Load Capacity Improvements in Nucleic Acid Based Systems Using Partially Open Feedback Control
Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture...
Saved in:
Published in | ACS synthetic biology Vol. 3; no. 8; pp. 617 - 626 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2161-5063 2161-5063 |
DOI | 10.1021/sb5000675 |
Cover
Abstract | Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an L 1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim–Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices. |
---|---|
AbstractList | Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices. Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an L 1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim–Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices. Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices. |
Author | Kharisov, Evgeny Kim, Jongmin Kulkarni, Vishwesh Hovakimyan, Naira |
AuthorAffiliation | California Institute of Technology Institute of Systems and Synthetic Biology Department of Aerospace Engineering Department of Mechanical Science and Engineering University of Illinois Division of Biology and Biological Engineering |
AuthorAffiliation_xml | – name: Department of Aerospace Engineering – name: California Institute of Technology – name: University of Illinois – name: Division of Biology and Biological Engineering – name: Institute of Systems and Synthetic Biology – name: Department of Mechanical Science and Engineering |
Author_xml | – sequence: 1 givenname: Vishwesh surname: Kulkarni fullname: Kulkarni, Vishwesh email: vvk215@gmail.com – sequence: 2 givenname: Evgeny surname: Kharisov fullname: Kharisov, Evgeny – sequence: 3 givenname: Naira surname: Hovakimyan fullname: Hovakimyan, Naira – sequence: 4 givenname: Jongmin surname: Kim fullname: Kim, Jongmin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24946099$$D View this record in MEDLINE/PubMed |
BookMark | eNptkE1LAzEQhoMoflQP_gHJRdBDbbLZ7MexFj8KxQrq1TCbTCV1N1s3u8L-e1OqItLTzOF5X2aeI7LraoeEnHJ2xVnER76QjLEklTvkMOIJH0qWiN0_-wE58X4ZGCalkCLbJwdRnMcJy_ND8jqrwdAJrEDbtqfTatXUn1ihaz21jj50ukSr6VhbQ6_Bo6FPvW-x8vTFW_dGH6FpLZRlT-crdPQW0RSg3-mkdm1Tl8dkbwGlx5PvOSAvtzfPk_vhbH43nYxnQxBctkNAMCbJEtBpnEGUa1EYo9NFKgsWRXKRYMriWErMs7wQrBABi3MpeSySlDEtBuRi0xvO_-jQt6qyXmNZgsO684qH11OWpVke0LNvtCsqNGrV2AqaXv04CcBoA-im9r7BhQpqoLXrj8CWijO1Fq9-xYfE5b_ET-k29nzDgvZqWXeNC162cF8l_4xJ |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2018_05_031 |
Cites_doi | 10.1038/msb4100099 10.1038/468889a 10.1126/science.1132493 10.1073/pnas.1017075108 10.1016/j.ceb.2012.01.012 10.1126/science.1109173 10.1038/msb.2010.119 10.1021/sb200016s 10.1021/sb300049p 10.1038/nbt.2018 10.1038/msb.2010.120 10.1038/nature07971 10.1073/pnas.0909380107 10.1016/j.cbpa.2012.05.179 10.1126/science.1214081 10.1038/nchem.957 10.1038/nature04586 10.1002/1097-0290(20010305)72:5<548::AID-BIT1019>3.0.CO;2-2 10.1038/nature10262 10.1038/nature08016 10.1126/science.1148532 10.1021/sb300018h 10.1038/msb4100204 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/sb5000675 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-5063 |
EndPage | 626 |
ExternalDocumentID | 24946099 10_1021_sb5000675 a718053835 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a315t-aeadd686ac748a29c3bddc7f75b0225f6e704455e989b30b374849551436700c3 |
IEDL.DBID | ACS |
ISSN | 2161-5063 |
IngestDate | Thu Jul 10 23:15:23 EDT 2025 Mon Jul 21 05:26:04 EDT 2025 Tue Jul 01 02:19:27 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Thu Aug 27 13:42:33 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | feedback load capacity improvement nucleic acid circuits adaptive control DNA strand displacement genelet molecular programming |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a315t-aeadd686ac748a29c3bddc7f75b0225f6e704455e989b30b374849551436700c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24946099 |
PQID | 1553708789 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1553708789 pubmed_primary_24946099 crossref_citationtrail_10_1021_sb5000675 crossref_primary_10_1021_sb5000675 acs_journals_10_1021_sb5000675 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-15 |
PublicationDateYYYYMMDD | 2014-08-15 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS synthetic biology |
PublicationTitleAlternate | ACS Synth. Biol |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Zhang D. Y. (ref4/cit4) 2007; 318 Subsoontorn P. (ref9/cit9) 2012; 1 Del Vecchio D. (ref14/cit14) 2008; 4 Franco E. (ref1/cit1) 2011; 108 Chen Y. Y. (ref12/cit12) 2011; 3 Kim J. (ref7/cit7) 2006; 2 Rothemund P. W. K. (ref21/cit21) 2006; 440 Douglas S. M. (ref24/cit24) 2012; 335 Arnold S. (ref16/cit16) 2001; 72 Shin J. (ref20/cit20) 2012; 1 Noireaux V. (ref18/cit18) 2011; 108 Milias-Argeitis A. (ref2/cit2) 2011; 29 Qian L. (ref6/cit6) 2011; 475 Kim J. (ref8/cit8) 2011; 7 Padirac A. (ref11/cit11) 2012; 24 Seelig G. (ref3/cit3) 2006; 314 Balagadde F. K. (ref26/cit26) 2005; 309 Soloveichik D. (ref5/cit5) 2010; 107 Andersen E. S. (ref23/cit23) 2009; 459 Montagne K. (ref13/cit13) 2011; 7 Douglas S. M. (ref22/cit22) 2009; 459 Shin J. (ref19/cit19) 2012; 1 Zhang D. Y. (ref10/cit10) 2011; 3 Elowitz M. (ref25/cit25) 2010; 468 Hovakimyan N. (ref15/cit15) 2010 Hockenberry A. J. (ref17/cit17) 2012; 16 25126890 - ACS Synth Biol. 2014 Aug 15;3(8):506 |
References_xml | – volume: 2 start-page: 68 year: 2006 ident: ref7/cit7 publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100099 – volume: 468 start-page: 889 year: 2010 ident: ref25/cit25 publication-title: Nature doi: 10.1038/468889a – volume: 3 start-page: 106ps42 year: 2011 ident: ref12/cit12 publication-title: Sci. Transl. Med. – volume: 314 start-page: 1585 year: 2006 ident: ref3/cit3 publication-title: Science doi: 10.1126/science.1132493 – volume: 108 start-page: 3473 year: 2011 ident: ref18/cit18 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1017075108 – volume: 24 start-page: 1 year: 2012 ident: ref11/cit11 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.ceb.2012.01.012 – volume: 309 start-page: 137 year: 2005 ident: ref26/cit26 publication-title: Science doi: 10.1126/science.1109173 – volume: 7 start-page: 465 year: 2011 ident: ref8/cit8 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.119 – volume: 1 start-page: 29 year: 2012 ident: ref19/cit19 publication-title: ACS Synth. Biol. doi: 10.1021/sb200016s – volume: 1 start-page: 408 year: 2012 ident: ref20/cit20 publication-title: ACS Synth. Biol. doi: 10.1021/sb300049p – volume: 29 start-page: 1114 year: 2011 ident: ref2/cit2 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2018 – volume: 7 start-page: 466 year: 2011 ident: ref13/cit13 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.120 – volume: 459 start-page: 73 year: 2009 ident: ref23/cit23 publication-title: Nature doi: 10.1038/nature07971 – volume-title: Adaptive Control Theory year: 2010 ident: ref15/cit15 – volume: 107 start-page: 5393 year: 2010 ident: ref5/cit5 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0909380107 – volume: 16 start-page: 253 year: 2012 ident: ref17/cit17 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2012.05.179 – volume: 335 start-page: 831 year: 2012 ident: ref24/cit24 publication-title: Science doi: 10.1126/science.1214081 – volume: 3 start-page: 103 year: 2011 ident: ref10/cit10 publication-title: Nat. Chem. doi: 10.1038/nchem.957 – volume: 440 start-page: 297 year: 2006 ident: ref21/cit21 publication-title: Nature doi: 10.1038/nature04586 – volume: 72 start-page: 548 year: 2001 ident: ref16/cit16 publication-title: Biotechnol. Bioeng. doi: 10.1002/1097-0290(20010305)72:5<548::AID-BIT1019>3.0.CO;2-2 – volume: 475 start-page: 368 year: 2011 ident: ref6/cit6 publication-title: Nature doi: 10.1038/nature10262 – volume: 108 start-page: E784 year: 2011 ident: ref1/cit1 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 459 start-page: 414 year: 2009 ident: ref22/cit22 publication-title: Nature doi: 10.1038/nature08016 – volume: 318 start-page: 1121 year: 2007 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.1148532 – volume: 1 start-page: 299 year: 2012 ident: ref9/cit9 publication-title: ACS Synth. Biol. doi: 10.1021/sb300018h – volume: 4 start-page: 161 year: 2008 ident: ref14/cit14 publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100204 – reference: 25126890 - ACS Synth Biol. 2014 Aug 15;3(8):506 |
SSID | ssj0000553538 |
Score | 1.9920428 |
Snippet | Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks.... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 617 |
SubjectTerms | Computer Simulation Computers, Molecular Enzymes - chemistry Enzymes - metabolism Feedback, Physiological Genes, Synthetic Models, Genetic Models, Theoretical Nucleic Acids Synthetic Biology - methods |
Title | Load Capacity Improvements in Nucleic Acid Based Systems Using Partially Open Feedback Control |
URI | http://dx.doi.org/10.1021/sb5000675 https://www.ncbi.nlm.nih.gov/pubmed/24946099 https://www.proquest.com/docview/1553708789 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2xXODAvpRNZjlwCWSxY-cIhQohQEiAxInIHqdSRZUi2h7g6xk7aQViu-TkOJY9znuz-BngwHLRxgxlIFPUAUe_5wQ94kTysLBKeu3O65v04oFfPorHCdj_JYMfR8d9I_w_VUzCdJySeTn-07wbB1JCIRLhb6yOib0EgjB3pCD0-W2HPtj_ij6_UEoPLa15OBsd0KkqSp6PhgNzhO_f9Rr_GvUCzNXUkp1UtrAIE0W5BLOfBAeX4emqpy1rEkAisW9WRRR8gLDPOiW7ceLGHWQn2LHslPDNslrRnPnSAnbrDE13u2_MFaKwFkGf0fjMmlXB-wo8tM7vmxdBfcNCoJNIDAJNdmRTlWqUXOk4w8RYi7IthSFsF-20kCHnQhSZykwSGqdVQx6VI1nueA8mqzBV9spiHVgmlLaKnC8kj05HqVHEZbTFIoncUOIG7ND85_UO6ec--R1H-XiiGnA4Wpoca31yd01G96eme-OmL5Uox0-Ndkfrm9OWcXkQXRa9IX2aLEaGSqqsAWvVwo-7IW-Up8SaN_4b7ibMEHfiLrwciS2YGrwOi23iJwOz4-3zA2XN2rY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZYOTAOsMFg3VgxiAOXbPlhx86xRFQdayskWmknIvs5lapWKVrSA_z1PDtpKKhou-TkOE_2c77Pz8_fI-SDYXwOCQhPxKA8Bm7NcXyEkWB-bqRw2p3jSTycsS-3_LaRybF3YdCIEnsq3SH-H3WB4KrU3P1a-QF5jCQktGUa-um3Np7icx5xV7g6RBLjcYTerZDQ7tsWhKD8G4T-wywdwgye16WKnG0usWR5uan0Jfz6R7bxYcYfkWcN0aT92jOOyaO8eEGe7sgPviTfR2tlaIpwCcjFaR1fcOHCki4KOrFSxwugfVgY-gnRztBG35y6RAP61bqdWq1-UpuWQgcIhFrBkqZ1-vsJmQ0-T9Oh19Rb8FQU8MpT6FUmlrECwaQKE4i0MSDmgmtEej6Pc-EzxnmeyERHvrbKNbi_spTLXvaB6BXpFOsiPyU04VIZiVsxwP2dCmItkdkoA3kUWFPCLunhOGXNeikzdxQeBlk7UF3ycTtDGTRq5bZoxmpf0_dt0x-1RMe-Ru-205zhArKnIqrI1xv8NDqO8KWQSZe8rue_7Qb3pixGDn12n7lvyZPhdDzKRteTm3NyiKyK2cBzwN-QTnW3yS-QuVS651z2N4qc4xc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkCo4AH3B8qpb9dBLaB527ByXhRWvbpFaJE6N7HFWWrHKIrJ7gF_P2MlGFFGVS05O4tgzmW8e_gbgq-ViiBnKQKaoA45e5wRd4kTysLBKeu7OH4P05IqfXYvrxlF0Z2FoEhU9qfJJfKfVt3bYMAxE3ysj_O9VLMKyS9e5Vg3d3q82phIKkQjfvDomIBMIMr9zMqGndztDhNXfhugf6NJbmf46_Gzn54tLbg5mU3OAD8-oG1__ARuw1gBO1q0l5C0sFOU7WH1CQ_ge_lxMtGU9MptImJzVcQYfNqzYqGQDR3k8QtbFkWWHZPUsa3jOmS84YJdO_PR4fM9ceQrrk0E0Gm9Yry6D_wBX_ePfvZOg6bsQ6CQS00CTdNlUpRolVzrOMDHWohxKYcjii2FayJBzIYpMZSYJjWOwIT_LQS936AeTj7BUTspiC1gmlLaKXDIkP09HqVGEcLTFIoncVOIO7NNa5Y3eVLlPicdR3i5UB77NdynHhrXcNc8YvzT0Szv0tqbqeGnQ5_lW56RILjuiy2Iyo1eT8MhQSZV1YLOWgfYx5KPylLD09v-m-wneXB7184vTwfkOrBC44i7-HIldWJrezYo9AjBTs--l9hEiV-Wa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load+Capacity+Improvements+in+Nucleic+Acid+Based+Systems+Using+Partially+Open+Feedback+Control&rft.jtitle=ACS+synthetic+biology&rft.au=Kulkarni%2C+Vishwesh&rft.au=Kharisov%2C+Evgeny&rft.au=Hovakimyan%2C+Naira&rft.au=Kim%2C+Jongmin&rft.date=2014-08-15&rft.issn=2161-5063&rft.eissn=2161-5063&rft.volume=3&rft.issue=8&rft.spage=617&rft.epage=626&rft_id=info:doi/10.1021%2Fsb5000675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_sb5000675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon |