Mechanism for Enhanced Absorption of a Solid Dispersion Formulation of LY2300559 Using the Artificial Stomach Duodenum Model

An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid disper...

Full description

Saved in:
Bibliographic Details
Published inMolecular pharmaceutics Vol. 12; no. 4; pp. 1131 - 1140
Main Authors Polster, Christopher S, Wu, Sy-Juen, Gueorguieva, Ivelina, Sperry, David C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The C max and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.
AbstractList An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.
An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.
An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The C max and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.
Author Gueorguieva, Ivelina
Polster, Christopher S
Wu, Sy-Juen
Sperry, David C
AuthorAffiliation Eli Lilly and Company
Lilly Research Laboratories
AuthorAffiliation_xml – name: Lilly Research Laboratories
– name: Eli Lilly and Company
Author_xml – sequence: 1
  givenname: Christopher S
  surname: Polster
  fullname: Polster, Christopher S
– sequence: 2
  givenname: Sy-Juen
  surname: Wu
  fullname: Wu, Sy-Juen
– sequence: 3
  givenname: Ivelina
  surname: Gueorguieva
  fullname: Gueorguieva, Ivelina
– sequence: 4
  givenname: David C
  surname: Sperry
  fullname: Sperry, David C
  email: sperryda@lilly.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25723790$$D View this record in MEDLINE/PubMed
BookMark eNptkblOAzEURS0UBEmg4AeQGyQoAl5nKSN2KYgCKKgsx2MTRzP2YM8USHw8DkkoUIqnt-jcW9w3AgPnnQbgBKNLjAi-alqOUIZotgeGmDM6KWhJBn9zwQ7BKMYlQoRxQg_AIeE5oXmJhuD7SauFdDY20PgAb11alK7gdB59aDvrHfQGSvjia1vBGxtbHeLqeudD09dyS8zeCUWI8xK-Res-YLfQcBo6a6yysoYvnW-kWsCb3lfa9Q18Sr0-AvtG1lEfb_oYvN3dvl4_TGbP94_X09lEUsy7iSnnBaO6Yhphg3BlUBoLluFSIaJpkRE6xwYjnjEliSamMpJRnEkuU6VcxuB87dsG_9nr2InGRqXrWjrt-yhwlmOCc5KzhJ5u0H7e6Eq0wTYyfIltYgm4WgMq-BiDNkLZ7jeGLkhbC4zE6ifi7ydJcfFPsTXdxZ6tWamiWPo-uJTLDu4HsVSWCQ
CitedBy_id crossref_primary_10_1208_s12248_015_9797_6
crossref_primary_10_1016_j_ijpharm_2021_120505
crossref_primary_10_1016_j_xphs_2015_11_004
crossref_primary_10_1208_s12248_022_00760_8
crossref_primary_10_3390_pharmaceutics13030401
crossref_primary_10_1002_ejoc_201800751
crossref_primary_10_1016_j_xphs_2024_05_016
crossref_primary_10_1002_jps_24647
crossref_primary_10_1016_j_ijpharm_2022_121722
crossref_primary_10_1016_j_xphs_2017_02_015
crossref_primary_10_1016_j_cis_2018_11_007
crossref_primary_10_1016_j_xphs_2018_10_047
crossref_primary_10_1016_j_ijpharm_2024_123869
crossref_primary_10_1089_adt_2022_016
crossref_primary_10_1080_03639045_2022_2098315
crossref_primary_10_1080_10717544_2019_1704940
crossref_primary_10_1021_acs_molpharmaceut_7b01143
crossref_primary_10_1021_acs_molpharmaceut_7b00552
crossref_primary_10_1016_j_ijpharm_2016_11_049
crossref_primary_10_1080_17425247_2016_1218465
crossref_primary_10_1007_s12247_019_09392_6
Cites_doi 10.1016/S0378-5173(99)00073-3
10.1021/mp100116g
10.1517/17425247.2011.614228
10.1002/jps.20495
10.1023/A:1016212804288
10.1023/A:1018947113238
10.1002/jps.21052
10.1111/j.2042-7158.2012.01474.x
10.1517/17425247.2014.881798
10.1111/j.1365-2036.1992.tb00558.x
10.1177/026119299502300205
10.1002/bdd.2510160502
10.1016/j.ejps.2007.05.110
10.1016/S0169-409X(00)00129-0
10.1002/jps.21650
10.2174/138161209788682479
10.1208/s12248-012-9337-6
10.1016/0169-409X(96)00009-9
10.1002/jps.22750
10.1517/17425241003645910
10.1002/jps.20906
10.1111/j.2042-7158.2010.01025.x
10.1002/jps.22236
10.1002/jps.22669
10.1023/A:1016353705970
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/mp5006036
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1543-8392
EndPage 1140
ExternalDocumentID 25723790
10_1021_mp5006036
b382078338
Genre Journal Article
GroupedDBID -
123
4.4
53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
H~9
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a315t-f9b843ed4e01f01df0d4e84619c02e38623b1f10564ca2e2fdfa4316a5a6a5603
IEDL.DBID ACS
ISSN 1543-8384
1543-8392
IngestDate Fri Jul 11 11:32:30 EDT 2025
Mon Jul 21 05:36:04 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Tue Jul 01 04:33:36 EDT 2025
Thu Aug 27 13:44:47 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords meglumine
high-shear wet granulation
artificial stomach duodenum
ASD
high-energy solid
amorphous
solid dispersion
bioavailability
pharmacokinetics
supersaturation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a315t-f9b843ed4e01f01df0d4e84619c02e38623b1f10564ca2e2fdfa4316a5a6a5603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25723790
PQID 1671217274
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1671217274
pubmed_primary_25723790
crossref_citationtrail_10_1021_mp5006036
crossref_primary_10_1021_mp5006036
acs_journals_10_1021_mp5006036
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Apr-06
PublicationDateYYYYMMDD 2015-04-06
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-Apr-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular pharmaceutics
PublicationTitleAlternate Mol. Pharmaceutics
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Tran P. H.-L. (ref28/cit28) 2010; 7
Augustijns P. (ref15/cit15) 2012; 101
Carino S. R. (ref18/cit18) 2010; 99
Pudipeddi M. (ref29/cit29) 2008; 97
Bhattachar S. N. (ref19/cit19) 2011; 100
Hoskins C. (ref10/cit10) 2013; 15
Dahan A. (ref6/cit6) 2012; 14
van Hoogevest P. (ref8/cit8) 2011; 8
Stegemann S. (ref7/cit7) 2007; 31
Guzmán H. R. (ref26/cit26) 2007; 96
Amidon G. L. (ref4/cit4) 1995; 12
David S. E. (ref22/cit22) 2010; 62
Vatier J. (ref21/cit21) 1992; 6
Lipinski C. A. (ref2/cit2) 2001; 46
Smithey D. T. (ref9/cit9) 2013; 16
Carino S. R. (ref16/cit16) 2006; 95
Polster C. S. (ref17/cit17) 2010; 7
Di L. (ref1/cit1) 2009; 15
Brouwers J. (ref11/cit11) 2009; 98
Kararli T. T. (ref24/cit24) 1995; 16
Yu L. X. (ref5/cit5) 1996; 19
Oh D. M. (ref3/cit3) 1993; 10
Taniguchi C. (ref27/cit27) 2014; 11
Gray V. A. (ref13/cit13) 2008; 3
Castela-Papin N. (ref20/cit20) 1999; 182
Dressman J. B. (ref25/cit25) 1986; 3
Minekus M. (ref23/cit23) 1995; 23
Kraemer J. (ref12/cit12) 2005
Reppas C. (ref14/cit14) 2012; 64
References_xml – volume: 182
  start-page: 111
  year: 1999
  ident: ref20/cit20
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(99)00073-3
– volume: 7
  start-page: 1533
  year: 2010
  ident: ref17/cit17
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/mp100116g
– volume: 8
  start-page: 1481
  year: 2011
  ident: ref8/cit8
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1517/17425247.2011.614228
– volume: 95
  start-page: 116
  year: 2006
  ident: ref16/cit16
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20495
– volume: 16
  start-page: 10
  year: 2013
  ident: ref9/cit9
  publication-title: AAPS NewsMagazine
– volume: 12
  start-page: 413
  year: 1995
  ident: ref4/cit4
  publication-title: Pharm. Res.
  doi: 10.1023/A:1016212804288
– volume: 10
  start-page: 264
  year: 1993
  ident: ref3/cit3
  publication-title: Pharm. Res.
  doi: 10.1023/A:1018947113238
– volume: 97
  start-page: 1831
  year: 2008
  ident: ref29/cit29
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21052
– volume: 64
  start-page: 919
  year: 2012
  ident: ref14/cit14
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.2012.01474.x
– volume: 3
  start-page: 153
  volume-title: Pharmaceutical Dosage Forms: Tablets. Manufacture and Process Control
  year: 2008
  ident: ref13/cit13
– volume: 11
  start-page: 505
  year: 2014
  ident: ref27/cit27
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1517/17425247.2014.881798
– volume: 6
  start-page: 447
  year: 1992
  ident: ref21/cit21
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/j.1365-2036.1992.tb00558.x
– volume: 23
  start-page: 197
  year: 1995
  ident: ref23/cit23
  publication-title: ATLA, Altern. Lab. Anim.
  doi: 10.1177/026119299502300205
– volume: 16
  start-page: 351
  year: 1995
  ident: ref24/cit24
  publication-title: Biopharm. Drug Dispos.
  doi: 10.1002/bdd.2510160502
– volume: 31
  start-page: 249
  year: 2007
  ident: ref7/cit7
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2007.05.110
– volume: 46
  start-page: 3
  year: 2001
  ident: ref2/cit2
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(00)00129-0
– volume: 98
  start-page: 2549
  year: 2009
  ident: ref11/cit11
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21650
– volume: 15
  start-page: 2184
  year: 2009
  ident: ref1/cit1
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161209788682479
– volume: 14
  start-page: 244
  year: 2012
  ident: ref6/cit6
  publication-title: AAPS J.
  doi: 10.1208/s12248-012-9337-6
– volume: 19
  start-page: 359
  year: 1996
  ident: ref5/cit5
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/0169-409X(96)00009-9
– volume: 101
  start-page: 7
  year: 2012
  ident: ref15/cit15
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.22750
– volume: 7
  start-page: 647
  year: 2010
  ident: ref28/cit28
  publication-title: Expert Opin. Drug Delivery
  doi: 10.1517/17425241003645910
– volume: 96
  start-page: 2686
  year: 2007
  ident: ref26/cit26
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20906
– volume: 15
  start-page: 15
  year: 2013
  ident: ref10/cit10
  publication-title: Am. Pharm. Rev.
– volume: 62
  start-page: 1236
  year: 2010
  ident: ref22/cit22
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.2010.01025.x
– start-page: 1
  volume-title: Pharmaceutical Dissolution Testing
  year: 2005
  ident: ref12/cit12
– volume: 99
  start-page: 3923
  year: 2010
  ident: ref18/cit18
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.22236
– volume: 100
  start-page: 4756
  year: 2011
  ident: ref19/cit19
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.22669
– volume: 3
  start-page: 123
  year: 1986
  ident: ref25/cit25
  publication-title: Pharm. Res.
  doi: 10.1023/A:1016353705970
SSID ssj0024523
Score 2.2429233
Snippet An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1131
SubjectTerms Acetophenones - chemistry
Acetophenones - pharmacokinetics
Animals
Area Under Curve
Benzoates - chemistry
Benzoates - pharmacokinetics
Biological Availability
Chemistry, Pharmaceutical - methods
Crystallization
Dogs
Drug Design
Duodenum - drug effects
Humans
Hydrogen-Ion Concentration
Intestinal Absorption - drug effects
Madin Darby Canine Kidney Cells
Meglumine - chemistry
Models, Biological
Molecular Structure
Sodium Bicarbonate - chemistry
Solubility
Stomach - drug effects
Tissue Distribution
Title Mechanism for Enhanced Absorption of a Solid Dispersion Formulation of LY2300559 Using the Artificial Stomach Duodenum Model
URI http://dx.doi.org/10.1021/mp5006036
https://www.ncbi.nlm.nih.gov/pubmed/25723790
https://www.proquest.com/docview/1671217274
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELYovfTSQp9bCpo-hHogEL_yOK5YVqhqK6QFiZ4iO7bFqkuCSPZA1R_fsZPdBRXaQ6QcJrFlj-3P9sz3EfKJJcpwKdLISZwChWNppGjmIm1YXnLrpDAhQPZ7cnwmvpzL8zXy8YEbfEYPLq-kJw3hySPymCVZ6ndYw8PJilBPBg03hAI8yngmFvRBtz_1S0_Z3F16HsCTYV0ZPyOjRXZOF07yc3_e6v3y199kjf-q8gZ52uNKGHaOsEnWbPWc7J50xNQ3e3C6yrNq9mAXTlaU1TcvyO9v1mcAT5tLQBALR9VFCAyAoW7q6zCpQO1AwaSeTQ2Mpp5e3B-zwRghby8A5i2-_mCemF7mEEIRANFlqFJHUwGTtsYyL2A0r40PwQevxDZ7Sc7GR6eHx1GvyxApTmUbuVxnglsjbExdTI2L8RVxDM3LmFmOeySuqUPglohSMcucccpn3Cup8MF2eUXWq7qybwiIWLvEC9HqUovM8cwwFgvHXZnFudN0QHaw44p-XDVFuDJntFi28IB8XvRpUfas5l5cY3af6Yel6VVH5XGf0fuFYxQ40PztiapsPceik5R6Na9UDMjrzmOWv8F5j_E0j9_-r7pb5AkiLhlCf5J3ZL29ntttRDWt3gle_QdE2u6G
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEF6VcoAL70d4lAFBxaEu3pcfBw5R0yilaVUpqVROxmvvqhGpXdWOUBC_hL_Cn2N27SSAijhV4mDJh9HuaHc886135htCXrMgzbkUoWckukBhWOilNDKeylmccW2kyF2C7GEwOBYfTuTJGvm-qIVBJSocqXKX-Ct2Afru7Fxa7hAetAmU-3r-BY9n1fu9Hu7lG8b6u-Odgdd2EPBSTmXtmVhFgutcaJ8an-bGx1eMuDTOfKY5onmuqLHN50WWMs1MblJbG57KFB-cDce9Rq4j6GH2YNfdGa14_KRrHYcIhHsRj8SCtehXVW3Ey6rfI95fYKwLZ_3b5MdyIVwWy-ftWa22s69_cET-nyt1h9xqUTR0G7O_S9Z0cY9sHjU03PMtGK-qyqot2ISjFUH3_D75dqBtvfOkOgOE7LBbnLo0COiqqrxwLhRKAymMyukkh97Ekqnbn4rQR4DftjuzEsOPzNLwyxhc4gUglnYqNaQcMKpLnPMUerMytwUHYPvOTR-Q4ytZmYdkvSgL_ZiA8JUJbNtdlSkRGR7ljPnCcJNFfmwU7ZAN3NCk9SJV4hIEGE2WO9ohbxemlGQth7ttJTK9TPTVUvS8IS65TOjlwh4TdCv2rigtdDnDqYOQ2t5loeiQR42hLodBL894GPtP_qXuC3JjMD4YJsO9w_2n5CZiTemSnoJnZL2-mOnniOdqteE-LCCfrto-fwIGQ1B6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKkRCX8oblUQyCikNT4lceBw6rblctLdVK20rtKdixra66TVZNVmgRv4W_wl9j7GR3ARVxqsQhUg4je2SPZ77EM98g9IZGUjPB48AKcIHc0jiQJLGB0jTNmbGCa58gexjtHvOPJ-JkBX2f18KAEhWMVPlLfHeqJ9q2DAPk_cVEOP4QFrVJlPtm9gU-0aoPez3Yz7eU9neOtneDtotAIBkRdWBTlXBmNDchsSHRNoRXiLokzUNqGCB6poh1Deh5LqmhVlvp6sOlkPDAbDDuDXTTXQ-6j7vu9nDJ5Sd8-zhAISxIWMLnzEW_quqiXl79HvX-AmV9SOvfQT8Wi-EzWc63prXayr_-wRP5_67WXbTWomncbcz_HloxxX20MWjouGeb-GhZXVZt4g08WBJ1zx6gb5-Mq3seVRcYoDveKc58OgTuqqq89K4UlxZLPCzHI417I0eq7n4u4j4A_bbtmZM4OKWOjl-k2CdgYMDUXqWGnAMP6xLmPMO9aald4QF2_efGD9HxtazMI7RalIV5gjAPlY1c-12VK55YlmhKQ26ZzZMwtYp00DpsatZ6kyrziQKUZIsd7aB3c3PK8pbL3bUUGV8l-nohOmkITK4SejW3yQzci7szkoUppzB1FBPXwyzmHfS4MdbFMODtKYvT8Om_1H2Jbg16_exg73D_GboNkFP43KfoOVqtL6fmBcC6Wq37s4XR5-s2z59JalL9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+for+enhanced+absorption+of+a+solid+dispersion+formulation+of+LY2300559+using+the+artificial+stomach+duodenum+model&rft.jtitle=Molecular+pharmaceutics&rft.au=Polster%2C+Christopher+S&rft.au=Wu%2C+Sy-Juen&rft.au=Gueorguieva%2C+Ivelina&rft.au=Sperry%2C+David+C&rft.date=2015-04-06&rft.eissn=1543-8392&rft.volume=12&rft.issue=4&rft.spage=1131&rft_id=info:doi/10.1021%2Fmp5006036&rft_id=info%3Apmid%2F25723790&rft.externalDocID=25723790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon