Anharmonic Vibrational Frequency Calculations Are Not Worthwhile for Small Basis Sets

Anharmonic calculations using vibrational perturbation theory are known to provide near-spectroscopic accuracy when combined with high-level ab initio potential energy functions. However, performance with economical, popular electronic structure methods is less well characterized. We compare the acc...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 9; no. 2; pp. 951 - 954
Main Authors Jacobsen, Ruth L, Johnson, Russell D, Irikura, Karl K, Kacker, Raghu N
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.02.2013
Online AccessGet full text

Cover

Loading…
Abstract Anharmonic calculations using vibrational perturbation theory are known to provide near-spectroscopic accuracy when combined with high-level ab initio potential energy functions. However, performance with economical, popular electronic structure methods is less well characterized. We compare the accuracy of harmonic and anharmonic predictions from Hartree–Fock, second-order perturbation, and density functional theories combined with 6-31G(d) and 6-31+G(d,p) basis sets. As expected, anharmonic frequencies are closer than harmonic frequencies to experimental fundamentals. However, common practice is to correct harmonic predictions using multiplicative scaling. The surprising conclusion is that scaled anharmonic calculations are no more accurate than scaled harmonic calculations for the basis sets we used. The data used are from the Computational Chemistry Comparison and Benchmark Database (CCCBDB), maintained by the National Institute of Standards and Technology, which includes more than 3939 independent vibrations for 358 molecules.
AbstractList Anharmonic calculations using vibrational perturbation theory are known to provide near-spectroscopic accuracy when combined with high-level ab initio potential energy functions. However, performance with economical, popular electronic structure methods is less well characterized. We compare the accuracy of harmonic and anharmonic predictions from Hartree-Fock, second-order perturbation, and density functional theories combined with 6-31G(d) and 6-31+G(d,p) basis sets. As expected, anharmonic frequencies are closer than harmonic frequencies to experimental fundamentals. However, common practice is to correct harmonic predictions using multiplicative scaling. The surprising conclusion is that scaled anharmonic calculations are no more accurate than scaled harmonic calculations for the basis sets we used. The data used are from the Computational Chemistry Comparison and Benchmark Database (CCCBDB), maintained by the National Institute of Standards and Technology, which includes more than 3939 independent vibrations for 358 molecules.
Author Kacker, Raghu N
Johnson, Russell D
Jacobsen, Ruth L
Irikura, Karl K
AuthorAffiliation Applied and Computational Mathematics Division
Chemical and Biochemical Reference Data Division
National Institute of Standards and Technology
AuthorAffiliation_xml – name:
– name: Applied and Computational Mathematics Division
– name: Chemical and Biochemical Reference Data Division
– name: National Institute of Standards and Technology
Author_xml – sequence: 1
  givenname: Ruth L
  surname: Jacobsen
  fullname: Jacobsen, Ruth L
  email: jacobsenruth146@gmail.com
– sequence: 2
  givenname: Russell D
  surname: Johnson
  fullname: Johnson, Russell D
– sequence: 3
  givenname: Karl K
  surname: Irikura
  fullname: Irikura, Karl K
– sequence: 4
  givenname: Raghu N
  surname: Kacker
  fullname: Kacker, Raghu N
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26588738$$D View this record in MEDLINE/PubMed
BookMark eNptkM9LwzAUgIMo7oce_AckF0EP1aRp0-Q4h1Nh6GFOj-W1TVhH2swkRfbfW93cydN7PD4-Ht8IHbe2VQhdUHJLSUzvysAIiSWDIzSkaSIjyWN-fNipGKCR92tCGEtidooGMU-FyJgYouWkXYFrbFuX-L0uHITatmDwzKnPTrXlFk_BlJ35vXs8cQq_2IA_rAurr1VtFNbW4UUDxuB78LXHCxX8GTrRYLw6388xWs4e3qZP0fz18Xk6mUfAaBoiXUmeQFawQuqMU57GirBMcJkVJJGSkUJUqdRaaCWAMhFTJVVVAIWECU4zNkbXO-_G2f5dH_Km9qUyBlplO5_3SCpJlkjWozc7tHTWe6d0vnF1A26bU5L_VMwPFXv2cq_tikZVB_IvWw9c7QAofb62neuT-X9E3wM8efQ
CitedBy_id crossref_primary_10_1021_acs_jpca_0c09341
crossref_primary_10_1039_C8CP06739B
crossref_primary_10_1063_1_4994654
crossref_primary_10_1063_1_5132628
crossref_primary_10_1039_D2DT01558G
crossref_primary_10_1021_acs_jctc_1c00249
crossref_primary_10_1039_C5RA08307A
crossref_primary_10_1021_acs_jctc_8b01070
crossref_primary_10_1007_s11224_024_02333_1
crossref_primary_10_1021_acs_jpclett_4c00597
crossref_primary_10_1016_j_molstruc_2020_129147
crossref_primary_10_1016_j_saa_2017_05_051
crossref_primary_10_1063_5_0176552
crossref_primary_10_3390_molecules28237761
crossref_primary_10_1021_acs_jpca_7b01856
crossref_primary_10_1002_poc_4316
crossref_primary_10_1016_j_ccr_2015_03_019
crossref_primary_10_1021_acs_chemrev_5b00736
crossref_primary_10_1016_j_molliq_2021_116735
crossref_primary_10_1021_jp509980w
crossref_primary_10_1039_D1CP05345K
crossref_primary_10_1093_mnras_stad1717
crossref_primary_10_1002_aic_15781
crossref_primary_10_1039_C9CP04571F
crossref_primary_10_1021_acs_jpcc_9b05699
crossref_primary_10_1007_s11224_019_01437_3
crossref_primary_10_1016_j_molstruc_2021_131159
crossref_primary_10_1002_chir_23042
crossref_primary_10_3390_min9030141
crossref_primary_10_1063_1_5093767
crossref_primary_10_1021_acs_jpca_2c08580
crossref_primary_10_1080_00268976_2020_1828634
crossref_primary_10_1002_cphc_202300915
crossref_primary_10_3390_molecules27185829
crossref_primary_10_1021_jp505344a
crossref_primary_10_1016_j_physe_2015_11_013
crossref_primary_10_1021_acs_cgd_4c00042
crossref_primary_10_1039_C8CP05934A
crossref_primary_10_1007_s00894_024_05841_3
crossref_primary_10_1002_asia_202001228
crossref_primary_10_1016_j_jms_2022_111660
crossref_primary_10_1039_C8CP02064G
crossref_primary_10_1016_j_molstruc_2014_06_010
crossref_primary_10_1080_00268976_2015_1007106
crossref_primary_10_1063_5_0055506
crossref_primary_10_1016_j_jct_2013_12_018
crossref_primary_10_1021_acscombsci_9b00028
Cites_doi 10.1021/ct100326h
10.1063/1.1637580
10.1063/1.1494978
10.1021/ct100244d
10.1063/1.3581022
10.1021/jp960976r
10.1016/0009-2614(74)85096-7
10.1002/jcc.23073
10.1002/jcc.20654
10.1021/jp013084m
10.1080/01442350600679347
10.1021/jp301670f
10.1007/s002140000204
10.1063/1.469681
10.1016/S1386-1425(97)00022-X
10.1063/1.2236112
10.1080/0144235031000124163
10.1021/jp052793n
10.1021/jp048233q
10.1039/b618764a
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/ct300293a
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 954
ExternalDocumentID 10_1021_ct300293a
26588738
a353501156
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
5VS
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a315t-fd964a7b3b9f761652e0378697b049930b8d59ff8fe8a13821e9edba1a4386173
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Sat Aug 17 02:19:23 EDT 2024
Fri Aug 23 03:41:56 EDT 2024
Tue Aug 27 13:44:12 EDT 2024
Thu Aug 27 13:42:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a315t-fd964a7b3b9f761652e0378697b049930b8d59ff8fe8a13821e9edba1a4386173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26588738
PQID 1735907493
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_1735907493
crossref_primary_10_1021_ct300293a
pubmed_primary_26588738
acs_journals_10_1021_ct300293a
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2013-02-12
PublicationDateYYYYMMDD 2013-02-12
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Christiansen O. (ref8/cit8) 2007; 9
Pople J. A. (ref1/cit1) 1981; 15
Barone V. (ref16/cit16) 2004; 120
Scott A. P. (ref2/cit2) 1996; 100
Frisch M. J. (ref17/cit17) 2010
Matsunaga N. (ref7/cit7) 2002; 117
Daněček P. (ref9/cit9) 2007; 28
Halls M. D. (ref20/cit20) 2001; 105
Bowman J. M. (ref12/cit12) 2003; 22
Martin J. M. L. (ref6/cit6) 1995; 103
McCoy A. B. (ref11/cit11) 2006; 25
Alecu I. M. (ref3/cit3) 2010; 6
Botschwina P. (ref10/cit10) 1974; 29
Irikura K. K. (ref24/cit24) 2005; 109
Bauschlicher C. W. (ref19/cit19) 1997; 53
ref4/cit4
Rauhut G. (ref14/cit14) 2006; 125
Sinha P. (ref22/cit22) 2004; 108
Laury M. L. (ref23/cit23) 2012; 33
Pernot P. (ref25/cit25) 2011; 134
Yoshida H. (ref21/cit21) 2002; 106
Johnson R. D. (ref15/cit15) 2010; 6
Hanson-Heine M. W. D. (ref13/cit13) 2012; 116
Barone V. (ref5/cit5) 2005; 122
References_xml – volume: 6
  start-page: 2872
  year: 2010
  ident: ref3/cit3
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100326h
  contributor:
    fullname: Alecu I. M.
– volume: 120
  start-page: 3059
  year: 2004
  ident: ref16/cit16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637580
  contributor:
    fullname: Barone V.
– volume: 117
  start-page: 3541
  year: 2002
  ident: ref7/cit7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1494978
  contributor:
    fullname: Matsunaga N.
– volume: 6
  start-page: 2822
  year: 2010
  ident: ref15/cit15
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100244d
  contributor:
    fullname: Johnson R. D.
– ident: ref4/cit4
– volume: 134
  start-page: 167101:1
  year: 2011
  ident: ref25/cit25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3581022
  contributor:
    fullname: Pernot P.
– volume: 100
  start-page: 16502
  year: 1996
  ident: ref2/cit2
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp960976r
  contributor:
    fullname: Scott A. P.
– volume: 29
  start-page: 580
  year: 1974
  ident: ref10/cit10
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85096-7
  contributor:
    fullname: Botschwina P.
– volume-title: Gaussian 09
  year: 2010
  ident: ref17/cit17
  contributor:
    fullname: Frisch M. J.
– volume: 33
  start-page: 2380
  year: 2012
  ident: ref23/cit23
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23073
  contributor:
    fullname: Laury M. L.
– volume: 28
  start-page: 1617
  year: 2007
  ident: ref9/cit9
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20654
  contributor:
    fullname: Daněček P.
– volume: 106
  start-page: 3580
  year: 2002
  ident: ref21/cit21
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp013084m
  contributor:
    fullname: Yoshida H.
– volume: 15
  start-page: 269
  year: 1981
  ident: ref1/cit1
  publication-title: Int. J. Quantum Chem., Symp.
  contributor:
    fullname: Pople J. A.
– volume: 25
  start-page: 77
  year: 2006
  ident: ref11/cit11
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442350600679347
  contributor:
    fullname: McCoy A. B.
– volume: 116
  start-page: 4417
  year: 2012
  ident: ref13/cit13
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp301670f
  contributor:
    fullname: Hanson-Heine M. W. D.
– volume: 105
  start-page: 413
  year: 2001
  ident: ref20/cit20
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140000204
  contributor:
    fullname: Halls M. D.
– volume: 103
  start-page: 2589
  year: 1995
  ident: ref6/cit6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469681
  contributor:
    fullname: Martin J. M. L.
– volume: 53
  start-page: 1225
  year: 1997
  ident: ref19/cit19
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/S1386-1425(97)00022-X
  contributor:
    fullname: Bauschlicher C. W.
– volume: 125
  start-page: 054308:1
  year: 2006
  ident: ref14/cit14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2236112
  contributor:
    fullname: Rauhut G.
– volume: 22
  start-page: 533
  year: 2003
  ident: ref12/cit12
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235031000124163
  contributor:
    fullname: Bowman J. M.
– volume: 122
  start-page: 014108:1
  year: 2005
  ident: ref5/cit5
  publication-title: J. Chem. Phys.
  contributor:
    fullname: Barone V.
– volume: 109
  start-page: 8430
  year: 2005
  ident: ref24/cit24
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp052793n
  contributor:
    fullname: Irikura K. K.
– volume: 108
  start-page: 9213
  year: 2004
  ident: ref22/cit22
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp048233q
  contributor:
    fullname: Sinha P.
– volume: 9
  start-page: 2942
  year: 2007
  ident: ref8/cit8
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b618764a
  contributor:
    fullname: Christiansen O.
SSID ssj0033423
Score 2.3304389
Snippet Anharmonic calculations using vibrational perturbation theory are known to provide near-spectroscopic accuracy when combined with high-level ab initio...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 951
Title Anharmonic Vibrational Frequency Calculations Are Not Worthwhile for Small Basis Sets
URI http://dx.doi.org/10.1021/ct300293a
https://www.ncbi.nlm.nih.gov/pubmed/26588738
https://search.proquest.com/docview/1735907493
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELWqcoAL-1KWyizXlHhJ4hxLoKqQ6KUUeotsxxaIkqImPcDXY2epQFC4JyNrxvG8yYzfA-BCMiqJga2myNG-Q33b32V-6EhBEBfCYI6CSulu4PdH9HbsjRvgfEkHH6NLmRPbOiIGBK1gOzlo8U80rI9bYinsClJUaqkmEavpg76-alOPzL6nniV4ssgrvQ1wXd_OKcdJXjrzXHTkx0-yxr-WvAnWK1wJu-VG2AINlW6D1aiWc9sBo25qWaotEy58sDVy-RMQ9mblMPU7jPhEVmJemTGk4GCaw8dCbv3JnB3QwFs4fOWTCbzi2XMGhyrPdsGod3Mf9Z1KU8HhBHm5o5PQpzwQRIQ68JHvYeWSwEQnELb4Ia5giRdqzbRi3PITIhWqRHDEKWEG7ZA90EynqToAUHpYJswlmGvLSIM5dzXVnIfUFOi-1C3QNk6Pq28ii4t2N0bxwjstcFbHI34ruTV-e-i0jlRsPGbbGTxV07mxFxDPlvYhaYH9MoQLM9gAKxYQdvjfGo7AGi4ELqzEyzFo5rO5OjEwIxftYpt9AiGHyfo
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHMqFfSlLMYhrShNncY4loirQ9tIWeots1xaIkqImPcDXM3aSsggE92Q0mnE8bzL2ewidC-oKArAVmhzlW66v57vUDy3Bic04B8xhqJS6Pb89dG9G3qigydF3YcCJFCylZoj_wS5gX4iM6AkSASy04gXQh2sYFPXLXZdoJjvDjepqxkmblixCn1_VFUikXyvQL7DSlJfWeq5TZBwzp0qe6vOM18XbN87G_3m-gdYKlImb-bLYREsy2UKVqBR320bDZqI5qzUvLr7THXP-SxC3ZvnR6lccsYkopL1SMCRxb5rheyO-_gA7CQawi_vPbDLBlyx9THFfZukOGrauBlHbKhQWLEZsL7PUOPRdFnDCQxX4tu85skECyFXAdStEGpyOvVApqiRlmq3QlqEcc2Yzl1DAPmQXLSfTRO4jLDxHjGmDOExpfhqHsYZyFWOhC-26L1QV1SA4cfGFpLEZfjt2vIhOFZ2VaYlfcqaNnx46LRMWQ8T0cIMlcjoHewHxdKMfkirayzO5MOMAzKIBoQd_-XCCKu1BtxN3rnu3h2jVMdIXWvzlCC1ns7k8BgCS8ZpZee9jgdJl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTuswELUQSMCGy5teXgaxDTRxHs4SChXPglQK7CLbsQW6vWlF0gV8PTNOUgECwT4ZjWZsz5mMcw4he4r7igFshSbHhI4f4nyXh7GjJHOFlIA5LJXSVSc87fnnD8FD1SjivzDgRA6WcjvEx109TE3FMOAeqILhFIkBHpoKULgboVCrW5-8DNnsLD-qj6yTLq-ZhN6_ilVI5R-r0DfQ0paY9h9yPXbO3iz5tz8q5L56_cTb-Hvv58lchTbpYbk8FsiEzhbJTKsWeVsivcMMuauRH5feYedcfhqk7efyivULbYm-qiS-cjCkaWdQ0Hsrwv4IJwoF0Eu7_0W_T49E_pTTri7yZdJrn9y2Tp1KacERzA0Kx6Rx6ItIMhmbKHTDwNNNFkHOIoktEWtKngaxMdxoLpC10NWxTqVwhc84YCC2QiazQabXCFWBp1LeZJ4wyFPjCdE0vhEi9qFtD5VpkC0IUFLtlDyxQ3DPTcbRaZDdOjXJsGTc-OqhnTppCUQMhxwi04MR2ItYgA1_zBpktczm2IwHcItHjP_9yYdtMn1z3E4uzzoX62TWswoYqAGzQSaL55HeBBxSyC27-N4AU4nU3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anharmonic+Vibrational+Frequency+Calculations+Are+Not+Worthwhile+for+Small+Basis+Sets&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Jacobsen%2C+Ruth+L.&rft.au=Johnson%2C+Russell+D.&rft.au=Irikura%2C+Karl+K.&rft.au=Kacker%2C+Raghu+N.&rft.date=2013-02-12&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=9&rft.issue=2&rft.spage=951&rft.epage=954&rft_id=info:doi/10.1021%2Fct300293a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ct300293a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon