Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)

Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between termi...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 46; no. 8; pp. 1367 - 1388
Main Authors Pietrosanti, D., De Angelis, M., Basili, M.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 10.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd.
AbstractList Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd.
The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd.
Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two-terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single-degree-of-freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non-conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non-conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd.
Author Basili, M.
Pietrosanti, D.
De Angelis, M.
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0000-0001-8927-3723
  surname: Pietrosanti
  fullname: Pietrosanti, D.
  email: daniele.pietrosanti@uniroma1.it
  organization: Sapienza University of Rome
– sequence: 2
  givenname: M.
  surname: De Angelis
  fullname: De Angelis, M.
  organization: Sapienza University of Rome
– sequence: 3
  givenname: M.
  surname: Basili
  fullname: Basili, M.
  organization: Sapienza University of Rome
BookMark eNp1kM9PwjAYhhuDiYAm_glNvOBh2B9j644GUEkgxAQvXpbSfdWRrRttkfDfW8CT0dN7ed73y_f0UMc0BhC6pWRICWEPsIUhEwm9QF1KsiTKRDzqoC4hmYiEiNMr1HNuQwjhCUm76H3Z-rKWFS7AlR8GS1PgFqxubC2NAgxfstpJXzYGNxq7g_NQO7wv_Sde7QwUeCGdwxNZhxKeGbA-5GC1mMzur9GllpWDm5_so7en6Wr8Es2Xz7Px4zySnCY00qCETpRkiikKQGOx1gqIKghPga2lTignOgupOUm1TCAesZAx4-tYUsX76O6829pmuwPn802zsyaczKnIsjAz4ixQwzOlbOOcBZ2r0p8e81aWVU5JfvSXB3_50V8oDH4VWhtM2cNfaHRG92UFh3-5fPo6PfHfPeWBXw
CitedBy_id crossref_primary_10_3389_fbuil_2022_944026
crossref_primary_10_1002_stc_3106
crossref_primary_10_1016_j_jobe_2024_111101
crossref_primary_10_1016_j_jweia_2024_105706
crossref_primary_10_1080_13632469_2023_2291127
crossref_primary_10_1016_j_engstruct_2020_111422
crossref_primary_10_1016_j_iintel_2023_100038
crossref_primary_10_1016_j_jfranklin_2019_04_012
crossref_primary_10_1061_JENMDT_EMENG_6850
crossref_primary_10_1016_j_ymssp_2019_106337
crossref_primary_10_1177_1077546320943801
crossref_primary_10_1007_s11071_023_09163_6
crossref_primary_10_1016_j_soildyn_2024_108557
crossref_primary_10_1016_j_oceaneng_2024_119553
crossref_primary_10_1007_s00707_023_03556_9
crossref_primary_10_1007_s10518_022_01457_1
crossref_primary_10_1016_j_engstruct_2021_112488
crossref_primary_10_1016_j_istruc_2024_107257
crossref_primary_10_1155_2018_6019495
crossref_primary_10_1007_s12206_024_0107_z
crossref_primary_10_1016_j_engstruct_2019_109339
crossref_primary_10_1142_S0219455422501371
crossref_primary_10_3390_app13085017
crossref_primary_10_1002_stc_2800
crossref_primary_10_1142_S0219455424500585
crossref_primary_10_1016_j_ymssp_2021_107607
crossref_primary_10_1016_j_engstruct_2020_111554
crossref_primary_10_1007_s10518_021_01236_4
crossref_primary_10_1016_j_ijmecsci_2021_106805
crossref_primary_10_1002_stc_2368
crossref_primary_10_1016_j_istruc_2024_107804
crossref_primary_10_1016_j_soildyn_2019_105924
crossref_primary_10_1142_S0219455420501400
crossref_primary_10_1016_j_engstruct_2022_114831
crossref_primary_10_1016_j_proeng_2017_09_062
crossref_primary_10_1002_stc_2929
crossref_primary_10_1016_j_jsv_2019_06_019
crossref_primary_10_1016_j_ijmecsci_2018_05_025
crossref_primary_10_1016_j_jcsr_2022_107233
crossref_primary_10_1016_j_jsv_2023_118166
crossref_primary_10_1016_j_engstruct_2019_109470
crossref_primary_10_1016_j_engstruct_2024_118522
crossref_primary_10_1016_j_engstruct_2025_119895
crossref_primary_10_3390_buildings12060781
crossref_primary_10_1002_stc_2474
crossref_primary_10_1016_j_soildyn_2018_06_015
crossref_primary_10_1016_j_engstruct_2019_03_030
crossref_primary_10_1002_stc_2357
crossref_primary_10_1016_j_soildyn_2023_107832
crossref_primary_10_1002_stc_2234
crossref_primary_10_1177_1461348419876494
crossref_primary_10_1016_j_ijmecsci_2020_105762
crossref_primary_10_1016_j_ijmecsci_2023_108438
crossref_primary_10_1016_j_soildyn_2020_106474
crossref_primary_10_1016_j_ijmecsci_2023_108796
crossref_primary_10_1002_eqe_3625
crossref_primary_10_1016_j_jobe_2024_111676
crossref_primary_10_1016_j_engstruct_2020_110928
crossref_primary_10_1016_j_engstruct_2019_109464
crossref_primary_10_1016_j_engstruct_2019_109585
crossref_primary_10_1016_j_proeng_2017_09_035
crossref_primary_10_1016_j_engstruct_2019_05_091
crossref_primary_10_1016_j_jobe_2025_111853
crossref_primary_10_1016_j_engstruct_2020_110248
crossref_primary_10_32604_cmes_2024_056693
crossref_primary_10_1016_j_engstruct_2022_114137
crossref_primary_10_1080_15376494_2021_1922961
crossref_primary_10_1016_j_engstruct_2023_115761
crossref_primary_10_1016_j_jobe_2022_105488
crossref_primary_10_1016_j_jsv_2022_117104
crossref_primary_10_1016_j_ijmecsci_2024_109394
crossref_primary_10_1146_annurev_control_053018_023917
crossref_primary_10_1016_j_ijmecsci_2023_108440
crossref_primary_10_3390_buildings12122200
crossref_primary_10_1080_13632469_2024_2436109
crossref_primary_10_1016_j_jfranklin_2018_11_012
crossref_primary_10_1016_j_istruc_2024_107576
crossref_primary_10_1007_s42417_023_00918_4
crossref_primary_10_1016_j_soildyn_2024_109040
crossref_primary_10_3390_app12189153
crossref_primary_10_1038_s41598_024_75996_9
crossref_primary_10_1016_j_euromechsol_2024_105316
crossref_primary_10_1016_j_engstruct_2018_09_085
crossref_primary_10_1016_j_istruc_2024_107322
crossref_primary_10_3390_act9040139
crossref_primary_10_1007_s11071_021_06303_8
crossref_primary_10_3390_app14020695
crossref_primary_10_1007_s40435_019_00562_5
crossref_primary_10_1002_tal_1626
crossref_primary_10_1002_stc_2319
crossref_primary_10_1016_j_ijmecsci_2020_105849
crossref_primary_10_1016_j_soildyn_2021_106589
crossref_primary_10_1115_1_4049212
crossref_primary_10_1007_s11803_022_2090_7
crossref_primary_10_1007_s11012_022_01547_z
crossref_primary_10_3390_buildings12050661
crossref_primary_10_1016_j_ijmecsci_2020_105840
crossref_primary_10_1016_j_ymssp_2024_111639
crossref_primary_10_1016_j_engstruct_2023_116662
crossref_primary_10_1007_s42417_021_00309_7
crossref_primary_10_1002_eqe_3098
crossref_primary_10_1016_j_mechrescom_2020_103513
crossref_primary_10_1016_j_net_2024_103394
crossref_primary_10_1115_1_4042934
crossref_primary_10_1007_s10518_022_01592_9
crossref_primary_10_1007_s42417_024_01301_7
crossref_primary_10_1016_j_engstruct_2021_113459
crossref_primary_10_3390_wind2040040
crossref_primary_10_1016_j_ymssp_2022_109986
crossref_primary_10_1016_j_engappai_2025_110058
crossref_primary_10_1016_j_ymssp_2023_110235
crossref_primary_10_1002_eqe_4199
crossref_primary_10_3390_buildings12050558
crossref_primary_10_3390_buildings12081154
crossref_primary_10_1177_13694332241252283
crossref_primary_10_1016_j_engstruct_2019_110011
crossref_primary_10_1016_j_ymssp_2024_112277
crossref_primary_10_1002_stc_2658
crossref_primary_10_1002_stc_2413
crossref_primary_10_1016_j_soildyn_2017_11_023
crossref_primary_10_1016_j_engstruct_2019_05_024
crossref_primary_10_1016_j_engstruct_2024_118586
crossref_primary_10_1016_j_jobe_2023_106554
crossref_primary_10_1007_s00419_022_02217_y
crossref_primary_10_1016_j_jobe_2021_102194
crossref_primary_10_1002_stc_2775
crossref_primary_10_1007_s11071_021_07112_9
crossref_primary_10_1016_j_apm_2022_10_011
crossref_primary_10_1016_j_istruc_2024_107653
crossref_primary_10_1016_j_soildyn_2020_106099
crossref_primary_10_1016_j_engstruct_2018_08_074
crossref_primary_10_1007_s12206_023_0505_7
crossref_primary_10_1002_stc_2887
crossref_primary_10_1007_s42107_024_01238_y
crossref_primary_10_1002_stc_2644
crossref_primary_10_1002_stc_2409
crossref_primary_10_1002_stc_2529
crossref_primary_10_1016_j_engstruct_2024_119325
crossref_primary_10_1002_stc_2763
crossref_primary_10_32604_cmes_2023_043936
crossref_primary_10_1016_j_istruc_2024_107405
crossref_primary_10_1016_j_engstruct_2024_117938
crossref_primary_10_1016_j_engstruct_2018_07_048
crossref_primary_10_1016_j_jfranklin_2019_02_022
crossref_primary_10_1016_j_rineng_2024_103552
crossref_primary_10_1007_s00419_024_02599_1
crossref_primary_10_1007_s11831_023_10040_z
crossref_primary_10_3390_buildings14040955
crossref_primary_10_1016_j_ymssp_2019_04_047
crossref_primary_10_1177_13694332241247919
crossref_primary_10_1002_stc_2756
crossref_primary_10_3390_app122211527
crossref_primary_10_1007_s42417_024_01716_2
crossref_primary_10_1016_j_engstruct_2025_119818
crossref_primary_10_1115_1_4040045
crossref_primary_10_1016_j_engstruct_2023_115811
crossref_primary_10_1016_j_istruc_2024_107553
crossref_primary_10_1016_j_istruc_2023_06_112
crossref_primary_10_1016_j_engstruct_2022_115175
crossref_primary_10_1016_j_apm_2023_12_007
crossref_primary_10_1002_stc_2987
crossref_primary_10_1002_eqe_3469
crossref_primary_10_1016_j_jobe_2020_101927
crossref_primary_10_1155_2022_5630208
crossref_primary_10_1016_j_engstruct_2023_117420
crossref_primary_10_1016_j_istruc_2024_105925
crossref_primary_10_1142_S1758825123500096
crossref_primary_10_1142_S0219455425500154
crossref_primary_10_1016_j_soildyn_2022_107526
crossref_primary_10_1007_s41062_022_00904_x
crossref_primary_10_1016_j_engstruct_2023_117419
crossref_primary_10_1007_s00419_023_02513_1
crossref_primary_10_1016_j_ymssp_2021_108681
crossref_primary_10_1016_j_jfranklin_2019_02_040
crossref_primary_10_1007_s11831_021_09583_w
crossref_primary_10_1007_s10518_021_01279_7
crossref_primary_10_3390_app142311156
crossref_primary_10_1177_16878132221106296
crossref_primary_10_1016_j_ymssp_2025_112375
crossref_primary_10_1007_s10518_022_01376_1
crossref_primary_10_1002_stc_2853
crossref_primary_10_1016_j_renene_2023_119050
crossref_primary_10_1002_stc_3022
crossref_primary_10_1016_j_soildyn_2018_12_024
crossref_primary_10_3390_app9235045
crossref_primary_10_1007_s00419_023_02462_9
crossref_primary_10_3390_su10010099
crossref_primary_10_1016_j_engstruct_2024_117849
crossref_primary_10_1016_j_jcsr_2023_108096
crossref_primary_10_1088_1361_665X_ab3239
crossref_primary_10_1016_j_engstruct_2022_114583
crossref_primary_10_1016_j_ymssp_2023_110889
crossref_primary_10_1002_eqe_3034
crossref_primary_10_1002_eqe_4127
crossref_primary_10_1080_15397734_2024_2447755
crossref_primary_10_3390_app9153144
crossref_primary_10_33571_rpolitec_v18n35a10
crossref_primary_10_1002_stc_2604
crossref_primary_10_1016_j_engstruct_2024_118037
crossref_primary_10_1016_j_jsv_2018_07_025
crossref_primary_10_1016_j_soildyn_2021_106830
crossref_primary_10_1016_j_soildyn_2021_106954
crossref_primary_10_1155_2020_8875268
crossref_primary_10_1177_10775463231213893
crossref_primary_10_1016_j_ijmecsci_2022_107876
crossref_primary_10_3390_ma12081329
crossref_primary_10_1016_j_soildyn_2020_106463
crossref_primary_10_1177_1077546320940175
crossref_primary_10_1177_10775463221102254
crossref_primary_10_1002_eqe_3287
crossref_primary_10_1155_2023_1150525
crossref_primary_10_1016_j_istruc_2023_105818
crossref_primary_10_1016_j_engstruct_2024_119139
crossref_primary_10_1016_j_engstruct_2021_112654
crossref_primary_10_1016_j_ymssp_2018_10_023
crossref_primary_10_1155_2020_7608078
crossref_primary_10_1016_j_oceaneng_2021_109718
crossref_primary_10_1007_s10518_022_01378_z
crossref_primary_10_1016_j_engstruct_2020_110833
crossref_primary_10_3390_app14031056
crossref_primary_10_1016_j_istruc_2024_106425
crossref_primary_10_3390_s22218581
crossref_primary_10_1142_S0219455421500668
crossref_primary_10_1177_10775463231156240
crossref_primary_10_1016_j_istruc_2023_105253
crossref_primary_10_1002_eqe_3011
crossref_primary_10_1007_s40435_022_00911_x
crossref_primary_10_1016_j_ymssp_2022_109915
crossref_primary_10_1002_eqe_3496
crossref_primary_10_1016_j_istruc_2024_108163
crossref_primary_10_1016_j_engstruct_2021_113072
crossref_primary_10_1016_j_net_2024_02_019
crossref_primary_10_1016_j_jobe_2019_100847
crossref_primary_10_1016_j_istruc_2022_06_029
crossref_primary_10_1007_s11803_021_2066_z
crossref_primary_10_1061__ASCE_ST_1943_541X_0003282
crossref_primary_10_1002_eqe_3948
crossref_primary_10_1016_j_engstruct_2018_11_020
crossref_primary_10_1016_j_jsv_2018_07_008
crossref_primary_10_1088_1361_665X_abd42a
crossref_primary_10_1016_j_oceaneng_2025_120351
crossref_primary_10_3390_app142210565
crossref_primary_10_1016_j_engstruct_2018_12_067
crossref_primary_10_1016_j_jobe_2022_104993
crossref_primary_10_1016_j_ijmecsci_2022_107654
crossref_primary_10_1016_j_ijmecsci_2022_108068
Cites_doi 10.1016/j.ijnonlinmec.2014.10.013
10.1002/(SICI)1096-9845(199801)27:1<49::AID-EQE718>3.0.CO;2-J
10.1016/j.jsv.2015.03.035
10.1002/eqe.1138
10.1006/jsvi.2000.3188
10.1061/(ASCE)0733-9399(1997)123:9(897)
10.1016/j.jsv.2007.05.012
10.1002/eqe.1117
10.1002/eqe.2355
10.1002/eqe.4290100304
10.1002/(SICI)1096-9845(199911)28:11<1255::AID-EQE865>3.0.CO;2-C
10.1016/0141-0296(95)00021-X
10.1002/eqe.2548
10.1115/1.1500335
10.1243/09544062JMES2199
10.1016/j.jsv.2006.09.027
10.1002/eqe.780
10.1016/j.jsv.2012.12.040
10.1109/TAC.2002.803532
10.1002/stc.1887
10.1002/eqe.2390
10.1016/j.ijmecsci.2015.06.003
10.1002/eqe.2304
10.1061/(ASCE)0733-9445(2008)134:1(3)
10.1016/j.probengmech.2014.03.007
10.1109/CDC.2005.1582679
10.1016/j.jsv.2013.12.006
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.2861
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 1388
ExternalDocumentID 10_1002_eqe_2861
EQE2861
Genre article
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-a3161-fec8f6ca2c2c1ee148bfce0cd037e2baf6130f9af6f307fa6e4527fa423b4a1c3
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Fri Jul 25 05:58:00 EDT 2025
Tue Jul 01 02:21:57 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Wed Jan 22 16:27:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3161-fec8f6ca2c2c1ee148bfce0cd037e2baf6130f9af6f307fa6e4527fa423b4a1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8927-3723
PQID 1899037532
PQPubID 866380
PageCount 22
ParticipantIDs proquest_journals_1899037532
crossref_citationtrail_10_1002_eqe_2861
crossref_primary_10_1002_eqe_2861
wiley_primary_10_1002_eqe_2861_EQE2861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 July 2017
2017-07-10
20170710
PublicationDateYYYYMMDD 2017-07-10
PublicationDate_xml – month: 07
  year: 2017
  text: 10 July 2017
  day: 10
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 301
1998; 27
2007; 306
2001; 240
1995; 17
2015; 70
1999; 28
2010; 225
2013; 42
1982; 10
2015; 99
1997
2008; 37
2005
2015; 349
1934
2014; 43
2014; 333
2002; 47
1909
2002; 124
2015; 44
1997; 123
2013; 332
2014; 38
2014; 15
2016
2014
2008; 134
1946; 13
2012; 41
1967
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Frahm H (e_1_2_7_13_1) 1909
Basili M (e_1_2_7_3_1) 2014; 15
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Soong TT (e_1_2_7_20_1) 1997
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_11_1
Lin Y (e_1_2_7_36_1) 1967
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Den Hartog JP (e_1_2_7_15_1) 1934
Soong TT (e_1_2_7_12_1) 1997
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Ormondroyd J (e_1_2_7_14_1) 1946; 13
Soong TT (e_1_2_7_2_1) 2014
References_xml – volume: 37
  start-page: 647
  year: 2008
  end-page: 658
  article-title: Slide roof systems for dynamic response reduction
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 43
  start-page: 1129
  issue: 8
  year: 2014
  end-page: 1147
  article-title: Using an inerter‐based device for structural vibration suppression
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 41
  start-page: 41
  issue: 1
  year: 2012
  end-page: 60
  article-title: Dynamic response and optimal design of structure with large mass ratio TMD
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 301
  start-page: 106
  issue: 1
  year: 2007
  end-page: 125
  article-title: Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices
  publication-title: Journal of Sound and Vibration
– volume: 306
  start-page: 297
  issue: 1
  year: 2007
  end-page: 317
  article-title: A reduced order model for optimal design of 2‐mdof adjacent structures connected by hysteretic dampers
  publication-title: Journal of Sound and Vibration
– volume: 41
  start-page: 453
  issue: 3
  year: 2012
  end-page: 474
  article-title: Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 99
  start-page: 297
  year: 2015
  end-page: 307
  article-title: Performance evaluation for inerter‐based dynamic vibration absorbers
  publication-title: International Journal of Mechanical Sciences
– volume: 332
  start-page: 3113
  issue: 13
  year: 2013
  end-page: 3133
  article-title: Shaking table experimentation on adjacent structures controlled by passive and semi active MR dampers
  publication-title: Journal of Sound and Vibration
– year: 1909
  article-title: Device for damping vibrations of bodies
  publication-title: US Patent
– volume: 47
  start-page: 1648
  issue: 10
  year: 2002
  end-page: 1662
  article-title: Synthesis of mechanical networks: the inerter
  publication-title: IEEE Transactions on Automatic Control
– volume: 70
  start-page: 20
  year: 2015
  end-page: 29
  article-title: The application of inerter in tuned mass absorber
  publication-title: International Journal of Non‐Linear Mechanics
– volume: 13
  start-page: A‐284
  year: 1946
  article-title: The theory of dynamic vibration absorber
  publication-title: Transactions of the American Society of Mechanical Engineers Journal of Applied Mechanics
– volume: 44
  start-page: 1623
  issue: 10
  year: 2015
  end-page: 1642
  article-title: Optimal energy‐based seismic design of non‐conventional Tuned Mass Damper (TMD) implemented via inter‐story isolation
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 43
  start-page: 507
  issue: 4
  year: 2014
  end-page: 527
  article-title: Seismic response control using electromagnetic inertial mass dampers
  publication-title: Earthquake Engineering and Structural Dynamics
– year: 2016
  article-title: Optimal configurations for a linear vibration suppression device in a multi‐storey building
  publication-title: Structural Control and Health Monitoring
– volume: 333
  start-page: 2386
  issue: 9
  year: 2014
  end-page: 2403
  article-title: Combined primary‐secondary system approach to the design of an equipment isolation system with High‐Damping Rubber Bearings
  publication-title: Journal of Sound and Vibration
– year: 2014
– volume: 27
  start-page: 49
  year: 1998
  end-page: 65
  article-title: Partial mass isolation in tall buildings
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 10
  start-page: 381
  issue: 3
  year: 1982
  end-page: 401
  article-title: Optimum absorber parameters for various combinations of response and excitation parameters
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 123
  start-page: 897
  issue: 9
  year: 1997
  end-page: 971
  article-title: Structural control: past, present, and future
  publication-title: Journal of Engineering Mechanics
– year: 1934
– start-page: 3351
  year: 2005
  end-page: 3356
  article-title: Laboratory experimental testing of inerters
  publication-title: 44th IEEE Conference on Decision and Control and the European Control Conference. Seville, Spain
– volume: 38
  start-page: 156
  year: 2014
  end-page: 164
  article-title: Optimal design of a novel tuned mass‐damper–inerter (TMDI) passive vibration control configuration for stochastically support‐excited structural systems
  publication-title: Probabilistic Engineering Mechanics
– year: 1967
– year: 1997
– volume: 225
  start-page: 66
  issue: 1
  year: 2010
  end-page: 72
  article-title: Designing and testing a hydraulic inerter
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of mechanical Engineering Science
– volume: 134
  start-page: 3
  issue: 1
  year: 2008
  end-page: 21
  article-title: Energy dissipation systems for seismic applications: current practice and recent developments
  publication-title: Journal of Structural Engineering
– volume: 124
  start-page: 576
  issue: 4
  year: 2002
  end-page: 582
  article-title: Closed‐form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors)
  publication-title: Journal of Vibration and Acoustics
– volume: 240
  start-page: 87
  issue: 1
  year: 2001
  end-page: 115
  article-title: Vibration control identification of seismically excited MDOF structure‐PTMD systems
  publication-title: Journal of Sound and Vibration
– volume: 349
  start-page: 56
  year: 2015
  end-page: 66
  article-title: Novel type of tuned mass damper with inerter which enables changes of inertance
  publication-title: Journal of Sound and Vibration
– volume: 42
  start-page: 1907
  issue: 13
  year: 2013
  end-page: 1930
  article-title: Optimal design of an equipment isolation system with nonlinear hysteretic behaviour
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 17
  start-page: 381
  issue: 5
  year: 1995
  end-page: 391
  article-title: Design of yielding or friction based dissipative bracings for seismic protection of buildings
  publication-title: Engineering Structures
– volume: 28
  start-page: 1255
  issue: 11
  year: 1999
  end-page: 1271
  article-title: Influence of ground motion intensity on the effectiveness of tuned mass dampers
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 15
  start-page: 331
  issue: 4
  year: 2014
  end-page: 343
  article-title: Investigation on the optimal properties of semi active control devices with continuous control for equipment isolation
  publication-title: Scalable Computing: Practice and Experience
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ijnonlinmec.2014.10.013
– volume-title: Passive Energy Dissipation Systems in Structural Engineering
  year: 1997
  ident: e_1_2_7_20_1
– ident: e_1_2_7_24_1
  doi: 10.1002/(SICI)1096-9845(199801)27:1<49::AID-EQE718>3.0.CO;2-J
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jsv.2015.03.035
– ident: e_1_2_7_29_1
  doi: 10.1002/eqe.1138
– ident: e_1_2_7_19_1
  doi: 10.1006/jsvi.2000.3188
– ident: e_1_2_7_11_1
  doi: 10.1061/(ASCE)0733-9399(1997)123:9(897)
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jsv.2007.05.012
– ident: e_1_2_7_21_1
  doi: 10.1002/eqe.1117
– ident: e_1_2_7_28_1
  doi: 10.1002/eqe.2355
– volume-title: Mechanical Vibrations
  year: 1934
  ident: e_1_2_7_15_1
– ident: e_1_2_7_17_1
  doi: 10.1002/eqe.4290100304
– volume: 15
  start-page: 331
  issue: 4
  year: 2014
  ident: e_1_2_7_3_1
  article-title: Investigation on the optimal properties of semi active control devices with continuous control for equipment isolation
  publication-title: Scalable Computing: Practice and Experience
– ident: e_1_2_7_18_1
  doi: 10.1002/(SICI)1096-9845(199911)28:11<1255::AID-EQE865>3.0.CO;2-C
– ident: e_1_2_7_10_1
  doi: 10.1016/0141-0296(95)00021-X
– ident: e_1_2_7_22_1
  doi: 10.1002/eqe.2548
– volume-title: Probabilistic Theory of Structural Dynamics
  year: 1967
  ident: e_1_2_7_36_1
– volume: 13
  start-page: A‐284
  year: 1946
  ident: e_1_2_7_14_1
  article-title: The theory of dynamic vibration absorber
  publication-title: Transactions of the American Society of Mechanical Engineers Journal of Applied Mechanics
– ident: e_1_2_7_16_1
  doi: 10.1115/1.1500335
– ident: e_1_2_7_27_1
  doi: 10.1243/09544062JMES2199
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jsv.2006.09.027
– ident: e_1_2_7_23_1
  doi: 10.1002/eqe.780
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jsv.2012.12.040
– year: 1909
  ident: e_1_2_7_13_1
  article-title: Device for damping vibrations of bodies
  publication-title: US Patent
– ident: e_1_2_7_25_1
  doi: 10.1109/TAC.2002.803532
– ident: e_1_2_7_35_1
  doi: 10.1002/stc.1887
– ident: e_1_2_7_30_1
  doi: 10.1002/eqe.2390
– ident: e_1_2_7_31_1
  doi: 10.1016/j.ijmecsci.2015.06.003
– ident: e_1_2_7_4_1
  doi: 10.1002/eqe.2304
– ident: e_1_2_7_9_1
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(3)
– volume-title: Passive Energy Dissipation Systems in Structural Engineering
  year: 1997
  ident: e_1_2_7_12_1
– volume-title: Passive and Active Structural Vibration Control in Civil Engineering
  year: 2014
  ident: e_1_2_7_2_1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.probengmech.2014.03.007
– ident: e_1_2_7_26_1
  doi: 10.1109/CDC.2005.1582679
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jsv.2013.12.006
SSID ssj0003607
Score 2.6085727
Snippet Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system...
The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits...
Summary The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1367
SubjectTerms Acceleration
Amino acid sequence
Design
Design analysis
Design optimization
Design parameters
Dynamic response
Earthquakes
Energy conservation
inerter
Mass
Mechanical devices
Methods
optimal design
Optimization
Parameter sensitivity
Performance evaluation
Protein structure
Robustness
Secondary structure
Seismic activity
seismic effectiveness
Seismic response
Sensitivity analysis
System effectiveness
Systems analysis
Tuned Mass Damper
Vibration isolators
Vibrations
White noise
Title Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2861
https://www.proquest.com/docview/1899037532
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxh4IwoFGQnxGFISO0mTEdFWLVJBoFaqYIhsx16AtPSx8Ou5y6MpCCTE5OUcJT777vuc82dCTgF04zRxgZY4HhAUoSzIM6HFQy8MDXcAM-Af3d6d3xm4t0NvmFdV4lmYTB9iseGGKyON17jAhZxelaKh-l3XWZAyHyzVQjz0WCpHcd9eyGUGEIEL3VmbXRUdv2aiEl4ug9Q0y7Q3yHPxfllxyUt9PpN19fFNuvF_H7BJ1nPwSa-z2bJFVnSyTdaWJAl3yNM9xJA3MIrT0g4qkpiOy8MFtFQHpyNDMx3oKcXdXNqfQ8imPUDjtCkAjU9oN9FYMUov-r1m93KXDNqt_k3Hyu9fsAQHIGgZrQLjK8EUU47WQJykUdpWsc0bmklhkHuYEFoDkcIIX7segxYQmnSFo_geqSSjRO8TKsMGM0GoHAWMMnCF0HEMsVJwDx7cUKJKzgtfRCoXJ8c7Ml6jTFaZRTBaEY5WlZwsLMeZIMcPNrXCnVG-JKeRA8wSL_zlrErOUr_82j9qPbSwPfir4SFZZZjuUXDTrpHKbDLXRwBWZvI4nZafukflrw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QPKgH30YUdU2Mj0Oh3T5o48kIBBQwGkiIMWm2292LWpDHxV_vbEspGk2Mp73MNu0-Zr5vO_sNwCmCbrVMLKQlho0EhXEN44ynmZ7tedI0EDOoP7rtjtPoWbd9u5-Dq_QuTKIPMT9wUzsj9tdqg6sD6XKmGireRYm6ivosqYLeMZ96zLSjTEefC2a66INT5VmdltOeX2NRBjAXYWocZ-rr8Jy-YZJe8lKaToIS__gm3vjPT9iAtRn-JNfJgtmEnIi2YHVBlXAbnu7RjbyhURhndxAWhWSY3S8gmUA4GUiSSEGPiTrQJd0pem3SRkBOqgwB-Yg0I6GSRslFt11tXu5Ar17r3jS0WQkGjZmIBTUpuCsdziin3BACuVMgudB5qJsVQQMmFf2QHrYSnYVkjrBsii2CtMBiBjd3IR8NIrEHJPAqVLoeNziSStdiTIQhuktm2vjgCmcFOE8nw-czfXJVJuPVT5SVqY-j5avRKsDJ3HKYaHL8YFNM59Of7cqxbyC5VDV_TVqAs3hifu3v1x5qqt3_q-ExLDe67ZbfanbuDmCFquiv9Df1IuQno6k4ROwyCY7iNfoJES3pyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQkRAc2BGFAkZCLIe0iZ2kyRHRVi3QsqiVKjhYjmNfgLR0ufD1jLM0BYGEOPkyjhJ7PPOeM35G6ARAt3YTG2iJ5QBB4cKAPOMb1Hd8X1ELMIP-o9vuuM2efd13-mlVpT4Lk-hDzDbc9MqI47Ve4MNQVXLRUPkuy8TTzGfRdk1Pe3TtMZeOoq4508v0IARnwrMmqWQ9v6aiHF_Oo9Q4zTTW0HP2gkl1yUt5OgnK4uObduP_vmAdraboE18m7rKBFmS0iVbmNAm30NMdBJE3MArj2g7MoxAP89MFOJcHxwOFEyHoMdbbubg7hZiN2wDHcY0DHB_hViR1ySg-77ZrrYtt1GvUu1dNI72AweAUkKChpPCUKzgRRFhSAnMKlJCmCE1alSTgSpMP5UOrIFQo7krbIdACRAtsbgm6gwrRIJK7CAd-lSjPF5YASunZnMswhGDJqQMPrgpeRGfZXDCRqpPrSzJeWaKrTBiMFtOjVUTHM8thosjxg00pm06Wrskxs4Ba6ht_KSmi03hefu3P6g913e791fAILd3XGuy21bnZR8tEp34tvmmWUGEymsoDAC6T4DD20E-HY-iC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+and+performance+evaluation+of+systems+with+Tuned+Mass+Damper+Inerter+%28TMDI%29&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Pietrosanti%2C+D&rft.au=De+Angelis%2C+M&rft.au=Basili%2C+M&rft.date=2017-07-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=46&rft.issue=8&rft.spage=1367&rft_id=info:doi/10.1002%2Feqe.2861&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon