Molecular Dynamics of Surface-Moving Thermally Driven Nanocars
We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally...
Saved in:
Published in | Journal of chemical theory and computation Vol. 4; no. 4; pp. 652 - 656 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.04.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy. Coarse-grained-type molecular dynamics simulations were carried out for the species “Trimer” and “Nanotruck”, the simplified versions of the experimentally studied nanomachines. Toward this goal, we developed a version of the rigid body molecular dynamics based on the symplectic quaternion scheme in conjunction with the Nose−Poincare thermostat approach. Interactions between rigid fragments were described by using the corrected CHARMM force field parameters, while several empirical models were introduced for interactions of nanocars with gold crystals. With the single adjusted potential parameter, the computed trajectories are consistent with the qualitative features of the thermally activated migration of the nanocars: the primary pivoting motion of Trimer and the two-dimensional combination of translations and pivoting of Nanotruck. This work presents a first attempt at a theoretical analysis of nanocarsʼ dynamics on a surface by providing a computationally minimalist approach. |
---|---|
AbstractList | We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy. Coarse-grained-type molecular dynamics simulations were carried out for the species "Trimer" and "Nanotruck", the simplified versions of the experimentally studied nanomachines. Toward this goal, we developed a version of the rigid body molecular dynamics based on the symplectic quaternion scheme in conjunction with the Nose-Poincare thermostat approach. Interactions between rigid fragments were described by using the corrected CHARMM force field parameters, while several empirical models were introduced for interactions of nanocars with gold crystals. With the single adjusted potential parameter, the computed trajectories are consistent with the qualitative features of the thermally activated migration of the nanocars: the primary pivoting motion of Trimer and the two-dimensional combination of translations and pivoting of Nanotruck. This work presents a first attempt at a theoretical analysis of nanocars' dynamics on a surface by providing a computationally minimalist approach. We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy. Coarse-grained-type molecular dynamics simulations were carried out for the species “Trimer” and “Nanotruck”, the simplified versions of the experimentally studied nanomachines. Toward this goal, we developed a version of the rigid body molecular dynamics based on the symplectic quaternion scheme in conjunction with the Nose−Poincare thermostat approach. Interactions between rigid fragments were described by using the corrected CHARMM force field parameters, while several empirical models were introduced for interactions of nanocars with gold crystals. With the single adjusted potential parameter, the computed trajectories are consistent with the qualitative features of the thermally activated migration of the nanocars: the primary pivoting motion of Trimer and the two-dimensional combination of translations and pivoting of Nanotruck. This work presents a first attempt at a theoretical analysis of nanocarsʼ dynamics on a surface by providing a computationally minimalist approach. We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy. Coarse-grained-type molecular dynamics simulations were carried out for the species "Trimer" and "Nanotruck", the simplified versions of the experimentally studied nanomachines. Toward this goal, we developed a version of the rigid body molecular dynamics based on the symplectic quaternion scheme in conjunction with the Nose-Poincare thermostat approach. Interactions between rigid fragments were described by using the corrected CHARMM force field parameters, while several empirical models were introduced for interactions of nanocars with gold crystals. With the single adjusted potential parameter, the computed trajectories are consistent with the qualitative features of the thermally activated migration of the nanocars: the primary pivoting motion of Trimer and the two-dimensional combination of translations and pivoting of Nanotruck. This work presents a first attempt at a theoretical analysis of nanocars' dynamics on a surface by providing a computationally minimalist approach.We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy. Coarse-grained-type molecular dynamics simulations were carried out for the species "Trimer" and "Nanotruck", the simplified versions of the experimentally studied nanomachines. Toward this goal, we developed a version of the rigid body molecular dynamics based on the symplectic quaternion scheme in conjunction with the Nose-Poincare thermostat approach. Interactions between rigid fragments were described by using the corrected CHARMM force field parameters, while several empirical models were introduced for interactions of nanocars with gold crystals. With the single adjusted potential parameter, the computed trajectories are consistent with the qualitative features of the thermally activated migration of the nanocars: the primary pivoting motion of Trimer and the two-dimensional combination of translations and pivoting of Nanotruck. This work presents a first attempt at a theoretical analysis of nanocars' dynamics on a surface by providing a computationally minimalist approach. |
Author | Nemukhin, Alexander V Moskovsky, Alexander A Kolomeisky, Anatoly B Akimov, Alexei V Tour, James M |
Author_xml | – sequence: 1 givenname: Alexei V surname: Akimov fullname: Akimov, Alexei V – sequence: 2 givenname: Alexander V surname: Nemukhin fullname: Nemukhin, Alexander V – sequence: 3 givenname: Alexander A surname: Moskovsky fullname: Moskovsky, Alexander A – sequence: 4 givenname: Anatoly B surname: Kolomeisky fullname: Kolomeisky, Anatoly B email: tolya@rice.edu – sequence: 5 givenname: James M surname: Tour fullname: Tour, James M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26620940$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LAzEQhoNUtK0e_AOyF0EPa5PNfmQvgrR-QasH6znMTrO6kk1qslvov3elHwcpDMwcnveFeQakZ6xRhFwwestoxEbYZJRGSR4fkT5L4jzM0yjt7W8mTsnA-29KOY8jfkJOozSNaB7TPrmbWa2w1eCCydpAXaEPbBm8t64EVOHMrirzGcy_lKtB63UwcdVKmeAVjEVw_owcl6C9Ot_uIfl4fJiPn8Pp29PL-H4aAmdJEyoOKEBw5EmqsEBalAApFECLBOO46CbDnMVsQbOMQ8IFZCJnC-Q8KZlgfEiuN71LZ39a5RtZVx6V1mCUbb1kGReCpZ2DDr3com1Rq4VcuqoGt5a7nztgtAHQWe-dKiVWDTSVNY2DSktG5Z9VubfaJW7-JXalh9irDQvo5bdtnem8HOB-Aej0gXw |
CitedBy_id | crossref_primary_10_1063_1_4774270 crossref_primary_10_1021_jp201981v crossref_primary_10_1063_1_5003636 crossref_primary_10_1021_ct100101y crossref_primary_10_1016_j_matchemphys_2014_08_011 crossref_primary_10_1039_D0CP04960C crossref_primary_10_1021_jp1077592 crossref_primary_10_1021_jp503319s crossref_primary_10_1016_j_physe_2016_05_029 crossref_primary_10_1016_j_aej_2016_12_015 crossref_primary_10_1021_jp1123647 crossref_primary_10_1021_ar8002317 crossref_primary_10_3390_molecules24183337 crossref_primary_10_1038_s41598_022_18730_7 crossref_primary_10_1021_jp204602w crossref_primary_10_1021_acs_jpcc_0c03697 crossref_primary_10_1080_19443994_2014_958764 crossref_primary_10_1021_acs_jpcc_8b10779 crossref_primary_10_1039_D3NR02633G crossref_primary_10_1063_1_4770224 crossref_primary_10_1021_nn800798a crossref_primary_10_1021_nn304584a crossref_primary_10_1039_C7ME00021A crossref_primary_10_1021_acs_jpcc_9b08335 crossref_primary_10_1016_j_ijengsci_2017_02_005 crossref_primary_10_1021_cr500524c crossref_primary_10_3103_S0027131410040012 crossref_primary_10_1038_s41598_021_82280_7 crossref_primary_10_1039_D3CP02835F crossref_primary_10_1016_j_commatsci_2023_112774 crossref_primary_10_1021_jp303549u crossref_primary_10_1021_nl5014162 crossref_primary_10_4028_www_scientific_net_AMM_184_185_1446 crossref_primary_10_1088_2053_1591_aa7d89 crossref_primary_10_1016_j_tetlet_2009_01_042 crossref_primary_10_1021_acs_jpcc_6b01249 crossref_primary_10_1039_c0sc00162g crossref_primary_10_1021_ct200334e crossref_primary_10_1021_jp104104b crossref_primary_10_1016_j_cap_2015_08_003 crossref_primary_10_1016_j_commatsci_2022_111317 crossref_primary_10_1016_j_sna_2023_114769 crossref_primary_10_1016_j_ijmecsci_2021_107026 crossref_primary_10_1021_jz302152v crossref_primary_10_1038_s41598_023_28245_4 crossref_primary_10_4028_www_scientific_net_AMR_829_803 crossref_primary_10_1039_C9ME00171A crossref_primary_10_1021_acs_jpcc_6b02201 crossref_primary_10_1039_D2CP03856K crossref_primary_10_1021_jp302895a crossref_primary_10_1021_jp9017844 crossref_primary_10_1021_nn900411n crossref_primary_10_1080_00268976_2013_813594 crossref_primary_10_1038_s41598_022_22517_1 crossref_primary_10_1039_C7CP07217A crossref_primary_10_1002_jcc_24367 crossref_primary_10_1038_s41598_023_48214_1 crossref_primary_10_1016_j_rineng_2025_104003 crossref_primary_10_1021_acs_jpcc_9b03947 crossref_primary_10_1021_jp108062p crossref_primary_10_1016_j_sna_2024_116111 crossref_primary_10_1007_s10910_011_9880_x crossref_primary_10_1063_1_3667196 crossref_primary_10_1021_jp306938b |
Cites_doi | 10.1021/ja058514r 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G 10.1039/b514700j 10.1006/jcph.1998.6171 10.1146/annurev.physchem.58.032806.104532 10.1063/1.1473654 10.1021/ja00124a002 10.1021/nl051915k 10.1021/jp973084f 10.1002/qua.20940 |
ContentType | Journal Article |
Copyright | Copyright © 2008 American Chemical Society |
Copyright_xml | – notice: Copyright © 2008 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ct7002594 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Surface-Moving Thermally Driven Nanocars |
EISSN | 1549-9626 |
EndPage | 656 |
ExternalDocumentID | 26620940 10_1021_ct7002594 g40082487 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 J9A JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK IHE NPM 7X8 |
ID | FETCH-LOGICAL-a315t-e3ac8a83c356ecbc0bfaa6aba0b5c44b44b7c9141d0773a538a7891dc335f1813 |
IEDL.DBID | ACS |
ISSN | 1549-9618 |
IngestDate | Fri Jul 11 07:02:05 EDT 2025 Thu Jan 02 22:23:46 EST 2025 Tue Jul 01 00:36:35 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Thu Aug 27 13:42:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a315t-e3ac8a83c356ecbc0bfaa6aba0b5c44b44b7c9141d0773a538a7891dc335f1813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26620940 |
PQID | 1738816259 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1738816259 pubmed_primary_26620940 crossref_citationtrail_10_1021_ct7002594 crossref_primary_10_1021_ct7002594 acs_journals_10_1021_ct7002594 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-04-01 |
PublicationDateYYYYMMDD | 2008-04-01 |
PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2008 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Foloppe N. (ref9/cit9) 2000; 21 Nemukhin A. V. (ref10/cit10) 2004; 45 MacKerrell A. D. (ref8/cit8) 1998; 102 Shirai Y. (ref1/cit1) 2006; 35 Miller T. F. (ref6/cit6) 2002; 116 Cornell W. D. (ref12/cit12) 1995; 117 Kolomeisky A. B. (ref4/cit4) 2007; 58 Shirai Y. (ref3/cit3) 2006; 128 ref11/cit11 Bond S. D. (ref7/cit7) 1999; 151 Shirai Y. (ref2/cit2) 2005; 5 Moskovsky A. A. (ref5/cit5) 2006; 106 |
References_xml | – volume: 128 start-page: 4854 year: 2006 ident: ref3/cit3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058514r – volume: 21 start-page: 86 year: 2000 ident: ref9/cit9 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G – volume: 45 start-page: 75 year: 2004 ident: ref10/cit10 publication-title: Moscow Univ. Chem. Bull. – volume: 35 start-page: 1043 year: 2006 ident: ref1/cit1 publication-title: Chem. Soc. Rev. doi: 10.1039/b514700j – volume: 151 start-page: 114 year: 1999 ident: ref7/cit7 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6171 – volume: 58 start-page: 675 year: 2007 ident: ref4/cit4 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104532 – volume: 116 start-page: 8649 year: 2002 ident: ref6/cit6 publication-title: J. Chem. Phys. doi: 10.1063/1.1473654 – volume: 117 start-page: 5179 year: 1995 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00124a002 – volume: 5 start-page: 2330 year: 2005 ident: ref2/cit2 publication-title: Nano Lett. doi: 10.1021/nl051915k – ident: ref11/cit11 – volume: 102 start-page: 3586 year: 1998 ident: ref8/cit8 publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 106 start-page: 2208 year: 2006 ident: ref5/cit5 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20940 |
SSID | ssj0033423 |
Score | 2.1711137 |
Snippet | We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 652 |
SubjectTerms | Nanochemistry |
Title | Molecular Dynamics of Surface-Moving Thermally Driven Nanocars |
URI | http://dx.doi.org/10.1021/ct7002594 https://www.ncbi.nlm.nih.gov/pubmed/26620940 https://www.proquest.com/docview/1738816259 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED6VMsDC-1EeVXgMLClx7NjOgoRaqgqpLKVSt8h27IWqRWk6wK_HTpoKRAtSxottnc_3XXLn7wBu4yiQyFDho1Qan1AufC5Y7IcSG46YYalxF4X7L7Q3JM-jaFSDmzUZ_BDdq5w5YI7JBmyG1B5eF_-0B5W7xY7CriBFJY5qEvGKPuj7qw561Own9KyJJwtc6e5Cp7qdU5aTvLXmuWypz99kjX8teQ92FnGl91gawj7U9OQAttpVO7dDeOhXjXC9TtmFfuZNjTeYZ0Yo7feLPwuetRrrqcfjD6-TOT_oWe9r0S6bHcGw-_Ta7vmL5gm-wCjKfY2F4oJjhSOqlVSBNEJQIUUgI0WItA9TMSIoDRjDwvo9wXiMUoVxZCzs42OoT6YTfQpeREItiAxFiiShVFopzSId6FQjqk3agKbVbrIw_llS5LVDlCzV0IC7SvGJWlCPuw4Y41Wi10vR95JvY5XQVbV7idWiS3GIiZ7O7dQMc47cN10DTsptXQ5jQ5HQsQWe_bfcc9guq0Jcfc4F1PNsri9t6JHLZmF6X8h-0ME |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDGXh_SiPEhADSyCOndhZkKqWqkDTpa3ULbIde6FKUZMO8Oux8ygPFYGU8eKczpe7S-78fQBcB57DofKZDWOubOxTZlNGAtvlSFFIFImVOSgcDvzeGD9NvEkJk2POwmglUr1SmjfxP9EF4J3IiMnPAV4HG7oIcY03t9rDKuoig2SXY6NigzgJaYUi9PVWk4FE-j0D_VJW5umlu13wFOWK5VMlL7eLjN-K9x-Yjf_TfAdslVWm1SrcYhesyWQP1NsVuds-uA8rWlyrU3DSp9ZMWcPFXDEh7TD_z2BpH9Jxezp9szpzExUtHYt17punB2DcfRi1e3ZJpWAzBL3MlogJyigSyPOl4MLhijGfceZwT2DM9UVEADGMHUIQ01GQERrAWCDkKV0EoENQS2aJPAaWh13JMHdZDDn2fa6lJPGkI2MJfaniBmhqK0Tlq5BGeZfbhdHSDA1wU9k_EiUQueHDmK4SvVqKvhboG6uELqtNjLQVTcODJXK20I8miFJovvAa4KjY3eUyujBxDXbgyV_qXoB6bxT2o_7j4PkUbBbzImZy5wzUsvlCnuuiJOPN3Bs_AL4F2SI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgSMCF92M8RkEcuBSaJm3SCxLamHgNkMak3aokTS5MG1q7A_x6kj4mQEMg9eimlu3YTu18BjiNAk8gHXIXJUK7JGTcZZxGri-wZohqmmh7UbjzGN70yF0_6JcHRXsXxjCRmpXSvIhvd_VbokuEAXQhM2pjdETmYcGW66xFXzW7lefFFs0ux0clFnUSsQpJ6OurNgrJ9HsU-iW1zENMexWepszlnSWv55NMnMuPH7iN_-d-DVbKbNO5KsxjHebUcAOWmtWQt0247FTjcZ1WMZs-dUba6U7GmkvldvL_DY6xJeO_B4N3pzW23tExPtnEwHG6Bb329Uvzxi1HKrgcoyBzFeaScYYlDkIlhfSE5jzkgnsikIQI81AZIYISj1LMjTfklEUokRgH2iQDeBtqw9FQ7YITEF9xInyeIEHCUBgqRQPlqUShUOmkDg0jibjcEmmcV7t9FE_FUIezSgexLAHJ7VyMwSzSkynpW4HCMYvouFJkbKRoCx98qEYT82mKGUP2pFeHnULD02VMguJbDMG9v9g9gsXnVjt-uH2834flom3ENvAcQC0bT9ShyU0y0cgN8hP_XNul |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Dynamics+of+Surface-Moving+Thermally+Driven+Nanocars&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Akimov%2C+Alexei+V&rft.au=Nemukhin%2C+Alexander+V&rft.au=Moskovsky%2C+Alexander+A&rft.au=Kolomeisky%2C+Anatoly+B&rft.date=2008-04-01&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=4&rft.issue=4&rft.spage=652&rft.epage=656&rft_id=info:doi/10.1021%2Fct7002594&rft.externalDocID=g40082487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |