Harnessing Biofilm-Mediated Plastic Biodegradation: Innovating Smart Material Design

The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh con...

Full description

Saved in:
Bibliographic Details
Published inACS applied engineering materials Vol. 3; no. 7; pp. 1915 - 1926
Main Authors Benes, Kaitlyn, Liguori, Madison, Velikaneye, Cody J., Kispert, Sarah, Pishnyuk, Alexis, Luzik, Eddie, Sun, Hao, Xiao, Dequan, Gu, Huan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.07.2025
Subjects
Online AccessGet full text
ISSN2771-9545
2771-9545
DOI10.1021/acsaenm.5c00179

Cover

Loading…
Abstract The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation.
AbstractList The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation.
The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation.
The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation.The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation.
Author Kispert, Sarah
Luzik, Eddie
Xiao, Dequan
Liguori, Madison
Velikaneye, Cody J.
Pishnyuk, Alexis
Gu, Huan
Sun, Hao
Benes, Kaitlyn
AuthorAffiliation Department of Chemistry & Chemical Engineering and Biomedical Engineering, Tagliatela College of Engineering
AuthorAffiliation_xml – name: Department of Chemistry & Chemical Engineering and Biomedical Engineering, Tagliatela College of Engineering
Author_xml – sequence: 1
  givenname: Kaitlyn
  surname: Benes
  fullname: Benes, Kaitlyn
– sequence: 2
  givenname: Madison
  surname: Liguori
  fullname: Liguori, Madison
– sequence: 3
  givenname: Cody J.
  surname: Velikaneye
  fullname: Velikaneye, Cody J.
– sequence: 4
  givenname: Sarah
  surname: Kispert
  fullname: Kispert, Sarah
– sequence: 5
  givenname: Alexis
  surname: Pishnyuk
  fullname: Pishnyuk, Alexis
– sequence: 6
  givenname: Eddie
  orcidid: 0000-0002-9342-3234
  surname: Luzik
  fullname: Luzik, Eddie
– sequence: 7
  givenname: Hao
  orcidid: 0000-0001-9153-4021
  surname: Sun
  fullname: Sun, Hao
– sequence: 8
  givenname: Dequan
  orcidid: 0000-0001-6405-9106
  surname: Xiao
  fullname: Xiao, Dequan
– sequence: 9
  givenname: Huan
  orcidid: 0000-0001-7300-6997
  surname: Gu
  fullname: Gu, Huan
  email: hgu@newhaven.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40741325$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYMoPrt2J7MUZNq8ZqZxI1ofFRQFdR3uJJkamUk0mRb896a0ii5c5cL9zjnhnj206bwzCB0SPCSYkhGoCMZ1w0JhTCqxgXZpVZFcFLzY_DXvoEGMbxhjRgkRZbWNdjiuOGG02EXPUwjOxGjdLLuwvrFtl98bbaE3OntsIfZWLRfazAJo6K13p9mtc36R5qR56iD02X3Cg4U2uzTRztwB2mqgjWawfvfRy_XV82Sa3z3c3E7O73JghPd5PSaF4KrS47KuDdNjBTVwDUI3jBRc0HHJGtAl4xXjulKCUSFUg0EwAY1o2D46W_m-z-vOaGVcH6CV78GmX31KD1b-3Tj7Kmd-IQllOAWw5HC8dgj-Y25iLzsblWlbcMbPo2SUFZiKkvCEHv0O-0n5vmUCRitABR9jMM0PQrBcFibXhcl1YUlxslKkhXzz8-DStf6lvwCIO5mR
Cites_doi 10.1016/j.jhazmat.2021.125928
10.1038/s41579-022-00791-0
10.1016/j.scitotenv.2022.160953
10.1016/j.biomaterials.2020.120595
10.1016/S0079-6700(01)00038-7
10.1038/s41579-022-00767-0
10.1016/j.jhazmat.2022.129709
10.1590/1678-4324-2021190321
10.1016/j.progpolymsci.2010.12.002
10.1016/j.progpolymsci.2020.101342
10.1007/BF00521967
10.1021/acssuschemeng.9b06635
10.1128/JB.188.2.370-377.2006
10.1007/s00253-006-0488-1
10.2174/1874829500902010068
10.3389/fcimb.2015.00007
10.1111/iwj.12083
10.1126/science.aad6359
10.1007/s10532-021-09927-0
10.1016/j.scitotenv.2022.154056
10.1016/j.envpol.2022.120237
10.1016/j.jhazmat.2023.133173
10.3390/microorganisms10081537
10.1007/s10532-023-10028-3
10.1139/cjm-2018-0335
10.1038/s41579-022-00692-2
10.1016/j.chemosphere.2023.140763
10.1111/j.1365-2958.2006.05279.x
10.1016/j.hazadv.2022.100077
10.1016/j.wasman.2021.07.011
10.1039/D3CC05612K
10.1002/app.13619
10.1016/j.enzmictec.2020.109656
10.14304/SURYA.JPR.V3N6.2
10.1016/j.ultramic.2010.10.005
10.1016/j.jhazmat.2016.11.037
10.4172/2155-6199.1000145
10.1038/srep29516
10.1002/cctc.202300310
10.1039/D2GC00425A
10.1038/s41586-020-2149-4
10.1128/microbiolspec.MB-0018-2015
10.3389/fbioe.2021.643722
10.1038/s41598-017-17072-z
10.1016/j.triboint.2021.106932
10.1016/bs.mie.2020.12.007
10.1080/20002297.2022.2088937
10.1111/1758-2229.70016
10.1016/j.tibtech.2012.05.003
10.1080/14787210.2018.1535898
10.1128/AEM.71.7.3668-3673.2005
10.1016/j.ibiod.2012.03.001
10.1021/acs.energyfuels.3c04109
10.3389/fmicb.2020.580709
10.1007/s40735-022-00677-x
10.1021/acs.estlett.3c00189
10.1038/nrmicro.2016.94
10.1128/JB.01464-08
10.3389/fmicb.2017.02311
10.1016/j.bioflm.2024.100203
10.1021/acsmaterialslett.1c00490
10.1016/j.copbio.2011.01.013
10.1016/j.biotechadv.2022.107991
10.1007/BF01569978
10.1016/S0922-338X(97)82780-8
10.1128/AEM.64.1.62-67.1998
10.1016/j.cis.2018.10.005
10.1016/j.wasman.2009.06.004
10.1038/s41579-020-0385-0
10.1016/j.heliyon.2022.e09932
10.1128/CMR.19.1.127-141.2006
10.1007/s10295-019-02161-x
10.1007/s00253-004-1717-0
10.1111/1574-6968.12114
10.3390/ijms242015181
10.1093/nsr/nwad207
10.3390/polym9020065
10.1016/j.ibiod.2010.06.002
10.1007/s00253-005-0259-4
10.1016/j.biotechadv.2007.12.005
10.1016/j.jhazmat.2022.129265
10.1007/s00253-004-1584-8
10.1007/s11157-022-09631-2
10.1073/pnas.0610226104
10.1016/j.dibe.2023.100188
10.2147/IJN.S490444
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society.
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society.
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acsaenm.5c00179
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2771-9545
EndPage 1926
ExternalDocumentID PMC12305493
40741325
10_1021_acsaenm_5c00179
a442869355
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: 2418289
GroupedDBID ABBLG
ABJNI
ABLBI
ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
GGK
VF5
VG9
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a314t-b81594c7d86bbe3d8caba4da9df315492863fad634734d7c93299cf0a939af9f3
IEDL.DBID ACS
ISSN 2771-9545
IngestDate Thu Aug 21 18:33:39 EDT 2025
Thu Jul 31 18:30:19 EDT 2025
Sun Aug 03 01:51:23 EDT 2025
Thu Jul 31 00:07:59 EDT 2025
Mon Jul 28 03:10:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords petropolymers
biodegradation
enzymes
synthetic plastic
enzyme kinetics
biofilm
Language English
License https://creativecommons.org/licenses/by/4.0
2025 The Authors. Published by American Chemical Society.
This article is licensed under CC-BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a314t-b81594c7d86bbe3d8caba4da9df315492863fad634734d7c93299cf0a939af9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7300-6997
0000-0001-6405-9106
0000-0002-9342-3234
0000-0001-9153-4021
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12305493
PMID 40741325
PQID 3235029614
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12305493
proquest_miscellaneous_3235029614
pubmed_primary_40741325
crossref_primary_10_1021_acsaenm_5c00179
acs_journals_10_1021_acsaenm_5c00179
PublicationCentury 2000
PublicationDate 2025-07-25
PublicationDateYYYYMMDD 2025-07-25
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied engineering materials
PublicationTitleAlternate ACS Appl. Eng. Mater
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1016/j.jhazmat.2021.125928
– ident: ref55/cit55
  doi: 10.1038/s41579-022-00791-0
– ident: ref76/cit76
  doi: 10.1016/j.scitotenv.2022.160953
– ident: ref53/cit53
  doi: 10.1016/j.biomaterials.2020.120595
– ident: ref74/cit74
  doi: 10.1016/S0079-6700(01)00038-7
– ident: ref26/cit26
  doi: 10.1038/s41579-022-00767-0
– ident: ref31/cit31
  doi: 10.1016/j.jhazmat.2022.129709
– ident: ref58/cit58
  doi: 10.1590/1678-4324-2021190321
– ident: ref24/cit24
  doi: 10.1016/j.progpolymsci.2010.12.002
– ident: ref1/cit1
  doi: 10.1016/j.progpolymsci.2020.101342
– ident: ref46/cit46
  doi: 10.1007/BF00521967
– ident: ref77/cit77
  doi: 10.1021/acssuschemeng.9b06635
– ident: ref66/cit66
  doi: 10.1128/JB.188.2.370-377.2006
– ident: ref85/cit85
  doi: 10.1007/s00253-006-0488-1
– ident: ref25/cit25
  doi: 10.2174/1874829500902010068
– ident: ref41/cit41
  doi: 10.3389/fcimb.2015.00007
– ident: ref36/cit36
  doi: 10.1111/iwj.12083
– ident: ref80/cit80
  doi: 10.1126/science.aad6359
– ident: ref71/cit71
  doi: 10.1007/s10532-021-09927-0
– ident: ref18/cit18
  doi: 10.1016/j.scitotenv.2022.154056
– ident: ref83/cit83
  doi: 10.1016/j.envpol.2022.120237
– ident: ref49/cit49
  doi: 10.1016/j.jhazmat.2023.133173
– ident: ref3/cit3
  doi: 10.3390/microorganisms10081537
– ident: ref27/cit27
  doi: 10.1007/s10532-023-10028-3
– ident: ref21/cit21
  doi: 10.1139/cjm-2018-0335
– ident: ref75/cit75
  doi: 10.1038/s41579-022-00692-2
– ident: ref20/cit20
  doi: 10.1016/j.chemosphere.2023.140763
– ident: ref40/cit40
  doi: 10.1111/j.1365-2958.2006.05279.x
– ident: ref10/cit10
  doi: 10.1016/j.hazadv.2022.100077
– ident: ref11/cit11
  doi: 10.1038/s41579-022-00767-0
– ident: ref33/cit33
  doi: 10.1016/j.wasman.2021.07.011
– ident: ref6/cit6
  doi: 10.1039/D3CC05612K
– ident: ref47/cit47
  doi: 10.1002/app.13619
– ident: ref48/cit48
  doi: 10.1016/j.enzmictec.2020.109656
– ident: ref78/cit78
  doi: 10.14304/SURYA.JPR.V3N6.2
– ident: ref67/cit67
  doi: 10.1016/j.ultramic.2010.10.005
– ident: ref23/cit23
  doi: 10.1016/j.jhazmat.2016.11.037
– ident: ref52/cit52
  doi: 10.4172/2155-6199.1000145
– ident: ref62/cit62
  doi: 10.1038/srep29516
– ident: ref7/cit7
  doi: 10.1002/cctc.202300310
– ident: ref29/cit29
  doi: 10.1039/D2GC00425A
– ident: ref81/cit81
  doi: 10.1038/s41586-020-2149-4
– ident: ref39/cit39
  doi: 10.1128/microbiolspec.MB-0018-2015
– ident: ref56/cit56
  doi: 10.3389/fbioe.2021.643722
– ident: ref84/cit84
  doi: 10.1038/s41598-017-17072-z
– ident: ref61/cit61
  doi: 10.1016/j.triboint.2021.106932
– ident: ref28/cit28
  doi: 10.1016/bs.mie.2020.12.007
– ident: ref43/cit43
  doi: 10.1080/20002297.2022.2088937
– ident: ref72/cit72
  doi: 10.1111/1758-2229.70016
– ident: ref19/cit19
  doi: 10.1016/j.tibtech.2012.05.003
– ident: ref34/cit34
  doi: 10.1080/14787210.2018.1535898
– ident: ref64/cit64
  doi: 10.1128/AEM.71.7.3668-3673.2005
– ident: ref45/cit45
  doi: 10.1016/j.ibiod.2012.03.001
– ident: ref5/cit5
  doi: 10.1021/acs.energyfuels.3c04109
– ident: ref17/cit17
  doi: 10.3389/fmicb.2020.580709
– ident: ref54/cit54
  doi: 10.1007/s40735-022-00677-x
– ident: ref30/cit30
  doi: 10.1021/acs.estlett.3c00189
– ident: ref13/cit13
  doi: 10.1038/nrmicro.2016.94
– ident: ref37/cit37
  doi: 10.1128/JB.01464-08
– ident: ref35/cit35
  doi: 10.3389/fmicb.2017.02311
– ident: ref42/cit42
  doi: 10.1016/j.bioflm.2024.100203
– ident: ref2/cit2
  doi: 10.1021/acsmaterialslett.1c00490
– ident: ref59/cit59
  doi: 10.1016/j.copbio.2011.01.013
– ident: ref9/cit9
  doi: 10.1016/j.biotechadv.2022.107991
– ident: ref68/cit68
  doi: 10.1007/BF01569978
– ident: ref50/cit50
  doi: 10.1016/S0922-338X(97)82780-8
– ident: ref70/cit70
  doi: 10.1128/AEM.64.1.62-67.1998
– ident: ref57/cit57
  doi: 10.1016/j.cis.2018.10.005
– ident: ref8/cit8
  doi: 10.1016/j.wasman.2009.06.004
– ident: ref12/cit12
  doi: 10.1038/s41579-020-0385-0
– ident: ref73/cit73
  doi: 10.1016/j.heliyon.2022.e09932
– ident: ref63/cit63
  doi: 10.1128/CMR.19.1.127-141.2006
– ident: ref65/cit65
  doi: 10.1007/s10295-019-02161-x
– ident: ref51/cit51
  doi: 10.1007/s00253-004-1717-0
– ident: ref14/cit14
  doi: 10.1111/1574-6968.12114
– ident: ref44/cit44
  doi: 10.3390/ijms242015181
– ident: ref4/cit4
  doi: 10.1093/nsr/nwad207
– ident: ref69/cit69
  doi: 10.3390/polym9020065
– ident: ref16/cit16
  doi: 10.1016/j.ibiod.2010.06.002
– ident: ref22/cit22
  doi: 10.1007/s00253-005-0259-4
– ident: ref86/cit86
  doi: 10.1016/j.biotechadv.2007.12.005
– ident: ref79/cit79
  doi: 10.1016/j.jhazmat.2022.129265
– ident: ref15/cit15
  doi: 10.1007/s00253-004-1584-8
– ident: ref82/cit82
  doi: 10.1007/s11157-022-09631-2
– ident: ref38/cit38
  doi: 10.1073/pnas.0610226104
– ident: ref60/cit60
  doi: 10.1016/j.dibe.2023.100188
– ident: ref87/cit87
  doi: 10.2147/IJN.S490444
SSID ssj0003211967
Score 2.2986515
SecondaryResourceType review_article
Snippet The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene...
The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1915
SubjectTerms Review
Title Harnessing Biofilm-Mediated Plastic Biodegradation: Innovating Smart Material Design
URI http://dx.doi.org/10.1021/acsaenm.5c00179
https://www.ncbi.nlm.nih.gov/pubmed/40741325
https://www.proquest.com/docview/3235029614
https://pubmed.ncbi.nlm.nih.gov/PMC12305493
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24L-NGBQ9eMk6TNGm8uTIKI4IK3srLUhxkqtjOxV9vktbRcRA9liyQvJf3Pvoe34fQAcSKW6EU1qIDmOWKYBCKYm6IUSCZhkDi2rvh3Qd2_Zg8fpFF_6zgk_gIdAm2GLQT7SOqnEazhKfC0-SfnN2NfqdQz1QW9GKJEDGWDhiMiHwm9vCZSJfjmWgCXv7skvyWdi4X64atMrAV-m6T5_awUm39Psnl-PeJltBCAz6jk9pbltGULVbQ_DdKwlV034U3H_3cR3Ta93reA9wLch7WRLcOarulfsB4kolaj-k4umqkVd2au4HzxagHVfDs6Dw0iKyhh8uL-7MubpQXMNCYVVilDuUwLUzKlbLUpBoUMAPS5DRwuqWc5mA4ZYIyI7QDgVLqvAOSSshlTtfRTPFS2E0USUtTY3y5klumOchUEodpDJcuViZKtZy_6DJrXk6ZhaI4ibPmkrLmklro8NNY2WvNw_H71P1PY2burfgCCBT2ZVhmlNCkQ6RDJC20URt3tBnz2IqSpIXSMbOPJnge7vGRov8U-Lhd8nfAV9Kt_x1lG80RLyLc8RQZO2imehvaXYdsKrUXfPoDhk71oQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOlGdZnkHiwMVLYjtOzK0tVFvoVqBupd6i8SNqhTZFTfbCr2fszYZuKyQ4Jn7I9oztT5nJ9wG8w8woXxjDbJEik7XhDAsjmHLcGdTSYiRxnR6pyYn8cpqfbkC6-heGBtFST20M4v9hF8g-0Dv0zXyc23Cw6ltwm6AID2z5O3vHw1cVEQjLomwsL4qMacIHA5_PjT7ChWTb9QvpBsq8nix55fbZ34Lvw7hj0smP8aIzY_vrGqXj_0zsAdzvoWiys_Sdh7Dhm0dw7wpB4WOYTfAynIX0kOyeB3XvOZtGcQ_vkm8EvKlpKHCBcmKpzvQxOeiFVqnN8Zw8M5liF_08-RTTRZ7Ayf7n2d6E9ToMDEUmO2ZKwjzSFq5UxnjhSosGpUPtahEZ3kolanRKyEJIV1iChFrbOkUtNNa6Fk9hs7lo_DNItBelcyF4qby0CnWpOSEcpzSdnLkxI_Ie21b9PmqrGCLnWdUvUtUv0gjer2xW_Vyycvy96tuVTSvaOSEcgo2_WLSV4CJPuSZ8MoLtpY2HzmRAWoLnIyjXrD9UCKzc6yXN-Vlk5yYoQDBYi-f_NpU3cGcymx5WhwdHX1_AXR7khdNAnvESNrvLhX9FmKczr6Ob_wY60v4C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkKr20NL3ltKmUg-9eNnYjhNzo8BqabsICVbiFvkVFVUbEMle-us74w0RC6pUjokf8mNsf_KMvw_gi0mtCrm1zOUjw2RlOTO5FUx57q3R0plI4jo9VpOZ_H6enXePwugtDDaiwZqa6MSnVX3lq45hIN3B_ybU82HmaHPVj2CDnHbEmL-3f9rfrAgiLYvSsTzPU6YRI_ScPvfqoEPJNauH0j2keTdg8tYJNH4Os77tMfDk93DR2qH7c4fW8aGd24RnHSRN9pY29ALWQv0Snt4iKnwFZxNzTXsifiTfLkjle86mUeQj-OQEATgWpQRP1BNLlabd5KgTXMUyp3O00GRq2mjvyUEMG3kNs_Hh2f6EdXoMzIhUtswWiH2ky32hrA3CF85YI73RvhKR6a1QojJeCZkL6XOH0FBrV42MFtpUuhJvYL2-rMM7SHQQhffkxFRBOmV0oTkiHa807qCZtQO0IteU3Xpqyugq52nZDVLZDdIAvt7MW3m1ZOf4d9bPN_Na4goit4ipw-WiKQUX2YhrxCkDeLuc574ySYhL8GwAxYoF9BmInXs1pb74FVm6ERIgHNbi_f915RM8PjkYlz-Pjn9swRNOKsMj4tD4AOvt9SJsI_Rp7cdo6X8BauAAlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+Biofilm-Mediated+Plastic+Biodegradation%3A+Innovating+Smart+Material+Design&rft.jtitle=ACS+applied+engineering+materials&rft.au=Benes%2C+Kaitlyn&rft.au=Liguori%2C+Madison&rft.au=Velikaneye%2C+Cody+J&rft.au=Kispert%2C+Sarah&rft.date=2025-07-25&rft.issn=2771-9545&rft.eissn=2771-9545&rft.volume=3&rft.issue=7&rft.spage=1915&rft_id=info:doi/10.1021%2Facsaenm.5c00179&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9545&client=summon