applied Mechanics – ident: e_1_2_7_16_1 doi: 10.1115/1.1500335 – ident: e_1_2_7_27_1 doi: 10.1243/09544062JMES2199 – ident: e_1_2_7_6_1 doi: 10.1016/j.jsv.2006.09.027 – ident: e_1_2_7_23_1 doi: 10.1002/eqe.780 – ident: e_1_2_7_8_1 doi: 10.1016/j.jsv.2012.12.040 – year: 1909 ident: e_1_2_7_13_1 article-title: Device for damping vibrations of bodies publication-title: US Patent – ident: e_1_2_7_25_1 doi: 10.1109/TAC.2002.803532 – ident: e_1_2_7_35_1 doi: 10.1002/stc.1887 – ident: e_1_2_7_30_1 doi: 10.1002/eqe.2390 – ident: e_1_2_7_31_1 doi: 10.1016/j.ijmecsci.2015.06.003 – ident: e_1_2_7_4_1 doi: 10.1002/eqe.2304 – ident: e_1_2_7_9_1 doi: 10.1061/(ASCE)0733-9445(2008)134:1(3) – volume-title: Passive Energy Dissipation Systems in Structural Engineering year: 1997 ident: e_1_2_7_12_1 – volume-title: Passive and Active Structural Vibration Control in Civil Engineering year: 2014 ident: e_1_2_7_2_1 – ident: e_1_2_7_32_1 doi: 10.1016/j.probengmech.2014.03.007 – ident: e_1_2_7_26_1 doi: 10.1109/CDC.2005.1582679 – ident: e_1_2_7_5_1 doi: 10.1016/j.jsv.2013.12.006 |
SSID | ssj0003607 |
Score | 2.6085727 |
Snippet | Summary
The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system... The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits... Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1367 |
SubjectTerms | Acceleration Amino acid sequence Design Design analysis Design optimization Design parameters Dynamic response Earthquakes Energy conservation inerter Mass Mechanical devices Methods optimal design Optimization Parameter sensitivity Performance evaluation Protein structure Robustness Secondary structure Seismic activity seismic effectiveness Seismic response Sensitivity analysis System effectiveness Systems analysis Tuned Mass Damper Vibration isolators Vibrations White noise |
Title | Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2861 https://www.proquest.com/docview/1899037532 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxh4IwoFGQnxGFISO0mTEdFWLVJBoFaqYIhsx16AtPSx8Ou5y6MpCCTE5OUcJT777vuc82dCTgF04zRxgZY4HhAUoSzIM6HFQy8MDXcAM-Af3d6d3xm4t0NvmFdV4lmYTB9iseGGKyON17jAhZxelaKh-l3XWZAyHyzVQjz0WCpHcd9eyGUGEIEL3VmbXRUdv2aiEl4ug9Q0y7Q3yHPxfllxyUt9PpN19fFNuvF_H7BJ1nPwSa-z2bJFVnSyTdaWJAl3yNM9xJA3MIrT0g4qkpiOy8MFtFQHpyNDMx3oKcXdXNqfQ8imPUDjtCkAjU9oN9FYMUov-r1m93KXDNqt_k3Hyu9fsAQHIGgZrQLjK8EUU47WQJykUdpWsc0bmklhkHuYEFoDkcIIX7segxYQmnSFo_geqSSjRO8TKsMGM0GoHAWMMnCF0HEMsVJwDx7cUKJKzgtfRCoXJ8c7Ml6jTFaZRTBaEY5WlZwsLMeZIMcPNrXCnVG-JKeRA8wSL_zlrErOUr_82j9qPbSwPfir4SFZZZjuUXDTrpHKbDLXRwBWZvI4nZafukflrw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QPKgH30YUdU2Mj0Oh3T5o48kIBBQwGkiIMWm2292LWpDHxV_vbEspGk2Mp73MNu0-Zr5vO_sNwCmCbrVMLKQlho0EhXEN44ynmZ7tedI0EDOoP7rtjtPoWbd9u5-Dq_QuTKIPMT9wUzsj9tdqg6sD6XKmGireRYm6ivosqYLeMZ96zLSjTEefC2a66INT5VmdltOeX2NRBjAXYWocZ-rr8Jy-YZJe8lKaToIS__gm3vjPT9iAtRn-JNfJgtmEnIi2YHVBlXAbnu7RjbyhURhndxAWhWSY3S8gmUA4GUiSSEGPiTrQJd0pem3SRkBOqgwB-Yg0I6GSRslFt11tXu5Ar17r3jS0WQkGjZmIBTUpuCsdziin3BACuVMgudB5qJsVQQMmFf2QHrYSnYVkjrBsii2CtMBiBjd3IR8NIrEHJPAqVLoeNziSStdiTIQhuktm2vjgCmcFOE8nw-czfXJVJuPVT5SVqY-j5avRKsDJ3HKYaHL8YFNM59Of7cqxbyC5VDV_TVqAs3hifu3v1x5qqt3_q-ExLDe67ZbfanbuDmCFquiv9Df1IuQno6k4ROwyCY7iNfoJES3pyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQkRAc2BGFAkZCLIe0iZ2kyRHRVi3QsqiVKjhYjmNfgLR0ufD1jLM0BYGEOPkyjhJ7PPOeM35G6ARAt3YTG2iJ5QBB4cKAPOMb1Hd8X1ELMIP-o9vuuM2efd13-mlVpT4Lk-hDzDbc9MqI47Ve4MNQVXLRUPkuy8TTzGfRdk1Pe3TtMZeOoq4508v0IARnwrMmqWQ9v6aiHF_Oo9Q4zTTW0HP2gkl1yUt5OgnK4uObduP_vmAdraboE18m7rKBFmS0iVbmNAm30NMdBJE3MArj2g7MoxAP89MFOJcHxwOFEyHoMdbbubg7hZiN2wDHcY0DHB_hViR1ySg-77ZrrYtt1GvUu1dNI72AweAUkKChpPCUKzgRRFhSAnMKlJCmCE1alSTgSpMP5UOrIFQo7krbIdACRAtsbgm6gwrRIJK7CAd-lSjPF5YASunZnMswhGDJqQMPrgpeRGfZXDCRqpPrSzJeWaKrTBiMFtOjVUTHM8thosjxg00pm06Wrskxs4Ba6ht_KSmi03hefu3P6g913e791fAILd3XGuy21bnZR8tEp34tvmmWUGEymsoDAC6T4DD20E-HY-iC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+and+performance+evaluation+of+systems+with+Tuned+Mass+Damper+Inerter+%28TMDI%29&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Pietrosanti%2C+D&rft.au=De+Angelis%2C+M&rft.au=Basili%2C+M&rft.date=2017-07-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=46&rft.issue=8&rft.spage=1367&rft_id=info:doi/10.1002%2Feqe.2861&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |