Load Capacity Improvements in Nucleic Acid Based Systems Using Partially Open Feedback Control

Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture...

Full description

Saved in:
Bibliographic Details
Published inACS synthetic biology Vol. 3; no. 8; pp. 617 - 626
Main Authors Kulkarni, Vishwesh, Kharisov, Evgeny, Hovakimyan, Naira, Kim, Jongmin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.08.2014
Subjects
Online AccessGet full text
ISSN2161-5063
2161-5063
DOI10.1021/sb5000675

Cover

Abstract Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an L 1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim–Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.
AbstractList Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.
Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an L 1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim–Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.
Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.
Author Kharisov, Evgeny
Kim, Jongmin
Kulkarni, Vishwesh
Hovakimyan, Naira
AuthorAffiliation California Institute of Technology
Institute of Systems and Synthetic Biology
Department of Aerospace Engineering
Department of Mechanical Science and Engineering
University of Illinois
Division of Biology and Biological Engineering
AuthorAffiliation_xml – name: Department of Aerospace Engineering
– name: California Institute of Technology
– name: University of Illinois
– name: Division of Biology and Biological Engineering
– name: Institute of Systems and Synthetic Biology
– name: Department of Mechanical Science and Engineering
Author_xml – sequence: 1
  givenname: Vishwesh
  surname: Kulkarni
  fullname: Kulkarni, Vishwesh
  email: vvk215@gmail.com
– sequence: 2
  givenname: Evgeny
  surname: Kharisov
  fullname: Kharisov, Evgeny
– sequence: 3
  givenname: Naira
  surname: Hovakimyan
  fullname: Hovakimyan, Naira
– sequence: 4
  givenname: Jongmin
  surname: Kim
  fullname: Kim, Jongmin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24946099$$D View this record in MEDLINE/PubMed
BookMark eNptkE1LAzEQhoMoflQP_gHJRdBDbbLZ7MexFj8KxQrq1TCbTCV1N1s3u8L-e1OqItLTzOF5X2aeI7LraoeEnHJ2xVnER76QjLEklTvkMOIJH0qWiN0_-wE58X4ZGCalkCLbJwdRnMcJy_ND8jqrwdAJrEDbtqfTatXUn1ihaz21jj50ukSr6VhbQ6_Bo6FPvW-x8vTFW_dGH6FpLZRlT-crdPQW0RSg3-mkdm1Tl8dkbwGlx5PvOSAvtzfPk_vhbH43nYxnQxBctkNAMCbJEtBpnEGUa1EYo9NFKgsWRXKRYMriWErMs7wQrBABi3MpeSySlDEtBuRi0xvO_-jQt6qyXmNZgsO684qH11OWpVke0LNvtCsqNGrV2AqaXv04CcBoA-im9r7BhQpqoLXrj8CWijO1Fq9-xYfE5b_ET-k29nzDgvZqWXeNC162cF8l_4xJ
CitedBy_id crossref_primary_10_1016_j_ifacol_2018_05_031
Cites_doi 10.1038/msb4100099
10.1038/468889a
10.1126/science.1132493
10.1073/pnas.1017075108
10.1016/j.ceb.2012.01.012
10.1126/science.1109173
10.1038/msb.2010.119
10.1021/sb200016s
10.1021/sb300049p
10.1038/nbt.2018
10.1038/msb.2010.120
10.1038/nature07971
10.1073/pnas.0909380107
10.1016/j.cbpa.2012.05.179
10.1126/science.1214081
10.1038/nchem.957
10.1038/nature04586
10.1002/1097-0290(20010305)72:5<548::AID-BIT1019>3.0.CO;2-2
10.1038/nature10262
10.1038/nature08016
10.1126/science.1148532
10.1021/sb300018h
10.1038/msb4100204
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/sb5000675
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-5063
EndPage 626
ExternalDocumentID 24946099
10_1021_sb5000675
a718053835
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a315t-aeadd686ac748a29c3bddc7f75b0225f6e704455e989b30b374849551436700c3
IEDL.DBID ACS
ISSN 2161-5063
IngestDate Thu Jul 10 23:15:23 EDT 2025
Mon Jul 21 05:26:04 EDT 2025
Tue Jul 01 02:19:27 EDT 2025
Thu Apr 24 22:56:13 EDT 2025
Thu Aug 27 13:42:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords feedback
load capacity improvement
nucleic acid circuits
adaptive control
DNA strand displacement
genelet
molecular programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a315t-aeadd686ac748a29c3bddc7f75b0225f6e704455e989b30b374849551436700c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24946099
PQID 1553708789
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1553708789
pubmed_primary_24946099
crossref_citationtrail_10_1021_sb5000675
crossref_primary_10_1021_sb5000675
acs_journals_10_1021_sb5000675
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-15
PublicationDateYYYYMMDD 2014-08-15
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS synthetic biology
PublicationTitleAlternate ACS Synth. Biol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Zhang D. Y. (ref4/cit4) 2007; 318
Subsoontorn P. (ref9/cit9) 2012; 1
Del Vecchio D. (ref14/cit14) 2008; 4
Franco E. (ref1/cit1) 2011; 108
Chen Y. Y. (ref12/cit12) 2011; 3
Kim J. (ref7/cit7) 2006; 2
Rothemund P. W. K. (ref21/cit21) 2006; 440
Douglas S. M. (ref24/cit24) 2012; 335
Arnold S. (ref16/cit16) 2001; 72
Shin J. (ref20/cit20) 2012; 1
Noireaux V. (ref18/cit18) 2011; 108
Milias-Argeitis A. (ref2/cit2) 2011; 29
Qian L. (ref6/cit6) 2011; 475
Kim J. (ref8/cit8) 2011; 7
Padirac A. (ref11/cit11) 2012; 24
Seelig G. (ref3/cit3) 2006; 314
Balagadde F. K. (ref26/cit26) 2005; 309
Soloveichik D. (ref5/cit5) 2010; 107
Andersen E. S. (ref23/cit23) 2009; 459
Montagne K. (ref13/cit13) 2011; 7
Douglas S. M. (ref22/cit22) 2009; 459
Shin J. (ref19/cit19) 2012; 1
Zhang D. Y. (ref10/cit10) 2011; 3
Elowitz M. (ref25/cit25) 2010; 468
Hovakimyan N. (ref15/cit15) 2010
Hockenberry A. J. (ref17/cit17) 2012; 16
25126890 - ACS Synth Biol. 2014 Aug 15;3(8):506
References_xml – volume: 2
  start-page: 68
  year: 2006
  ident: ref7/cit7
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100099
– volume: 468
  start-page: 889
  year: 2010
  ident: ref25/cit25
  publication-title: Nature
  doi: 10.1038/468889a
– volume: 3
  start-page: 106ps42
  year: 2011
  ident: ref12/cit12
  publication-title: Sci. Transl. Med.
– volume: 314
  start-page: 1585
  year: 2006
  ident: ref3/cit3
  publication-title: Science
  doi: 10.1126/science.1132493
– volume: 108
  start-page: 3473
  year: 2011
  ident: ref18/cit18
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1017075108
– volume: 24
  start-page: 1
  year: 2012
  ident: ref11/cit11
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.ceb.2012.01.012
– volume: 309
  start-page: 137
  year: 2005
  ident: ref26/cit26
  publication-title: Science
  doi: 10.1126/science.1109173
– volume: 7
  start-page: 465
  year: 2011
  ident: ref8/cit8
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.119
– volume: 1
  start-page: 29
  year: 2012
  ident: ref19/cit19
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb200016s
– volume: 1
  start-page: 408
  year: 2012
  ident: ref20/cit20
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb300049p
– volume: 29
  start-page: 1114
  year: 2011
  ident: ref2/cit2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2018
– volume: 7
  start-page: 466
  year: 2011
  ident: ref13/cit13
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.120
– volume: 459
  start-page: 73
  year: 2009
  ident: ref23/cit23
  publication-title: Nature
  doi: 10.1038/nature07971
– volume-title: Adaptive Control Theory
  year: 2010
  ident: ref15/cit15
– volume: 107
  start-page: 5393
  year: 2010
  ident: ref5/cit5
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0909380107
– volume: 16
  start-page: 253
  year: 2012
  ident: ref17/cit17
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2012.05.179
– volume: 335
  start-page: 831
  year: 2012
  ident: ref24/cit24
  publication-title: Science
  doi: 10.1126/science.1214081
– volume: 3
  start-page: 103
  year: 2011
  ident: ref10/cit10
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.957
– volume: 440
  start-page: 297
  year: 2006
  ident: ref21/cit21
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 72
  start-page: 548
  year: 2001
  ident: ref16/cit16
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/1097-0290(20010305)72:5<548::AID-BIT1019>3.0.CO;2-2
– volume: 475
  start-page: 368
  year: 2011
  ident: ref6/cit6
  publication-title: Nature
  doi: 10.1038/nature10262
– volume: 108
  start-page: E784
  year: 2011
  ident: ref1/cit1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 459
  start-page: 414
  year: 2009
  ident: ref22/cit22
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 318
  start-page: 1121
  year: 2007
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.1148532
– volume: 1
  start-page: 299
  year: 2012
  ident: ref9/cit9
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb300018h
– volume: 4
  start-page: 161
  year: 2008
  ident: ref14/cit14
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100204
– reference: 25126890 - ACS Synth Biol. 2014 Aug 15;3(8):506
SSID ssj0000553538
Score 1.9920428
Snippet Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 617
SubjectTerms Computer Simulation
Computers, Molecular
Enzymes - chemistry
Enzymes - metabolism
Feedback, Physiological
Genes, Synthetic
Models, Genetic
Models, Theoretical
Nucleic Acids
Synthetic Biology - methods
Title Load Capacity Improvements in Nucleic Acid Based Systems Using Partially Open Feedback Control
URI http://dx.doi.org/10.1021/sb5000675
https://www.ncbi.nlm.nih.gov/pubmed/24946099
https://www.proquest.com/docview/1553708789
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xXODAvpRNZjlwCWSxY-cIhQohQEiAxInIHqdSRZUi2h7g6xk7aQViu-TkOJY9znuz-BngwHLRxgxlIFPUAUe_5wQ94kTysLBKeu3O65v04oFfPorHCdj_JYMfR8d9I_w_VUzCdJySeTn-07wbB1JCIRLhb6yOib0EgjB3pCD0-W2HPtj_ij6_UEoPLa15OBsd0KkqSp6PhgNzhO_f9Rr_GvUCzNXUkp1UtrAIE0W5BLOfBAeX4emqpy1rEkAisW9WRRR8gLDPOiW7ceLGHWQn2LHslPDNslrRnPnSAnbrDE13u2_MFaKwFkGf0fjMmlXB-wo8tM7vmxdBfcNCoJNIDAJNdmRTlWqUXOk4w8RYi7IthSFsF-20kCHnQhSZykwSGqdVQx6VI1nueA8mqzBV9spiHVgmlLaKnC8kj05HqVHEZbTFIoncUOIG7ND85_UO6ec--R1H-XiiGnA4Wpoca31yd01G96eme-OmL5Uox0-Ndkfrm9OWcXkQXRa9IX2aLEaGSqqsAWvVwo-7IW-Up8SaN_4b7ibMEHfiLrwciS2YGrwOi23iJwOz4-3zA2XN2rY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZYOTAOsMFg3VgxiAOXbPlhx86xRFQdayskWmknIvs5lapWKVrSA_z1PDtpKKhou-TkOE_2c77Pz8_fI-SDYXwOCQhPxKA8Bm7NcXyEkWB-bqRw2p3jSTycsS-3_LaRybF3YdCIEnsq3SH-H3WB4KrU3P1a-QF5jCQktGUa-um3Np7icx5xV7g6RBLjcYTerZDQ7tsWhKD8G4T-wywdwgye16WKnG0usWR5uan0Jfz6R7bxYcYfkWcN0aT92jOOyaO8eEGe7sgPviTfR2tlaIpwCcjFaR1fcOHCki4KOrFSxwugfVgY-gnRztBG35y6RAP61bqdWq1-UpuWQgcIhFrBkqZ1-vsJmQ0-T9Oh19Rb8FQU8MpT6FUmlrECwaQKE4i0MSDmgmtEej6Pc-EzxnmeyERHvrbKNbi_spTLXvaB6BXpFOsiPyU04VIZiVsxwP2dCmItkdkoA3kUWFPCLunhOGXNeikzdxQeBlk7UF3ycTtDGTRq5bZoxmpf0_dt0x-1RMe-Ru-205zhArKnIqrI1xv8NDqO8KWQSZe8rue_7Qb3pixGDn12n7lvyZPhdDzKRteTm3NyiKyK2cBzwN-QTnW3yS-QuVS651z2N4qc4xc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkCo4AH3B8qpb9dBLaB527ByXhRWvbpFaJE6N7HFWWrHKIrJ7gF_P2MlGFFGVS05O4tgzmW8e_gbgq-ViiBnKQKaoA45e5wRd4kTysLBKeu7OH4P05IqfXYvrxlF0Z2FoEhU9qfJJfKfVt3bYMAxE3ysj_O9VLMKyS9e5Vg3d3q82phIKkQjfvDomIBMIMr9zMqGndztDhNXfhugf6NJbmf46_Gzn54tLbg5mU3OAD8-oG1__ARuw1gBO1q0l5C0sFOU7WH1CQ_ge_lxMtGU9MptImJzVcQYfNqzYqGQDR3k8QtbFkWWHZPUsa3jOmS84YJdO_PR4fM9ceQrrk0E0Gm9Yry6D_wBX_ePfvZOg6bsQ6CQS00CTdNlUpRolVzrOMDHWohxKYcjii2FayJBzIYpMZSYJjWOwIT_LQS936AeTj7BUTspiC1gmlLaKXDIkP09HqVGEcLTFIoncVOIO7NNa5Y3eVLlPicdR3i5UB77NdynHhrXcNc8YvzT0Szv0tqbqeGnQ5_lW56RILjuiy2Iyo1eT8MhQSZV1YLOWgfYx5KPylLD09v-m-wneXB7184vTwfkOrBC44i7-HIldWJrezYo9AjBTs--l9hEiV-Wa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load+Capacity+Improvements+in+Nucleic+Acid+Based+Systems+Using+Partially+Open+Feedback+Control&rft.jtitle=ACS+synthetic+biology&rft.au=Kulkarni%2C+Vishwesh&rft.au=Kharisov%2C+Evgeny&rft.au=Hovakimyan%2C+Naira&rft.au=Kim%2C+Jongmin&rft.date=2014-08-15&rft.issn=2161-5063&rft.eissn=2161-5063&rft.volume=3&rft.issue=8&rft.spage=617&rft.epage=626&rft_id=info:doi/10.1021%2Fsb5000675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_sb5000675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon