Handbook of Hydrothermal Technology (2nd Edition)

Quartz, zeolites, gemstones, perovskite type oxides, ferrite, carbon allotropes, complex coordinated compounds and many more -- all products now being produced using hydrothermal technology. This book brings together the latest techniques in this rapidly advancing field in one exceptionally useful,...

Full description

Saved in:
Bibliographic Details
Main Authors Byrappa, K., Yoshimura, Masahiro
Format eBook Book
LanguageEnglish
Published Amsterdam Elsevier 2013
Oxford William Andrew
Elsevier Science & Technology Books
Edition2
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Title Page Preface Table of Contents 1. Hydrothermal Technology - Principles and Applications 2. History of Hydrothermal Technology 3. Apparatus 4. Physical Chemistry of Hydrothermal Growth of Crystals 5. Hydrothermal Growth of Some Selected Crystals 6. Hydrothermal Synthesis and Growth of Zeolites 7. Hydrothermal Synthesis and Growth of Coordinated Complex Crystals (Part I) 8. Hydrothermal Synthesis and Crystal Growth of Fluorides, Sulfides, Tungstates, Molybdates, and Related Compounds (Coordinated Complex Crystals, Part II) 9. Hydrothermal Synthesis of Native Elements and Simple Oxides 10. Hydrothermal Technology for Nanotechnology - A Technology for Processing of Advanced Materials Index
  • Front Cover -- Handbook of Hydrothermal Technology -- Copyright page -- Dedication -- Contents -- Preface -- 1 Hydrothermal Technology-Principles and Applications -- 1.1 Introduction -- 1.2 Definition -- 1.3 Mineralizers -- 1.4 Surfactants -- 1.5 Natural Hydrothermal Systems -- 1.6 The Behavior of Volatiles and Other Incompatible Components Under Hydrothermal Conditions -- 1.6.1 Water -- 1.6.2 Fluorine and Chlorine -- 1.6.3 Boron -- 1.6.4 Phosphorus -- 1.6.5 Behavior of Alkalis -- 1.6.6 Crystallization Temperatures -- 1.7 Submarine Hydrothermal Systems -- 1.8 Hydrothermal Crystal Growth and Materials Processing -- 1.9 Statistics of Publications and Research in Hydrothermal Technology -- 1.10 Hydrothermal Materials Processing -- References -- 2 History of Hydrothermal Technology -- 2.1 Introduction -- References -- 3 Apparatus -- 3.1 Introduction -- 3.2 Selection of Autoclave and Autoclave Materials -- 3.3 Liners -- 3.4 Temperature and Pressure Measurements -- 3.5 Autoclaves and Autoclave Designs -- 3.5.1 Conventional Autoclave Designs -- Glass Vessels -- Steel Autoclaves -- Flat-Plate Closure Autoclave -- Cone Closure -- Welded Closure -- Modified Bridgman Autoclave -- 3.5.2 Novel Autoclaves -- Horizontal Autoclaves for Controlled Growth of Crystals -- Pendulum Apparatus -- Hydrothermal Reaction Cell for Kinetic Studies -- PVT Apparatus -- Apparatus for Solubility Determination -- Rocking Autoclaves -- Multichamber Autoclave -- Autoclaves for the Sampling of Hydrothermal Fluids -- Hydrothermal Autoclaves for Electrical Conductance Measurements of Electrolyte Solutions -- Hydrothermal-Electrochemical Method -- Autoclave for Ammonothermal Synthesis -- Microautoclave -- Hydrothermal Autoclaves for Visual Examination -- Hydrothermal Hot Pressing -- Vertical Autoclaves Used in Hydrometallurgy -- Flow Reactors
  • 10.8 Hydrothermal Processing of Bioceramics
  • 7.14 Hydrothermal Growth of Mixed Valent Metal Phosphates -- 7.15 Properties of Rare Earth and Mixed Valent Metal Phosphates -- 7.16 Hydrothermal Synthesis of Vanadates -- 7.16.1 Growth of R=MVO4 (R=Nd, Eu -- M=Y, Gd) -- 7.16.2 Growth of Mixed Valent Vanadates -- 7.17 Hydrothermal Synthesis of Borates -- 7.17.1 Hydrothermal Growth of Selected Borates -- References -- 8 Hydrothermal Synthesis and Crystal Growth of Fluorides, Sulfides, Tungstates, Molybdates, and Related Compounds (Coordina... -- 8.1 Introduction -- 8.2 Fluorides -- 8.2.1 Hydrothermal Synthesis of Rare Earth Fluorides -- 8.2.2 Spectroscopic Properties of Rare Earth Fluorides -- 8.3 Hydrothermal Synthesis of Transition Metal Fluorides -- 8.4 Hydrothermal Synthesis of Fluorocarbonates and Fluorophosphates -- 8.5 Oxyfluorinated Compounds -- 8.6 Physical Properties of Transition Metal Fluorides and Fluorocarbonates/Fluorophosphates/Oxyfluorides -- 8.7 Hydrothermal Synthesis of Tungstates -- 8.8 Hydrothermal Synthesis of Molybdates -- 8.9 Hydrothermal Synthesis of Titanates -- 8.9.1 Crystal Chemistry of Titanates -- 8.9.2 Hydrothermal Synthesis of Selected Titanates -- 8.10 Hydrothermal Growth of Lithium Metagallate Crystals -- 8.11 Hydrothermal Synthesis of Sulfides -- 8.11.1 Hydrothermal Synthesis of Sulfides of Univalent Metals -- 8.11.2 Hydrothermal Synthesis of Divalent Metal Sulfides -- 8.11.3 Hydrothermal Synthesis of Complex Sulfides -- 8.11.4 Hydrothermal Synthesis of Chalcohalides -- 8.12 Hydrothermal Synthesis of Selenides, Tellurides, Niobates, and Tantalates -- 8.13 Hydrothermal Synthesis of Arsenates -- References -- 9 Hydrothermal Synthesis of Native Elements and Simple Oxides -- 9.1 Introduction -- 9.2 Hydrothermal Synthesis of Native Elements -- 9.3 Hydrothermal Synthesis of Hydroxides -- 9.4 Hydrothermal Synthesis of Selected Oxides -- 9.4.1 Cu2O (Cuprite)
  • 6 Hydrothermal Synthesis and Growth of Zeolites -- 6.1 Introduction -- 6.2 Mineralogy of Zeolites -- 6.3 Crystal Chemistry of Zeolites -- 6.4 Comparison Between Natural and Synthetic Zeolites -- 6.5 Synthesis of Zeolites -- 6.5.1 Molar Composition -- 6.5.2 The Aging of Hydrogel -- 6.5.3 Water in Zeolite Synthesis -- 6.5.4 Temperature and Time -- 6.5.5 Alkalinity (pH) -- 6.5.6 Structure-Directing and Composition-Determining Species (Templating) -- 6.5.7 Nucleation -- 6.6 Crystal Growth -- 6.7 Aluminophosphate Zeolites -- 6.8 Growth of Zeolite Thin Films and Crystals at Inorganic-Organic Interfaces (Preparation of Zeolite-Based Composites) -- 6.9 Applications of Zeolites -- 6.10 Oxidative Catalysis on Zeolites -- References -- 7 Hydrothermal Synthesis and Growth of Coordinated Complex Crystals (Part I) -- 7.1 Introduction -- 7.2 Crystal Chemical Background -- 7.3 Rare Earth Silicates -- 7.4 Phase Formation of Rare Earth Silicates (in Aqueous Solvents) -- 7.5 Crystal Chemical Significance of Phase Formation -- 7.5.1 Phase Formation in Surplus R2O3 -- 7.5.2 Silicates -- 7.5.3 Phase Formation in the Rare Earth Silicate Systems in the High Silica Region -- 7.6 Degree of Silification -- 7.7 Properties of Rare Earth Silicates -- 7.8 Sodium Zirconium Silicates -- 7.9 Growth of Selected Silicates -- 7.9.1 Bismuth Silicate -- 7.9.2 Beryl, Be3Al2(SiO3)6 -- 7.9.3 Tourmaline -- 7.9.4 Nepheline -- 7.9.5 Zincosilicates -- 7.10 Hydrothermal Growth of Lithium Silicates -- 7.11 Hydrothermal Growth of Germanates -- 7.11.1 Rare Earth Germanates -- 7.11.2 Zirconium Germanates -- 7.11.3 Zincogermanates -- 7.12 Properties of Germanates -- 7.13 Hydrothermal Growth of Phosphates -- 7.13.1 Structural Chemistry of Rare Earth Phosphates -- 7.13.2 Hydrothermal Growth of Rare Earth Phosphates -- 7.13.3 Structure Types of Rare Earth Phosphates
  • 9.4.2 BeO (Bromelite) -- 9.4.3 Zinc Oxide -- 9.4.4 Hydrothermal Growth of Corundum -- 9.4.5 Hydrothermal Growth of Oxides of Ti, Zr, and Hf -- TiO2 -- ZrO2 (Baddeleyite) -- HfO2 -- TeO2 -- Iron Oxides -- 9.5 Hydrothermal Synthesis of Mixed Oxides -- 9.5.1 Hydrothermal Synthesis of Aluminates -- 9.5.2 Hydrothermal Synthesis of Antimonites and Antimonates -- 9.5.3 Hydrothermal Synthesis of Garnets -- 9.5.4 Hydrothermal Synthesis of Ferrites -- 9.5.5 Hydrothermal Synthesis of Complex Oxides -- References -- 10 Hydrothermal Technology for Nanotechnology-A Technology for Processing of Advanced Materials -- 10.1 Introduction -- 10.2 Current Trends in Hydrothermal Technology -- 10.3 New Concepts in Hydrothermal Technology -- 10.4 Hydrothermal Processing of Fine Particles -- 10.5 Hydrothermal Technology for Nanotechnology -- 10.6 Hydrothermal Processing of Selected Advanced Materials -- 10.6.1 Processing of Native Metals -- 10.6.2 Hydrothermal Processing of Carbon Nanoforms -- 10.6.3 Hydrothermal Processing of Advanced Ceramics -- 10.6.4 Hydrothermal Preparation of Simple Oxide Ceramics -- 10.6.5 Hydrothermal Processing of TiO2 and ZnO Nanoparticles -- Solvents -- Doping -- 10.6.6 Other Metal Oxides -- 10.6.7 Hydrothermal Processing of Mixed Oxides -- 10.6.8 Hydrothermal Preparation of Perovskite Type of Mixed Oxide Ceramics -- 10.6.9 Synthesis of II-VI Semiconductor Nanoparticles -- 10.6.10 Synthesis of Phosphor Nanoparticles -- 10.6.11 Rare Earth Vanadates -- 10.6.12 Rare Earth Phosphates -- 10.6.13 Rare Earth Garnets -- 10.7 Hydrothermal Processing of Organic-Inorganic Hybrid Nanoparticles -- 10.7.1 Organic-Inorganic Hybrid Nanoparticles -- 10.7.2 Supercritical Hydrothermal Organic-Inorganic Hybrid Nanoparticles -- 10.7.3 Mechanism of Formation of Organic-Inorganic Hybrid Nanoparticles -- 10.7.4 Self-Assembly of Organic-Inorganic Hybrid Nanoparticles
  • Autoclaves for Accelerating the Kinetics of Hydrothermal Reactions -- 3.6 Safety and Maintenance of Autoclaves -- References -- 4 Physical Chemistry of Hydrothermal Growth of Crystals -- 4.1 Introduction -- 4.1.1 Physicochemical and Hydrodynamic Principles of the Hydrothermal Growth of Crystals -- 4.2 Basic Principles of Phase Formation Under Hydrothermal Conditions -- 4.3 Solutions, Solubility, and Kinetics of Crystallization -- 4.4 Thermodynamic Principles of Solubility -- 4.5 Kinetics of Crystallization Under Hydrothermal Conditions -- 4.5.1 Experimental Investigations of Solubility -- Solubility of Zincite -- Solubility of Malachite -- 4.6 Thermodyanmic Calculations for the Intelligent Engineering of Materials -- References -- 5 Hydrothermal Growth of Some Selected Crystals -- 5.1 Quartz -- 5.2 Growth of High-Quality (and Dislocation-Free) Quartz Crystals -- 5.2.1 Growth Rate -- 5.2.2 Seed Effect -- 5.2.3 Nutrient Effect -- 5.2.4 Solubility -- 5.2.5 Defects Observed in Synthetic α-Quartz Single Crystals -- 5.2.6 Processing of α-Quartz for High-Frequency Devices -- 5.3 Berlinite -- 5.3.1 Crystal Chemical Significance of the Growth of AlPO4 Crystals -- 5.3.2 Solubility of Berlinite -- 5.3.3 Crystal Growth -- 5.3.4 Morphology -- 5.3.5 Thermal Behavior -- 5.3.6 Piezoelectric Properties of Berlinite -- 5.4 Gallium Phosphate -- 5.4.1 Crystal Growth of Gallium Phosphate -- 5.4.2 Morphology -- 5.4.3 Dielectric Properties of Gallium Phosphate -- 5.5 Potassium Titanyl Phosphate -- 5.5.1 Crystal Growth of KTP -- 5.5.2 Solubility of KTP -- 5.5.3 Morphology -- 5.6 Potassium Titanyl Arsenate -- 5.7 Calcite -- 5.7.1 Crystal Growth -- 5.7.2 HHP of Calcite -- 5.7.3 Growth of Related Carbonates -- 5.8 Hydroxyapatite -- 5.8.1 Crystal Structure of Apatite -- 5.8.2 Phase Equilibria -- 5.8.3 Crystal Growth -- References