Mechanism for Enhanced Absorption of a Solid Dispersion Formulation of LY2300559 Using the Artificial Stomach Duodenum Model
An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid disper...
Saved in:
Published in | Molecular pharmaceutics Vol. 12; no. 4; pp. 1131 - 1140 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The C max and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation. |
---|---|
AbstractList | An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation. An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation. An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The C max and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation. |
Author | Gueorguieva, Ivelina Polster, Christopher S Wu, Sy-Juen Sperry, David C |
AuthorAffiliation | Eli Lilly and Company Lilly Research Laboratories |
AuthorAffiliation_xml | – name: Lilly Research Laboratories – name: Eli Lilly and Company |
Author_xml | – sequence: 1 givenname: Christopher S surname: Polster fullname: Polster, Christopher S – sequence: 2 givenname: Sy-Juen surname: Wu fullname: Wu, Sy-Juen – sequence: 3 givenname: Ivelina surname: Gueorguieva fullname: Gueorguieva, Ivelina – sequence: 4 givenname: David C surname: Sperry fullname: Sperry, David C email: sperryda@lilly.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25723790$$D View this record in MEDLINE/PubMed |
BookMark | eNptkblOAzEURS0UBEmg4AeQGyQoAl5nKSN2KYgCKKgsx2MTRzP2YM8USHw8DkkoUIqnt-jcW9w3AgPnnQbgBKNLjAi-alqOUIZotgeGmDM6KWhJBn9zwQ7BKMYlQoRxQg_AIeE5oXmJhuD7SauFdDY20PgAb11alK7gdB59aDvrHfQGSvjia1vBGxtbHeLqeudD09dyS8zeCUWI8xK-Res-YLfQcBo6a6yysoYvnW-kWsCb3lfa9Q18Sr0-AvtG1lEfb_oYvN3dvl4_TGbP94_X09lEUsy7iSnnBaO6Yhphg3BlUBoLluFSIaJpkRE6xwYjnjEliSamMpJRnEkuU6VcxuB87dsG_9nr2InGRqXrWjrt-yhwlmOCc5KzhJ5u0H7e6Eq0wTYyfIltYgm4WgMq-BiDNkLZ7jeGLkhbC4zE6ifi7ydJcfFPsTXdxZ6tWamiWPo-uJTLDu4HsVSWCQ |
CitedBy_id | crossref_primary_10_1208_s12248_015_9797_6 crossref_primary_10_1016_j_ijpharm_2021_120505 crossref_primary_10_1016_j_xphs_2015_11_004 crossref_primary_10_1208_s12248_022_00760_8 crossref_primary_10_3390_pharmaceutics13030401 crossref_primary_10_1002_ejoc_201800751 crossref_primary_10_1016_j_xphs_2024_05_016 crossref_primary_10_1002_jps_24647 crossref_primary_10_1016_j_ijpharm_2022_121722 crossref_primary_10_1016_j_xphs_2017_02_015 crossref_primary_10_1016_j_cis_2018_11_007 crossref_primary_10_1016_j_xphs_2018_10_047 crossref_primary_10_1016_j_ijpharm_2024_123869 crossref_primary_10_1089_adt_2022_016 crossref_primary_10_1080_03639045_2022_2098315 crossref_primary_10_1080_10717544_2019_1704940 crossref_primary_10_1021_acs_molpharmaceut_7b01143 crossref_primary_10_1021_acs_molpharmaceut_7b00552 crossref_primary_10_1016_j_ijpharm_2016_11_049 crossref_primary_10_1080_17425247_2016_1218465 crossref_primary_10_1007_s12247_019_09392_6 |
Cites_doi | 10.1016/S0378-5173(99)00073-3 10.1021/mp100116g 10.1517/17425247.2011.614228 10.1002/jps.20495 10.1023/A:1016212804288 10.1023/A:1018947113238 10.1002/jps.21052 10.1111/j.2042-7158.2012.01474.x 10.1517/17425247.2014.881798 10.1111/j.1365-2036.1992.tb00558.x 10.1177/026119299502300205 10.1002/bdd.2510160502 10.1016/j.ejps.2007.05.110 10.1016/S0169-409X(00)00129-0 10.1002/jps.21650 10.2174/138161209788682479 10.1208/s12248-012-9337-6 10.1016/0169-409X(96)00009-9 10.1002/jps.22750 10.1517/17425241003645910 10.1002/jps.20906 10.1111/j.2042-7158.2010.01025.x 10.1002/jps.22236 10.1002/jps.22669 10.1023/A:1016353705970 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/mp5006036 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1543-8392 |
EndPage | 1140 |
ExternalDocumentID | 25723790 10_1021_mp5006036 b382078338 |
Genre | Journal Article |
GroupedDBID | - 123 4.4 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL H~9 IH9 JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F X --- -~X 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a315t-f9b843ed4e01f01df0d4e84619c02e38623b1f10564ca2e2fdfa4316a5a6a5603 |
IEDL.DBID | ACS |
ISSN | 1543-8384 1543-8392 |
IngestDate | Fri Jul 11 11:32:30 EDT 2025 Mon Jul 21 05:36:04 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Tue Jul 01 04:33:36 EDT 2025 Thu Aug 27 13:44:47 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | meglumine high-shear wet granulation artificial stomach duodenum ASD high-energy solid amorphous solid dispersion bioavailability pharmacokinetics supersaturation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a315t-f9b843ed4e01f01df0d4e84619c02e38623b1f10564ca2e2fdfa4316a5a6a5603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25723790 |
PQID | 1671217274 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1671217274 pubmed_primary_25723790 crossref_citationtrail_10_1021_mp5006036 crossref_primary_10_1021_mp5006036 acs_journals_10_1021_mp5006036 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Apr-06 |
PublicationDateYYYYMMDD | 2015-04-06 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-Apr-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular pharmaceutics |
PublicationTitleAlternate | Mol. Pharmaceutics |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Tran P. H.-L. (ref28/cit28) 2010; 7 Augustijns P. (ref15/cit15) 2012; 101 Carino S. R. (ref18/cit18) 2010; 99 Pudipeddi M. (ref29/cit29) 2008; 97 Bhattachar S. N. (ref19/cit19) 2011; 100 Hoskins C. (ref10/cit10) 2013; 15 Dahan A. (ref6/cit6) 2012; 14 van Hoogevest P. (ref8/cit8) 2011; 8 Stegemann S. (ref7/cit7) 2007; 31 Guzmán H. R. (ref26/cit26) 2007; 96 Amidon G. L. (ref4/cit4) 1995; 12 David S. E. (ref22/cit22) 2010; 62 Vatier J. (ref21/cit21) 1992; 6 Lipinski C. A. (ref2/cit2) 2001; 46 Smithey D. T. (ref9/cit9) 2013; 16 Carino S. R. (ref16/cit16) 2006; 95 Polster C. S. (ref17/cit17) 2010; 7 Di L. (ref1/cit1) 2009; 15 Brouwers J. (ref11/cit11) 2009; 98 Kararli T. T. (ref24/cit24) 1995; 16 Yu L. X. (ref5/cit5) 1996; 19 Oh D. M. (ref3/cit3) 1993; 10 Taniguchi C. (ref27/cit27) 2014; 11 Gray V. A. (ref13/cit13) 2008; 3 Castela-Papin N. (ref20/cit20) 1999; 182 Dressman J. B. (ref25/cit25) 1986; 3 Minekus M. (ref23/cit23) 1995; 23 Kraemer J. (ref12/cit12) 2005 Reppas C. (ref14/cit14) 2012; 64 |
References_xml | – volume: 182 start-page: 111 year: 1999 ident: ref20/cit20 publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(99)00073-3 – volume: 7 start-page: 1533 year: 2010 ident: ref17/cit17 publication-title: Mol. Pharmaceutics doi: 10.1021/mp100116g – volume: 8 start-page: 1481 year: 2011 ident: ref8/cit8 publication-title: Expert Opin. Drug Delivery doi: 10.1517/17425247.2011.614228 – volume: 95 start-page: 116 year: 2006 ident: ref16/cit16 publication-title: J. Pharm. Sci. doi: 10.1002/jps.20495 – volume: 16 start-page: 10 year: 2013 ident: ref9/cit9 publication-title: AAPS NewsMagazine – volume: 12 start-page: 413 year: 1995 ident: ref4/cit4 publication-title: Pharm. Res. doi: 10.1023/A:1016212804288 – volume: 10 start-page: 264 year: 1993 ident: ref3/cit3 publication-title: Pharm. Res. doi: 10.1023/A:1018947113238 – volume: 97 start-page: 1831 year: 2008 ident: ref29/cit29 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21052 – volume: 64 start-page: 919 year: 2012 ident: ref14/cit14 publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.2012.01474.x – volume: 3 start-page: 153 volume-title: Pharmaceutical Dosage Forms: Tablets. Manufacture and Process Control year: 2008 ident: ref13/cit13 – volume: 11 start-page: 505 year: 2014 ident: ref27/cit27 publication-title: Expert Opin. Drug Delivery doi: 10.1517/17425247.2014.881798 – volume: 6 start-page: 447 year: 1992 ident: ref21/cit21 publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/j.1365-2036.1992.tb00558.x – volume: 23 start-page: 197 year: 1995 ident: ref23/cit23 publication-title: ATLA, Altern. Lab. Anim. doi: 10.1177/026119299502300205 – volume: 16 start-page: 351 year: 1995 ident: ref24/cit24 publication-title: Biopharm. Drug Dispos. doi: 10.1002/bdd.2510160502 – volume: 31 start-page: 249 year: 2007 ident: ref7/cit7 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2007.05.110 – volume: 46 start-page: 3 year: 2001 ident: ref2/cit2 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(00)00129-0 – volume: 98 start-page: 2549 year: 2009 ident: ref11/cit11 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21650 – volume: 15 start-page: 2184 year: 2009 ident: ref1/cit1 publication-title: Curr. Pharm. Des. doi: 10.2174/138161209788682479 – volume: 14 start-page: 244 year: 2012 ident: ref6/cit6 publication-title: AAPS J. doi: 10.1208/s12248-012-9337-6 – volume: 19 start-page: 359 year: 1996 ident: ref5/cit5 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/0169-409X(96)00009-9 – volume: 101 start-page: 7 year: 2012 ident: ref15/cit15 publication-title: J. Pharm. Sci. doi: 10.1002/jps.22750 – volume: 7 start-page: 647 year: 2010 ident: ref28/cit28 publication-title: Expert Opin. Drug Delivery doi: 10.1517/17425241003645910 – volume: 96 start-page: 2686 year: 2007 ident: ref26/cit26 publication-title: J. Pharm. Sci. doi: 10.1002/jps.20906 – volume: 15 start-page: 15 year: 2013 ident: ref10/cit10 publication-title: Am. Pharm. Rev. – volume: 62 start-page: 1236 year: 2010 ident: ref22/cit22 publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.2010.01025.x – start-page: 1 volume-title: Pharmaceutical Dissolution Testing year: 2005 ident: ref12/cit12 – volume: 99 start-page: 3923 year: 2010 ident: ref18/cit18 publication-title: J. Pharm. Sci. doi: 10.1002/jps.22236 – volume: 100 start-page: 4756 year: 2011 ident: ref19/cit19 publication-title: J. Pharm. Sci. doi: 10.1002/jps.22669 – volume: 3 start-page: 123 year: 1986 ident: ref25/cit25 publication-title: Pharm. Res. doi: 10.1023/A:1016353705970 |
SSID | ssj0024523 |
Score | 2.2429233 |
Snippet | An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1131 |
SubjectTerms | Acetophenones - chemistry Acetophenones - pharmacokinetics Animals Area Under Curve Benzoates - chemistry Benzoates - pharmacokinetics Biological Availability Chemistry, Pharmaceutical - methods Crystallization Dogs Drug Design Duodenum - drug effects Humans Hydrogen-Ion Concentration Intestinal Absorption - drug effects Madin Darby Canine Kidney Cells Meglumine - chemistry Models, Biological Molecular Structure Sodium Bicarbonate - chemistry Solubility Stomach - drug effects Tissue Distribution |
Title | Mechanism for Enhanced Absorption of a Solid Dispersion Formulation of LY2300559 Using the Artificial Stomach Duodenum Model |
URI | http://dx.doi.org/10.1021/mp5006036 https://www.ncbi.nlm.nih.gov/pubmed/25723790 https://www.proquest.com/docview/1671217274 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYovfTSQp9bCpo-hHogEL_yOK5YVqhqK6QFiZ4iO7bFqkuCSPZA1R_fsZPdBRXaQ6QcJrFlj-3P9sz3EfKJJcpwKdLISZwChWNppGjmIm1YXnLrpDAhQPZ7cnwmvpzL8zXy8YEbfEYPLq-kJw3hySPymCVZ6ndYw8PJilBPBg03hAI8yngmFvRBtz_1S0_Z3F16HsCTYV0ZPyOjRXZOF07yc3_e6v3y199kjf-q8gZ52uNKGHaOsEnWbPWc7J50xNQ3e3C6yrNq9mAXTlaU1TcvyO9v1mcAT5tLQBALR9VFCAyAoW7q6zCpQO1AwaSeTQ2Mpp5e3B-zwRghby8A5i2-_mCemF7mEEIRANFlqFJHUwGTtsYyL2A0r40PwQevxDZ7Sc7GR6eHx1GvyxApTmUbuVxnglsjbExdTI2L8RVxDM3LmFmOeySuqUPglohSMcucccpn3Cup8MF2eUXWq7qybwiIWLvEC9HqUovM8cwwFgvHXZnFudN0QHaw44p-XDVFuDJntFi28IB8XvRpUfas5l5cY3af6Yel6VVH5XGf0fuFYxQ40PztiapsPceik5R6Na9UDMjrzmOWv8F5j_E0j9_-r7pb5AkiLhlCf5J3ZL29ntttRDWt3gle_QdE2u6G |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF6VcoAL70d4lAFBxaEu3pcfBw5R0yilaVUpqVROxmvvqhGpXdWOUBC_hL_Cn2N27SSAijhV4mDJh9HuaHc886135htCXrMgzbkUoWckukBhWOilNDKeylmccW2kyF2C7GEwOBYfTuTJGvm-qIVBJSocqXKX-Ct2Afru7Fxa7hAetAmU-3r-BY9n1fu9Hu7lG8b6u-Odgdd2EPBSTmXtmVhFgutcaJ8an-bGx1eMuDTOfKY5onmuqLHN50WWMs1MblJbG57KFB-cDce9Rq4j6GH2YNfdGa14_KRrHYcIhHsRj8SCtehXVW3Ey6rfI95fYKwLZ_3b5MdyIVwWy-ftWa22s69_cET-nyt1h9xqUTR0G7O_S9Z0cY9sHjU03PMtGK-qyqot2ISjFUH3_D75dqBtvfOkOgOE7LBbnLo0COiqqrxwLhRKAymMyukkh97Ekqnbn4rQR4DftjuzEsOPzNLwyxhc4gUglnYqNaQcMKpLnPMUerMytwUHYPvOTR-Q4ytZmYdkvSgL_ZiA8JUJbNtdlSkRGR7ljPnCcJNFfmwU7ZAN3NCk9SJV4hIEGE2WO9ohbxemlGQth7ttJTK9TPTVUvS8IS65TOjlwh4TdCv2rigtdDnDqYOQ2t5loeiQR42hLodBL894GPtP_qXuC3JjMD4YJsO9w_2n5CZiTemSnoJnZL2-mOnniOdqteE-LCCfrto-fwIGQ1B6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKkRCX8oblUQyCikNT4lceBw6rblctLdVK20rtKdixra66TVZNVmgRv4W_wl9j7GR3ARVxqsQhUg4je2SPZ77EM98g9IZGUjPB48AKcIHc0jiQJLGB0jTNmbGCa58gexjtHvOPJ-JkBX2f18KAEhWMVPlLfHeqJ9q2DAPk_cVEOP4QFrVJlPtm9gU-0aoPez3Yz7eU9neOtneDtotAIBkRdWBTlXBmNDchsSHRNoRXiLokzUNqGCB6poh1Deh5LqmhVlvp6sOlkPDAbDDuDXTTXQ-6j7vu9nDJ5Sd8-zhAISxIWMLnzEW_quqiXl79HvX-AmV9SOvfQT8Wi-EzWc63prXayr_-wRP5_67WXbTWomncbcz_HloxxX20MWjouGeb-GhZXVZt4g08WBJ1zx6gb5-Mq3seVRcYoDveKc58OgTuqqq89K4UlxZLPCzHI417I0eq7n4u4j4A_bbtmZM4OKWOjl-k2CdgYMDUXqWGnAMP6xLmPMO9aald4QF2_efGD9HxtazMI7RalIV5gjAPlY1c-12VK55YlmhKQ26ZzZMwtYp00DpsatZ6kyrziQKUZIsd7aB3c3PK8pbL3bUUGV8l-nohOmkITK4SejW3yQzci7szkoUppzB1FBPXwyzmHfS4MdbFMODtKYvT8Om_1H2Jbg16_exg73D_GboNkFP43KfoOVqtL6fmBcC6Wq37s4XR5-s2z59JalL9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+for+enhanced+absorption+of+a+solid+dispersion+formulation+of+LY2300559+using+the+artificial+stomach+duodenum+model&rft.jtitle=Molecular+pharmaceutics&rft.au=Polster%2C+Christopher+S&rft.au=Wu%2C+Sy-Juen&rft.au=Gueorguieva%2C+Ivelina&rft.au=Sperry%2C+David+C&rft.date=2015-04-06&rft.eissn=1543-8392&rft.volume=12&rft.issue=4&rft.spage=1131&rft_id=info:doi/10.1021%2Fmp5006036&rft_id=info%3Apmid%2F25723790&rft.externalDocID=25723790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon |