Profiling Carbonylated Proteins in Human Plasma

This study reports the first proteomic-based identification and characterization of oxidized proteins in human plasma. The study was conducted by isolating carbonylated proteins from the plasma of male subjects (age 32−36) with avidin affinity chromatography subsequent to biotinylation of carbonyl g...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 9; no. 3; pp. 1330 - 1343
Main Authors Madian, Ashraf G, Regnier, Fred E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.03.2010
Subjects
Online AccessGet full text
ISSN1535-3893
1535-3907
1535-3907
DOI10.1021/pr900890k

Cover

Abstract This study reports the first proteomic-based identification and characterization of oxidized proteins in human plasma. The study was conducted by isolating carbonylated proteins from the plasma of male subjects (age 32−36) with avidin affinity chromatography subsequent to biotinylation of carbonyl groups with biotin hydrazide and sodium cyanoborohydride reduction of the resulting Schiff’s bases. Avidin selected proteins were digested with trypsin, and the peptide fragments were separated by C18 reversed phase chromatography and identified and characterized by both electrospray ionization and matrix assisted laser desorption ionization mass spectrometry. Approximately 0.2% of the total protein in plasma was selected with this method. Sixty-five high, medium, and low abundance proteins were identified, the majority appearing in all subjects. An interesting feature of the oxidized proteins isolated was that in addition to carbonylation they often bore other types of oxidative modification. Twenty-four oxidative modifications were mapped in 14 proteins. Fifteen carbonylation sites carried on 7 proteins were detected. Methionine oxidation was the most frequent single type of oxidative modification followed by tryptophan oxidation. Apolipoprotein B-100 had 20 oxidative modifications, the largest number for any protein observed in this study. Among the organs contributing oxidized proteins to plasma, kidney, liver, and soft tissues were the most frequent donors. One of the more important outcomes of this work was that mass spectral analysis allowed differentiation between different biological mechanisms of oxidation in individual proteins. For the first time, oxidation products arising from direct ROS oxidation of amino acid side chains in proteins, formation of advanced glycation endproducts (AGEs) adducts, and formation of adducts with lipid peroxidation products were simultaneously recognized and assigned to specific sites in proteins.
AbstractList This study reports the first proteomic-based identification and characterization of oxidized proteins in human plasma. The study was conducted by isolating carbonylated proteins from the plasma of male subjects (age 32−36) with avidin affinity chromatography subsequent to biotinylation of carbonyl groups with biotin hydrazide and sodium cyanoborohydride reduction of the resulting Schiff’s bases. Avidin selected proteins were digested with trypsin, and the peptide fragments were separated by C18 reversed phase chromatography and identified and characterized by both electrospray ionization and matrix assisted laser desorption ionization mass spectrometry. Approximately 0.2% of the total protein in plasma was selected with this method. Sixty-five high, medium, and low abundance proteins were identified, the majority appearing in all subjects. An interesting feature of the oxidized proteins isolated was that in addition to carbonylation they often bore other types of oxidative modification. Twenty-four oxidative modifications were mapped in 14 proteins. Fifteen carbonylation sites carried on 7 proteins were detected. Methionine oxidation was the most frequent single type of oxidative modification followed by tryptophan oxidation. Apolipoprotein B-100 had 20 oxidative modifications, the largest number for any protein observed in this study. Among the organs contributing oxidized proteins to plasma, kidney, liver, and soft tissues were the most frequent donors. One of the more important outcomes of this work was that mass spectral analysis allowed differentiation between different biological mechanisms of oxidation in individual proteins. For the first time, oxidation products arising from direct ROS oxidation of amino acid side chains in proteins, formation of advanced glycation endproducts (AGEs) adducts, and formation of adducts with lipid peroxidation products were simultaneously recognized and assigned to specific sites in proteins.
This study reports the first proteomic-based identification and characterization of oxidized proteins in human plasma. The study was conducted by isolating carbonylated proteins from the plasma of male subjects (age 32-36) with avidin affinity chromatography subsequent to biotinylation of carbonyl groups with biotin hydrazide and sodium cyanoborohydride reduction of the resulting Schiff's bases. Avidin selected proteins were digested with trypsin, and the peptide fragments were separated by C18 reversed phase chromatography and identified and characterized by both electrospray ionization and matrix assisted laser desorption ionization mass spectrometry. Approximately 0.2% of the total protein in plasma was selected with this method. Sixty-five high, medium, and low abundance proteins were identified, the majority appearing in all subjects. An interesting feature of the oxidized proteins isolated was that in addition to carbonylation they often bore other types of oxidative modification. Twenty-four oxidative modifications were mapped in 14 proteins. Fifteen carbonylation sites carried on 7 proteins were detected. Methionine oxidation was the most frequent single type of oxidative modification followed by tryptophan oxidation. Apolipoprotein B-100 had 20 oxidative modifications, the largest number for any protein observed in this study. Among the organs contributing oxidized proteins to plasma, kidney, liver, and soft tissues were the most frequent donors. One of the more important outcomes of this work was that mass spectral analysis allowed differentiation between different biological mechanisms of oxidation in individual proteins. For the first time, oxidation products arising from direct ROS oxidation of amino acid side chains in proteins, formation of advanced glycation endproducts (AGEs) adducts, and formation of adducts with lipid peroxidation products were simultaneously recognized and assigned to specific sites in proteins.This study reports the first proteomic-based identification and characterization of oxidized proteins in human plasma. The study was conducted by isolating carbonylated proteins from the plasma of male subjects (age 32-36) with avidin affinity chromatography subsequent to biotinylation of carbonyl groups with biotin hydrazide and sodium cyanoborohydride reduction of the resulting Schiff's bases. Avidin selected proteins were digested with trypsin, and the peptide fragments were separated by C18 reversed phase chromatography and identified and characterized by both electrospray ionization and matrix assisted laser desorption ionization mass spectrometry. Approximately 0.2% of the total protein in plasma was selected with this method. Sixty-five high, medium, and low abundance proteins were identified, the majority appearing in all subjects. An interesting feature of the oxidized proteins isolated was that in addition to carbonylation they often bore other types of oxidative modification. Twenty-four oxidative modifications were mapped in 14 proteins. Fifteen carbonylation sites carried on 7 proteins were detected. Methionine oxidation was the most frequent single type of oxidative modification followed by tryptophan oxidation. Apolipoprotein B-100 had 20 oxidative modifications, the largest number for any protein observed in this study. Among the organs contributing oxidized proteins to plasma, kidney, liver, and soft tissues were the most frequent donors. One of the more important outcomes of this work was that mass spectral analysis allowed differentiation between different biological mechanisms of oxidation in individual proteins. For the first time, oxidation products arising from direct ROS oxidation of amino acid side chains in proteins, formation of advanced glycation endproducts (AGEs) adducts, and formation of adducts with lipid peroxidation products were simultaneously recognized and assigned to specific sites in proteins.
This study reports the first proteomic-based identification and characterization of oxidized proteins in human plasma. The study was conducted by isolating carbonylated proteins from the plasma of male subjects (age 32-36) with avidin affinity chromatography subsequent to biotinylation of carbonyl groups with biotin hydrazide and sodium cyanoborohydride reduction of the resulting Schiff's bases. Avidin selected proteins were digested with trypsin, and the peptide fragments were separated by C18 reversed phase chromatography and identified and characterized by both electrospray ionization and matrix assisted laser desorption ionization mass spectrometry. Approximately 0.2% of the total protein in plasma was selected with this method. Sixty-five high, medium, and low abundance proteins were identified, the majority appearing in all subjects. An interesting feature of the oxidized proteins isolated was that in addition to carbonylation they often bore other types of oxidative modification. Twenty-four oxidative modifications were mapped in 14 proteins. Fifteen carbonylation sites carried on 7 proteins were detected. Methionine oxidation was the most frequent single type of oxidative modification followed by tryptophan oxidation. Apolipoprotein B-100 had 20 oxidative modifications, the largest number for any protein observed in this study. Among the organs contributing oxidized proteins to plasma, kidney, liver, and soft tissues were the most frequent donors. One of the more important outcomes of this work was that mass spectral analysis allowed differentiation between different biological mechanisms of oxidation in individual proteins. For the first time, oxidation products arising from direct ROS oxidation of amino acid side chains in proteins, formation of advanced glycation endproducts (AGEs) adducts, and formation of adducts with lipid peroxidation products were simultaneously recognized and assigned to specific sites in proteins.
Author Madian, Ashraf G
Regnier, Fred E
Author_xml – sequence: 1
  givenname: Ashraf G
  surname: Madian
  fullname: Madian, Ashraf G
– sequence: 2
  givenname: Fred E
  surname: Regnier
  fullname: Regnier, Fred E
  email: fregnier@purdue.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20121119$$D View this record in MEDLINE/PubMed
BookMark eNpt0D1PwzAQBmALFdEPGPgDKAtCDKE-O07iEUVAkSrRAebokjjIJbGLnQz996Tqx4A6-WQ9d7p7p2RkrFGE3AJ9AspgvnGS0lTSnwsyAcFFyCVNRsc6lXxMpt6vKQWRUH5FxowCAwA5IfOVs7VutPkOMnSFNdsGO1UFw3entPGBNsGib9EEqwZ9i9fkssbGq5vDOyNfry-f2SJcfry9Z8_LEDlEXYilYFLVtJaCJ5hIiHlVKKCCY1UhqihKk5LVjImqGJaM43gnUTKaVjwRwGfkYT934-xvr3yXt9qXqmnQKNv7POEcIIpjMci7g-yLVlX5xukW3TY_3jiAxz0onfXeqfpEgOa7_PJTfoOd_7Ol7rDT1nQOdXO2437fgaXP17Z3ZojljPsDG6x7yQ
CitedBy_id crossref_primary_10_1002_pmic_201200522
crossref_primary_10_1016_j_bbapap_2011_10_001
crossref_primary_10_1016_j_biopha_2019_108763
crossref_primary_10_1016_j_biochi_2010_07_008
crossref_primary_10_1093_jnen_nlz106
crossref_primary_10_1016_j_jchromb_2010_08_004
crossref_primary_10_1016_j_jprot_2011_06_029
crossref_primary_10_1039_c0ay00375a
crossref_primary_10_1111_jfbc_13191
crossref_primary_10_1021_acs_analchem_6b05065
crossref_primary_10_1039_C4CS00529E
crossref_primary_10_1016_j_jprot_2016_12_019
crossref_primary_10_1016_j_ecoenv_2021_112230
crossref_primary_10_1038_srep22962
crossref_primary_10_1039_C0MB00106F
crossref_primary_10_1002_rcm_4863
crossref_primary_10_1007_s13361_016_1554_2
crossref_primary_10_1039_c3an00724c
crossref_primary_10_1021_ac4039866
crossref_primary_10_1113_EP087564
crossref_primary_10_1016_j_mam_2022_101082
crossref_primary_10_1016_j_bbadis_2024_167584
crossref_primary_10_1021_cr300073p
crossref_primary_10_1007_s11481_013_9444_x
crossref_primary_10_1016_j_jprot_2011_10_017
crossref_primary_10_1186_1477_5956_10_35
crossref_primary_10_1186_s12918_017_0511_4
crossref_primary_10_3390_antiox13070877
crossref_primary_10_5114_amsad_2021_107823
crossref_primary_10_1021_jp5078054
crossref_primary_10_1016_j_jprot_2012_04_046
crossref_primary_10_1007_s00216_010_4289_0
crossref_primary_10_1021_pr500324y
crossref_primary_10_1194_jlr_R066597
crossref_primary_10_1016_j_jprot_2011_07_002
crossref_primary_10_1371_journal_pone_0071839
crossref_primary_10_1371_journal_pone_0101642
crossref_primary_10_1007_s13534_013_0114_y
crossref_primary_10_1080_00032719_2016_1186171
crossref_primary_10_1007_s11033_020_05328_3
crossref_primary_10_1002_jsfa_4525
crossref_primary_10_3892_etm_2017_4268
crossref_primary_10_1002_mas_21375
crossref_primary_10_1002_mas_21374
crossref_primary_10_1002_mas_21378
crossref_primary_10_1021_ac201856g
crossref_primary_10_1371_journal_pone_0116606
crossref_primary_10_1021_pr400136p
crossref_primary_10_1016_j_jprot_2011_03_031
crossref_primary_10_1016_j_jprot_2013_03_033
crossref_primary_10_1080_10715762_2020_1851027
crossref_primary_10_1007_s00726_015_1967_4
crossref_primary_10_1016_j_jprot_2013_06_004
crossref_primary_10_18632_oncotarget_9148
crossref_primary_10_1021_bi301313b
crossref_primary_10_1002_pmic_201400554
crossref_primary_10_1002_pmic_201400115
crossref_primary_10_1007_s00216_012_6324_9
crossref_primary_10_3390_ijms17040469
crossref_primary_10_1016_j_jprot_2011_07_014
crossref_primary_10_1159_000500742
crossref_primary_10_1016_j_redox_2013_01_007
crossref_primary_10_1002_mas_21381
crossref_primary_10_1016_j_foodchem_2015_08_055
crossref_primary_10_1039_C6RA04821H
crossref_primary_10_1186_s12859_017_1472_8
crossref_primary_10_1016_j_arabjc_2014_10_016
crossref_primary_10_3390_antiox10030369
crossref_primary_10_1016_j_ijbiomac_2020_12_095
crossref_primary_10_1016_j_jprot_2011_05_004
crossref_primary_10_1002_mas_21389
crossref_primary_10_1080_14789450_2018_1484283
crossref_primary_10_1186_2001_1326_1_2
crossref_primary_10_1007_s11250_023_03617_0
crossref_primary_10_1089_ars_2012_4705
crossref_primary_10_1021_bc200415v
crossref_primary_10_1002_chem_201804247
crossref_primary_10_1016_j_jprot_2012_04_027
crossref_primary_10_1002_pmic_201100223
crossref_primary_10_1002_mnfr_201100255
crossref_primary_10_3390_biom5020378
crossref_primary_10_3109_10715762_2014_944868
crossref_primary_10_1021_pr1002609
crossref_primary_10_1155_2017_4975264
crossref_primary_10_3109_10715762_2015_1131824
crossref_primary_10_1021_pr200140x
crossref_primary_10_3343_kjlm_2011_31_2_61
Cites_doi 10.1007/s00726-003-0027-7
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1111/j.1582-4934.2006.tb00407.x
10.1089/ars.2008.2034
10.1002/pmic.200700363
10.1021/pr0500657
10.1016/j.jchromb.2008.04.025
10.1126/science.1124619
10.1111/j.1582-4934.2007.00097.x
10.1016/j.brainres.2003.12.012
10.1016/S1471-4914(03)00031-5
10.1074/mcp.R800013-MCP200
10.1016/S0009-8981(03)00003-2
10.1021/pr060550h
10.1016/S0891-5849(02)00765-7
10.1021/pr0600024
10.1016/j.bbapap.2004.08.010
10.1021/ac010974p
10.1002/pmic.200700111
10.1002/0471973122.ch4
10.1080/10715760600918142
10.1021/pr060337l
10.1016/S0065-3233(08)60412-X
10.1016/j.chroma.2006.08.096
10.1007/s10517-007-0341-2
10.1016/0049-3848(89)90164-3
10.1006/abbi.2001.2690
10.1093/ndt/gfg031
10.1021/cr068287r
10.1021/ac062262a
10.1016/j.chroma.2006.11.009
10.1021/ac0484373
10.1016/j.envres.2007.09.008
10.1021/pr060021d
10.1021/ac8008675
10.1161/hq1101.098232
10.1016/0891-5849(94)90169-4
10.1007/s10517-005-0072-1
10.1023/A:1008859729045
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/pr900890k
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Profiling Carbonylated Proteins in Human Plasma
EISSN 1535-3907
EndPage 1343
ExternalDocumentID 20121119
10_1021_pr900890k
b145373820
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: 5R01AG025362-02
– fundername: NCI NIH HHS
  grantid: 1U24CA126480-01
GroupedDBID -
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ZA5
---
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a314t-ac529ef0f9537a79163dbe1053addaae4487c2f225db535666f953a9208d37513
IEDL.DBID ACS
ISSN 1535-3893
1535-3907
IngestDate Fri Jul 11 09:20:40 EDT 2025
Thu Jan 02 22:07:24 EST 2025
Thu Apr 24 22:49:58 EDT 2025
Tue Jul 01 01:36:19 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords protein carbonylation
protein lipid peroxidation adducts
advanced glycation endproducts
oxidative stress
human plasma
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a314t-ac529ef0f9537a79163dbe1053addaae4487c2f225db535666f953a9208d37513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20121119
PQID 733114665
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_733114665
pubmed_primary_20121119
crossref_primary_10_1021_pr900890k
crossref_citationtrail_10_1021_pr900890k
acs_journals_10_1021_pr900890k
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-05
PublicationDateYYYYMMDD 2010-03-05
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of proteome research
PublicationTitleAlternate J. Proteome Res
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Dalle-Donne I. (ref8/cit8) 2006; 10
Michelis R. (ref34/cit34) 2003; 18
Gong Y. (ref26/cit26) 2006; 5
Borisov Oleg V. (ref20/cit20) 2002; 74
Rossner P. (ref31/cit31) 2007; 11
Stief T. W. (ref37/cit37) 1989; 56
Obama T. (ref40/cit40) 2007; 7
Issaq Haleem J. (ref2/cit2) 2007; 107
Mirzaei H. (ref33/cit33) 2006; 1134
Haulica I. (ref4/cit4) 2002; 37
Jacobs Jon M. (ref1/cit1) 2005; 4
Upchurch G. R. (ref38/cit38) 1998; 5
Dalle-Donne I. (ref6/cit6) 2003; 9
Dalle-Donne I. (ref9/cit9) 2003; 329
Stadtman E. R. (ref29/cit29) 2005; 1703
Roitman E. V. (ref39/cit39) 2004; 138
Mirzaei H. (ref13/cit13) 2008; 8
Perkins D. N. (ref19/cit19) 1999; 20
Feeney R. E. (ref24/cit24) 1975; 29
Jana Chandan K. (ref12/cit12) 2002; 397
Bonetto V. (ref30/cit30) 2006
Mirzaei H. (ref18/cit18) 2007; 1141
Cho W. (ref27/cit27) 2008; 80
Nistala R. (ref43/cit43) 2008; 10
Mirzaei H. (ref16/cit16) 2006; 5
Azizova O. A. (ref36/cit36) 2007; 144
Stadtman E. R. (ref10/cit10) 2006; 40
Mirzaei H. (ref15/cit15) 2005; 77
Domon B. (ref28/cit28) 2006; 312
Ragino Y. I. (ref35/cit35) 2007
Berglund L. (ref23/cit23) 2008; 7
Barelli S. (ref14/cit14) 2007; 2
Dhahbi J. M. (ref42/cit42) 2003; 3
Mirzaei H. (ref22/cit22) 2008; 873
Butterfield D. A. (ref3/cit3) 2003; 25
Mirzaei H. (ref17/cit17) 2006; 5
Han B. (ref21/cit21) 2007; 79
Yi J. (ref25/cit25) 2007; 6
Mashiba S. (ref41/cit41) 2001; 21
Butterfield D. A. (ref5/cit5) 2004; 1000
Levine R. L. (ref7/cit7) 2002; 32
Shacter E. (ref11/cit11) 1994; 17
Yeh C.-C. (ref32/cit32) 2008; 106
References_xml – volume: 25
  start-page: 419
  issue: 3
  year: 2003
  ident: ref3/cit3
  publication-title: Amino Acids
  doi: 10.1007/s00726-003-0027-7
– volume: 2
  start-page: 142
  issue: 2
  year: 2007
  ident: ref14/cit14
  publication-title: Proteomics: Clin. Appl.
– volume: 20
  start-page: 3551
  issue: 18
  year: 1999
  ident: ref19/cit19
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– volume: 10
  start-page: 389
  issue: 2
  year: 2006
  ident: ref8/cit8
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2006.tb00407.x
– volume: 10
  start-page: 2047
  issue: 12
  year: 2008
  ident: ref43/cit43
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2008.2034
– volume: 8
  start-page: 1516
  issue: 7
  year: 2008
  ident: ref13/cit13
  publication-title: Proteomics
  doi: 10.1002/pmic.200700363
– volume: 4
  start-page: 1073
  issue: 4
  year: 2005
  ident: ref1/cit1
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0500657
– volume: 873
  start-page: 8
  issue: 1
  year: 2008
  ident: ref22/cit22
  publication-title: J. Chromatogr., B: Anal. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2008.04.025
– volume: 312
  start-page: 212
  issue: 5771
  year: 2006
  ident: ref28/cit28
  publication-title: Science
  doi: 10.1126/science.1124619
– volume: 11
  start-page: 1138
  issue: 5
  year: 2007
  ident: ref31/cit31
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2007.00097.x
– volume: 1000
  start-page: 1
  issue: 1
  year: 2004
  ident: ref5/cit5
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2003.12.012
– volume: 9
  start-page: 169
  issue: 4
  year: 2003
  ident: ref6/cit6
  publication-title: Trends Mol. Med.
  doi: 10.1016/S1471-4914(03)00031-5
– volume: 7
  start-page: 2019
  issue: 10
  year: 2008
  ident: ref23/cit23
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.R800013-MCP200
– volume: 329
  start-page: 23
  issue: 1
  year: 2003
  ident: ref9/cit9
  publication-title: Clin. Chim. Acta
  doi: 10.1016/S0009-8981(03)00003-2
– volume: 6
  start-page: 1768
  issue: 5
  year: 2007
  ident: ref25/cit25
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060550h
– volume: 37
  start-page: 15
  issue: 1
  year: 2002
  ident: ref4/cit4
  publication-title: Rom. J. Physiol.
– volume: 32
  start-page: 790
  issue: 9
  year: 2002
  ident: ref7/cit7
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/S0891-5849(02)00765-7
– volume: 5
  start-page: 1379
  issue: 6
  year: 2006
  ident: ref26/cit26
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0600024
– volume: 1703
  start-page: 135
  issue: 2
  year: 2005
  ident: ref29/cit29
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2004.08.010
– volume: 74
  start-page: 2284
  issue: 10
  year: 2002
  ident: ref20/cit20
  publication-title: Anal. Chem.
  doi: 10.1021/ac010974p
– volume: 7
  start-page: 2132
  issue: 13
  year: 2007
  ident: ref40/cit40
  publication-title: Proteomics
  doi: 10.1002/pmic.200700111
– start-page: 101
  year: 2006
  ident: ref30/cit30
  publication-title: Redox Proteomics
  doi: 10.1002/0471973122.ch4
– volume: 40
  start-page: 1250
  issue: 12
  year: 2006
  ident: ref10/cit10
  publication-title: Free Radical Res.
  doi: 10.1080/10715760600918142
– volume: 5
  start-page: 3249
  issue: 12
  year: 2006
  ident: ref16/cit16
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060337l
– volume: 29
  start-page: 135
  year: 1975
  ident: ref24/cit24
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(08)60412-X
– volume: 1134
  start-page: 122
  issue: 1
  year: 2006
  ident: ref33/cit33
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2006.08.096
– volume: 144
  start-page: 397
  issue: 3
  year: 2007
  ident: ref36/cit36
  publication-title: Bull. Exp. Biol. Med.
  doi: 10.1007/s10517-007-0341-2
– volume: 56
  start-page: 221
  issue: 2
  year: 1989
  ident: ref37/cit37
  publication-title: Thromb. Res.
  doi: 10.1016/0049-3848(89)90164-3
– volume: 397
  start-page: 433
  issue: 2
  year: 2002
  ident: ref12/cit12
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2001.2690
– volume: 18
  start-page: 924
  issue: 5
  year: 2003
  ident: ref34/cit34
  publication-title: Nephrol., Dial., Transplant.
  doi: 10.1093/ndt/gfg031
– start-page: 13
  issue: 1
  year: 2007
  ident: ref35/cit35
  publication-title: Klin. Lab. Diagn.
– volume: 107
  start-page: 3601
  issue: 8
  year: 2007
  ident: ref2/cit2
  publication-title: Chem. Rev.
  doi: 10.1021/cr068287r
– volume: 79
  start-page: 3342
  issue: 9
  year: 2007
  ident: ref21/cit21
  publication-title: Anal. Chem.
  doi: 10.1021/ac062262a
– volume: 1141
  start-page: 22
  issue: 1
  year: 2007
  ident: ref18/cit18
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2006.11.009
– volume: 77
  start-page: 2386
  issue: 8
  year: 2005
  ident: ref15/cit15
  publication-title: Anal. Chem.
  doi: 10.1021/ac0484373
– volume: 106
  start-page: 219
  issue: 2
  year: 2008
  ident: ref32/cit32
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2007.09.008
– volume: 5
  start-page: 2159
  issue: 9
  year: 2006
  ident: ref17/cit17
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060021d
– volume: 3
  start-page: 271
  year: 2003
  ident: ref42/cit42
  publication-title: Biol. Aging Its Modulation
– volume: 80
  start-page: 5286
  issue: 14
  year: 2008
  ident: ref27/cit27
  publication-title: Anal. Chem.
  doi: 10.1021/ac8008675
– volume: 21
  start-page: 1801
  issue: 11
  year: 2001
  ident: ref41/cit41
  publication-title: Arterioscler., Thromb., Vasc. Biol.
  doi: 10.1161/hq1101.098232
– volume: 17
  start-page: 429
  issue: 5
  year: 1994
  ident: ref11/cit11
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(94)90169-4
– volume: 138
  start-page: 467
  issue: 5
  year: 2004
  ident: ref39/cit39
  publication-title: Bull. Exp. Biol. Med.
  doi: 10.1007/s10517-005-0072-1
– volume: 5
  start-page: 9
  issue: 1
  year: 1998
  ident: ref38/cit38
  publication-title: J. Thromb. Thrombolysis
  doi: 10.1023/A:1008859729045
SSID ssj0015703
Score 2.2930253
Snippet This study reports the first proteomic-based identification and characterization of oxidized proteins in human plasma. The study was conducted by isolating...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1330
SubjectTerms Adult
Avidin - chemistry
Biotin - analogs & derivatives
Biotin - chemistry
Blood Proteins - analysis
Blood Proteins - metabolism
Chromatography, Affinity
Glycation End Products, Advanced
Humans
Lipid Peroxidation
Male
Organ Specificity
Oxidative Stress
Peptide Fragments - analysis
Peptide Fragments - metabolism
Protein Carbonylation
Proteomics - methods
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Trypsin - chemistry
Title Profiling Carbonylated Proteins in Human Plasma
URI http://dx.doi.org/10.1021/pr900890k
https://www.ncbi.nlm.nih.gov/pubmed/20121119
https://www.proquest.com/docview/733114665
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbGOMCF92M8pgo4cMlok3RtjmgwTUigSTBptypNU2kadNPaXfj1OH0JxAZ3t0pdN9_n2vkMcCMVd4SyOfEp14RT7RGhuU-kqygyBBcZiTmc_PzSHYz409gdN-B6TQWfOnfzhUCcEvZ0AzZpF8PL8J_ea10qMBJShSiqSwz6VvJB3y810KPSn9Czhk_muNLfhYfqdE7RTjLtLLOwoz5_izX-teQ92Cl5pXVfBMI-NHRyAFu9apzbIdwN8-nciFRWTy5C05CONDOyhkaoYZKk1iSx8j_61hAJ9Yc8glH_8a03IOW0BCKZwzMilUuFju1YuMyTHjqZRaFG-sRwC5NSYx7mKRrj9xuF6CtMW4ylFNT2I-a5DjuGZjJL9ClYNosx0VHMSBdyJ45D5tuSc0wl7TASnmhBG90ZlNGeBnkhmzpB_dwtuK08HahSa9yMvHhfZXpVm84LgY1VRlb1ugJ0m6lpyETPlmlgRk7iZt91W3BSvMb6LjSXr3PE2X-rPYftoifAdDJeQDNbLPUlUo0sbOeh9gU47Ml5
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbsIwELVaeqCX7gtdaFT10EsgsR0SHxEqoi0gpILELXIcR0K0AZFw6dd37CxdRNXeJ9Z4vMybzPgNQndcUJsJi5oeptKkWLomk9QzuSMwIAQHEIl6nDwYtnoT-jR1pjlNjnoLA0okMFKik_if7AJ2c7li4K6YNd9GOwBCsGrT0O68lBkDxSSVcaM6pnLCBYvQ10-VBxLJdw_0C6zU7qW7n_Up0orpqpJ5Y50GDfH-g7Pxf5ofoL0cZRrtbFscoi0ZH6Fqp2judoyaI92rG_yW0eGrQJWnA-gMjZGibZjFiTGLDf1_3xgBvH7jJ2jSfRh3embeO8HkxKapyYWDmYysiDnE5S6YnISBBDBF4ELjXEJU5gocwWkOAzAZBDFKkjNseSFxHZucokq8iOU5MiwSQdgjiCIypHYUBcSzOKUQWFpByFxWQ3WYtp_v_cTXaW1s--W8a-i-MLgvcuZx1QDjdZPobSm6zOg2NgkZxar5YDaV4eCxXKwTXzWghKu_5dTQWbaa5ShYk9nZ7OIvbW9QtTce9P3-4_D5Eu1m1QKqxvEKVdLVWl4DCEmDut59H3V10do
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgSMCF92M8RoU4cOnWNunaHKfCNF5jEkzarUrTVJoG3bR2F349Tl8CNAR3N3Kchz_XzmeAKy6oyYRBddeiUqeWdHQmqatzW1iIEGxEJOpx8lO_3RvS-5E9KgJF9RYGlUhwpCRL4qtTPQujgmHAbM3mDF0WMyarsKbSdapVQ8d7qbIGik0q50e1deWISyahr58qLySS717oF2iZuZjuNjxXymWVJZPmIg2a4uMHb-P_td-BrQJtap18e-zCioz3YMMrm7ztQ2uQ9exG_6V5fB6oMnUEn6E2UPQN4zjRxrGW_efXBgiz3_kBDLu3r15PL3oo6JyYNNW5sC0mIyNiNnG4g6YnYSARVBG82DiXGJ05worwVIcBmg2DGSXJmWW4IXFskxxCLZ7G8hg0g0QY_giiCA2pGUUBcQ1OKQaYRhAyh9WhgVP3izOQ-Fl62zL9at51uC6N7ouCgVw1wnhbJnpZic5y2o1lQlq5cj6aTWU6eCyni8RXjSjRBbTtOhzlK1qNYmWkdiY7-UvbC1gf3HT9x7v-wyls5kUDqtTxDGrpfCHPEYukQSPbgJ-KPNRd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profiling+Carbonylated+Proteins+in+Human+Plasma&rft.jtitle=Journal+of+proteome+research&rft.au=Madian%2C+Ashraf+G.&rft.au=Regnier%2C+Fred+E.&rft.date=2010-03-05&rft.issn=1535-3893&rft.eissn=1535-3907&rft.volume=9&rft.issue=3&rft.spage=1330&rft.epage=1343&rft_id=info:doi/10.1021%2Fpr900890k&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_pr900890k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon