Harnessing Biofilm-Mediated Plastic Biodegradation: Innovating Smart Material Design
The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh con...
Saved in:
Published in | ACS applied engineering materials Vol. 3; no. 7; pp. 1915 - 1926 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2771-9545 2771-9545 |
DOI | 10.1021/acsaenm.5c00179 |
Cover
Loading…
Abstract | The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation. |
---|---|
AbstractList | The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation. The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation. The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation.The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS), have intensified the need for innovative recycling methods. Traditional recycling techniques often rely on harsh conditions, raising environmental and economic concerns. Biofilm-mediated biodegradation has emerged as a promising alternative, operating under mild conditions such as room temperature, neutral pH, and atmospheric pressure. However, the interactions between biofilm-forming microorganisms and synthetic plastics and the roles of secreted enzymes in these processes remain incompletely understood. This review explores the current understanding of biofilm-mediated biodegradationbiodeterioration, biofragmentation, bioassimilation, and mineralizationand the biochemical and physical interactions that control these processes. We highlight the latest findings on the enhancement of petropolymer degradation by biofilms, focusing on the roles of oxidative and attachment enzymes and the environmental factors influencing degradation efficiency. Understanding these complex interactions can inform the design of next-generation enzyme-responsive polymers that are not only easier to degrade but can also serve as smart materials for diverse applications, such as antifouling coatings on metals. This perspective bridges critical knowledge gaps and provides insights into harnessing biofilm-mediated processes for sustainable material innovation. |
Author | Kispert, Sarah Luzik, Eddie Xiao, Dequan Liguori, Madison Velikaneye, Cody J. Pishnyuk, Alexis Gu, Huan Sun, Hao Benes, Kaitlyn |
AuthorAffiliation | Department of Chemistry & Chemical Engineering and Biomedical Engineering, Tagliatela College of Engineering |
AuthorAffiliation_xml | – name: Department of Chemistry & Chemical Engineering and Biomedical Engineering, Tagliatela College of Engineering |
Author_xml | – sequence: 1 givenname: Kaitlyn surname: Benes fullname: Benes, Kaitlyn – sequence: 2 givenname: Madison surname: Liguori fullname: Liguori, Madison – sequence: 3 givenname: Cody J. surname: Velikaneye fullname: Velikaneye, Cody J. – sequence: 4 givenname: Sarah surname: Kispert fullname: Kispert, Sarah – sequence: 5 givenname: Alexis surname: Pishnyuk fullname: Pishnyuk, Alexis – sequence: 6 givenname: Eddie orcidid: 0000-0002-9342-3234 surname: Luzik fullname: Luzik, Eddie – sequence: 7 givenname: Hao orcidid: 0000-0001-9153-4021 surname: Sun fullname: Sun, Hao – sequence: 8 givenname: Dequan orcidid: 0000-0001-6405-9106 surname: Xiao fullname: Xiao, Dequan – sequence: 9 givenname: Huan orcidid: 0000-0001-7300-6997 surname: Gu fullname: Gu, Huan email: hgu@newhaven.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40741325$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLAzEUhYMoPrt2J7MUZNq8ZqZxI1ofFRQFdR3uJJkamUk0mRb896a0ii5c5cL9zjnhnj206bwzCB0SPCSYkhGoCMZ1w0JhTCqxgXZpVZFcFLzY_DXvoEGMbxhjRgkRZbWNdjiuOGG02EXPUwjOxGjdLLuwvrFtl98bbaE3OntsIfZWLRfazAJo6K13p9mtc36R5qR56iD02X3Cg4U2uzTRztwB2mqgjWawfvfRy_XV82Sa3z3c3E7O73JghPd5PSaF4KrS47KuDdNjBTVwDUI3jBRc0HHJGtAl4xXjulKCUSFUg0EwAY1o2D46W_m-z-vOaGVcH6CV78GmX31KD1b-3Tj7Kmd-IQllOAWw5HC8dgj-Y25iLzsblWlbcMbPo2SUFZiKkvCEHv0O-0n5vmUCRitABR9jMM0PQrBcFibXhcl1YUlxslKkhXzz8-DStf6lvwCIO5mR |
Cites_doi | 10.1016/j.jhazmat.2021.125928 10.1038/s41579-022-00791-0 10.1016/j.scitotenv.2022.160953 10.1016/j.biomaterials.2020.120595 10.1016/S0079-6700(01)00038-7 10.1038/s41579-022-00767-0 10.1016/j.jhazmat.2022.129709 10.1590/1678-4324-2021190321 10.1016/j.progpolymsci.2010.12.002 10.1016/j.progpolymsci.2020.101342 10.1007/BF00521967 10.1021/acssuschemeng.9b06635 10.1128/JB.188.2.370-377.2006 10.1007/s00253-006-0488-1 10.2174/1874829500902010068 10.3389/fcimb.2015.00007 10.1111/iwj.12083 10.1126/science.aad6359 10.1007/s10532-021-09927-0 10.1016/j.scitotenv.2022.154056 10.1016/j.envpol.2022.120237 10.1016/j.jhazmat.2023.133173 10.3390/microorganisms10081537 10.1007/s10532-023-10028-3 10.1139/cjm-2018-0335 10.1038/s41579-022-00692-2 10.1016/j.chemosphere.2023.140763 10.1111/j.1365-2958.2006.05279.x 10.1016/j.hazadv.2022.100077 10.1016/j.wasman.2021.07.011 10.1039/D3CC05612K 10.1002/app.13619 10.1016/j.enzmictec.2020.109656 10.14304/SURYA.JPR.V3N6.2 10.1016/j.ultramic.2010.10.005 10.1016/j.jhazmat.2016.11.037 10.4172/2155-6199.1000145 10.1038/srep29516 10.1002/cctc.202300310 10.1039/D2GC00425A 10.1038/s41586-020-2149-4 10.1128/microbiolspec.MB-0018-2015 10.3389/fbioe.2021.643722 10.1038/s41598-017-17072-z 10.1016/j.triboint.2021.106932 10.1016/bs.mie.2020.12.007 10.1080/20002297.2022.2088937 10.1111/1758-2229.70016 10.1016/j.tibtech.2012.05.003 10.1080/14787210.2018.1535898 10.1128/AEM.71.7.3668-3673.2005 10.1016/j.ibiod.2012.03.001 10.1021/acs.energyfuels.3c04109 10.3389/fmicb.2020.580709 10.1007/s40735-022-00677-x 10.1021/acs.estlett.3c00189 10.1038/nrmicro.2016.94 10.1128/JB.01464-08 10.3389/fmicb.2017.02311 10.1016/j.bioflm.2024.100203 10.1021/acsmaterialslett.1c00490 10.1016/j.copbio.2011.01.013 10.1016/j.biotechadv.2022.107991 10.1007/BF01569978 10.1016/S0922-338X(97)82780-8 10.1128/AEM.64.1.62-67.1998 10.1016/j.cis.2018.10.005 10.1016/j.wasman.2009.06.004 10.1038/s41579-020-0385-0 10.1016/j.heliyon.2022.e09932 10.1128/CMR.19.1.127-141.2006 10.1007/s10295-019-02161-x 10.1007/s00253-004-1717-0 10.1111/1574-6968.12114 10.3390/ijms242015181 10.1093/nsr/nwad207 10.3390/polym9020065 10.1016/j.ibiod.2010.06.002 10.1007/s00253-005-0259-4 10.1016/j.biotechadv.2007.12.005 10.1016/j.jhazmat.2022.129265 10.1007/s00253-004-1584-8 10.1007/s11157-022-09631-2 10.1073/pnas.0610226104 10.1016/j.dibe.2023.100188 10.2147/IJN.S490444 |
ContentType | Journal Article |
Copyright | 2025 The Authors. Published by American Chemical Society 2025 The Authors. Published by American Chemical Society. 2025 The Authors. Published by American Chemical Society 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society – notice: 2025 The Authors. Published by American Chemical Society. – notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acsaenm.5c00179 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2771-9545 |
EndPage | 1926 |
ExternalDocumentID | PMC12305493 40741325 10_1021_acsaenm_5c00179 a442869355 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: 2418289 |
GroupedDBID | ABBLG ABJNI ABLBI ABQRX ACS ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ GGK VF5 VG9 AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a314t-b81594c7d86bbe3d8caba4da9df315492863fad634734d7c93299cf0a939af9f3 |
IEDL.DBID | ACS |
ISSN | 2771-9545 |
IngestDate | Thu Aug 21 18:33:39 EDT 2025 Thu Jul 31 18:30:19 EDT 2025 Sun Aug 03 01:51:23 EDT 2025 Thu Jul 31 00:07:59 EDT 2025 Mon Jul 28 03:10:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Keywords | petropolymers biodegradation enzymes synthetic plastic enzyme kinetics biofilm |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2025 The Authors. Published by American Chemical Society. This article is licensed under CC-BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a314t-b81594c7d86bbe3d8caba4da9df315492863fad634734d7c93299cf0a939af9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7300-6997 0000-0001-6405-9106 0000-0002-9342-3234 0000-0001-9153-4021 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC12305493 |
PMID | 40741325 |
PQID | 3235029614 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12305493 proquest_miscellaneous_3235029614 pubmed_primary_40741325 crossref_primary_10_1021_acsaenm_5c00179 acs_journals_10_1021_acsaenm_5c00179 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-25 |
PublicationDateYYYYMMDD | 2025-07-25 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied engineering materials |
PublicationTitleAlternate | ACS Appl. Eng. Mater |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1016/j.jhazmat.2021.125928 – ident: ref55/cit55 doi: 10.1038/s41579-022-00791-0 – ident: ref76/cit76 doi: 10.1016/j.scitotenv.2022.160953 – ident: ref53/cit53 doi: 10.1016/j.biomaterials.2020.120595 – ident: ref74/cit74 doi: 10.1016/S0079-6700(01)00038-7 – ident: ref26/cit26 doi: 10.1038/s41579-022-00767-0 – ident: ref31/cit31 doi: 10.1016/j.jhazmat.2022.129709 – ident: ref58/cit58 doi: 10.1590/1678-4324-2021190321 – ident: ref24/cit24 doi: 10.1016/j.progpolymsci.2010.12.002 – ident: ref1/cit1 doi: 10.1016/j.progpolymsci.2020.101342 – ident: ref46/cit46 doi: 10.1007/BF00521967 – ident: ref77/cit77 doi: 10.1021/acssuschemeng.9b06635 – ident: ref66/cit66 doi: 10.1128/JB.188.2.370-377.2006 – ident: ref85/cit85 doi: 10.1007/s00253-006-0488-1 – ident: ref25/cit25 doi: 10.2174/1874829500902010068 – ident: ref41/cit41 doi: 10.3389/fcimb.2015.00007 – ident: ref36/cit36 doi: 10.1111/iwj.12083 – ident: ref80/cit80 doi: 10.1126/science.aad6359 – ident: ref71/cit71 doi: 10.1007/s10532-021-09927-0 – ident: ref18/cit18 doi: 10.1016/j.scitotenv.2022.154056 – ident: ref83/cit83 doi: 10.1016/j.envpol.2022.120237 – ident: ref49/cit49 doi: 10.1016/j.jhazmat.2023.133173 – ident: ref3/cit3 doi: 10.3390/microorganisms10081537 – ident: ref27/cit27 doi: 10.1007/s10532-023-10028-3 – ident: ref21/cit21 doi: 10.1139/cjm-2018-0335 – ident: ref75/cit75 doi: 10.1038/s41579-022-00692-2 – ident: ref20/cit20 doi: 10.1016/j.chemosphere.2023.140763 – ident: ref40/cit40 doi: 10.1111/j.1365-2958.2006.05279.x – ident: ref10/cit10 doi: 10.1016/j.hazadv.2022.100077 – ident: ref11/cit11 doi: 10.1038/s41579-022-00767-0 – ident: ref33/cit33 doi: 10.1016/j.wasman.2021.07.011 – ident: ref6/cit6 doi: 10.1039/D3CC05612K – ident: ref47/cit47 doi: 10.1002/app.13619 – ident: ref48/cit48 doi: 10.1016/j.enzmictec.2020.109656 – ident: ref78/cit78 doi: 10.14304/SURYA.JPR.V3N6.2 – ident: ref67/cit67 doi: 10.1016/j.ultramic.2010.10.005 – ident: ref23/cit23 doi: 10.1016/j.jhazmat.2016.11.037 – ident: ref52/cit52 doi: 10.4172/2155-6199.1000145 – ident: ref62/cit62 doi: 10.1038/srep29516 – ident: ref7/cit7 doi: 10.1002/cctc.202300310 – ident: ref29/cit29 doi: 10.1039/D2GC00425A – ident: ref81/cit81 doi: 10.1038/s41586-020-2149-4 – ident: ref39/cit39 doi: 10.1128/microbiolspec.MB-0018-2015 – ident: ref56/cit56 doi: 10.3389/fbioe.2021.643722 – ident: ref84/cit84 doi: 10.1038/s41598-017-17072-z – ident: ref61/cit61 doi: 10.1016/j.triboint.2021.106932 – ident: ref28/cit28 doi: 10.1016/bs.mie.2020.12.007 – ident: ref43/cit43 doi: 10.1080/20002297.2022.2088937 – ident: ref72/cit72 doi: 10.1111/1758-2229.70016 – ident: ref19/cit19 doi: 10.1016/j.tibtech.2012.05.003 – ident: ref34/cit34 doi: 10.1080/14787210.2018.1535898 – ident: ref64/cit64 doi: 10.1128/AEM.71.7.3668-3673.2005 – ident: ref45/cit45 doi: 10.1016/j.ibiod.2012.03.001 – ident: ref5/cit5 doi: 10.1021/acs.energyfuels.3c04109 – ident: ref17/cit17 doi: 10.3389/fmicb.2020.580709 – ident: ref54/cit54 doi: 10.1007/s40735-022-00677-x – ident: ref30/cit30 doi: 10.1021/acs.estlett.3c00189 – ident: ref13/cit13 doi: 10.1038/nrmicro.2016.94 – ident: ref37/cit37 doi: 10.1128/JB.01464-08 – ident: ref35/cit35 doi: 10.3389/fmicb.2017.02311 – ident: ref42/cit42 doi: 10.1016/j.bioflm.2024.100203 – ident: ref2/cit2 doi: 10.1021/acsmaterialslett.1c00490 – ident: ref59/cit59 doi: 10.1016/j.copbio.2011.01.013 – ident: ref9/cit9 doi: 10.1016/j.biotechadv.2022.107991 – ident: ref68/cit68 doi: 10.1007/BF01569978 – ident: ref50/cit50 doi: 10.1016/S0922-338X(97)82780-8 – ident: ref70/cit70 doi: 10.1128/AEM.64.1.62-67.1998 – ident: ref57/cit57 doi: 10.1016/j.cis.2018.10.005 – ident: ref8/cit8 doi: 10.1016/j.wasman.2009.06.004 – ident: ref12/cit12 doi: 10.1038/s41579-020-0385-0 – ident: ref73/cit73 doi: 10.1016/j.heliyon.2022.e09932 – ident: ref63/cit63 doi: 10.1128/CMR.19.1.127-141.2006 – ident: ref65/cit65 doi: 10.1007/s10295-019-02161-x – ident: ref51/cit51 doi: 10.1007/s00253-004-1717-0 – ident: ref14/cit14 doi: 10.1111/1574-6968.12114 – ident: ref44/cit44 doi: 10.3390/ijms242015181 – ident: ref4/cit4 doi: 10.1093/nsr/nwad207 – ident: ref69/cit69 doi: 10.3390/polym9020065 – ident: ref16/cit16 doi: 10.1016/j.ibiod.2010.06.002 – ident: ref22/cit22 doi: 10.1007/s00253-005-0259-4 – ident: ref86/cit86 doi: 10.1016/j.biotechadv.2007.12.005 – ident: ref79/cit79 doi: 10.1016/j.jhazmat.2022.129265 – ident: ref15/cit15 doi: 10.1007/s00253-004-1584-8 – ident: ref82/cit82 doi: 10.1007/s11157-022-09631-2 – ident: ref38/cit38 doi: 10.1073/pnas.0610226104 – ident: ref60/cit60 doi: 10.1016/j.dibe.2023.100188 – ident: ref87/cit87 doi: 10.2147/IJN.S490444 |
SSID | ssj0003211967 |
Score | 2.2986515 |
SecondaryResourceType | review_article |
Snippet | The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene... The persistent environmental challenges posed by synthetic plastics, particularly petroleum-derived petropolymers, such as polyethylene (PE), polypropylene... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1915 |
SubjectTerms | Review |
Title | Harnessing Biofilm-Mediated Plastic Biodegradation: Innovating Smart Material Design |
URI | http://dx.doi.org/10.1021/acsaenm.5c00179 https://www.ncbi.nlm.nih.gov/pubmed/40741325 https://www.proquest.com/docview/3235029614 https://pubmed.ncbi.nlm.nih.gov/PMC12305493 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24L-NGBQ9eMk6TNGm8uTIKI4IK3srLUhxkqtjOxV9vktbRcRA9liyQvJf3Pvoe34fQAcSKW6EU1qIDmOWKYBCKYm6IUSCZhkDi2rvh3Qd2_Zg8fpFF_6zgk_gIdAm2GLQT7SOqnEazhKfC0-SfnN2NfqdQz1QW9GKJEDGWDhiMiHwm9vCZSJfjmWgCXv7skvyWdi4X64atMrAV-m6T5_awUm39Psnl-PeJltBCAz6jk9pbltGULVbQ_DdKwlV034U3H_3cR3Ta93reA9wLch7WRLcOarulfsB4kolaj-k4umqkVd2au4HzxagHVfDs6Dw0iKyhh8uL-7MubpQXMNCYVVilDuUwLUzKlbLUpBoUMAPS5DRwuqWc5mA4ZYIyI7QDgVLqvAOSSshlTtfRTPFS2E0USUtTY3y5klumOchUEodpDJcuViZKtZy_6DJrXk6ZhaI4ibPmkrLmklro8NNY2WvNw_H71P1PY2burfgCCBT2ZVhmlNCkQ6RDJC20URt3tBnz2IqSpIXSMbOPJnge7vGRov8U-Lhd8nfAV9Kt_x1lG80RLyLc8RQZO2imehvaXYdsKrUXfPoDhk71oQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOlGdZnkHiwMVLYjtOzK0tVFvoVqBupd6i8SNqhTZFTfbCr2fszYZuKyQ4Jn7I9oztT5nJ9wG8w8woXxjDbJEik7XhDAsjmHLcGdTSYiRxnR6pyYn8cpqfbkC6-heGBtFST20M4v9hF8g-0Dv0zXyc23Cw6ltwm6AID2z5O3vHw1cVEQjLomwsL4qMacIHA5_PjT7ChWTb9QvpBsq8nix55fbZ34Lvw7hj0smP8aIzY_vrGqXj_0zsAdzvoWiys_Sdh7Dhm0dw7wpB4WOYTfAynIX0kOyeB3XvOZtGcQ_vkm8EvKlpKHCBcmKpzvQxOeiFVqnN8Zw8M5liF_08-RTTRZ7Ayf7n2d6E9ToMDEUmO2ZKwjzSFq5UxnjhSosGpUPtahEZ3kolanRKyEJIV1iChFrbOkUtNNa6Fk9hs7lo_DNItBelcyF4qby0CnWpOSEcpzSdnLkxI_Ie21b9PmqrGCLnWdUvUtUv0gjer2xW_Vyycvy96tuVTSvaOSEcgo2_WLSV4CJPuSZ8MoLtpY2HzmRAWoLnIyjXrD9UCKzc6yXN-Vlk5yYoQDBYi-f_NpU3cGcymx5WhwdHX1_AXR7khdNAnvESNrvLhX9FmKczr6Ob_wY60v4C |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkKr20NL3ltKmUg-9eNnYjhNzo8BqabsICVbiFvkVFVUbEMle-us74w0RC6pUjokf8mNsf_KMvw_gi0mtCrm1zOUjw2RlOTO5FUx57q3R0plI4jo9VpOZ_H6enXePwugtDDaiwZqa6MSnVX3lq45hIN3B_ybU82HmaHPVj2CDnHbEmL-3f9rfrAgiLYvSsTzPU6YRI_ScPvfqoEPJNauH0j2keTdg8tYJNH4Os77tMfDk93DR2qH7c4fW8aGd24RnHSRN9pY29ALWQv0Snt4iKnwFZxNzTXsifiTfLkjle86mUeQj-OQEATgWpQRP1BNLlabd5KgTXMUyp3O00GRq2mjvyUEMG3kNs_Hh2f6EdXoMzIhUtswWiH2ky32hrA3CF85YI73RvhKR6a1QojJeCZkL6XOH0FBrV42MFtpUuhJvYL2-rMM7SHQQhffkxFRBOmV0oTkiHa807qCZtQO0IteU3Xpqyugq52nZDVLZDdIAvt7MW3m1ZOf4d9bPN_Na4goit4ipw-WiKQUX2YhrxCkDeLuc574ySYhL8GwAxYoF9BmInXs1pb74FVm6ERIgHNbi_f915RM8PjkYlz-Pjn9swRNOKsMj4tD4AOvt9SJsI_Rp7cdo6X8BauAAlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+Biofilm-Mediated+Plastic+Biodegradation%3A+Innovating+Smart+Material+Design&rft.jtitle=ACS+applied+engineering+materials&rft.au=Benes%2C+Kaitlyn&rft.au=Liguori%2C+Madison&rft.au=Velikaneye%2C+Cody+J&rft.au=Kispert%2C+Sarah&rft.date=2025-07-25&rft.issn=2771-9545&rft.eissn=2771-9545&rft.volume=3&rft.issue=7&rft.spage=1915&rft_id=info:doi/10.1021%2Facsaenm.5c00179&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9545&client=summon |