Enhanced Surface Passivation of Subnanometer Silicon Dioxide Films by Superacidic Treatments
Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface passivation and can detrimentally impact subsequent processing steps. Here we develop a process whereby the surface passivation of nanometer and...
Saved in:
Published in | ACS applied energy materials Vol. 5; no. 2; pp. 1542 - 1550 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
28.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface passivation and can detrimentally impact subsequent processing steps. Here we develop a process whereby the surface passivation of nanometer and subnanometer SiO2 films is enhanced by up to 2 orders of magnitude by a simple room temperature treatment using the superacid bis(trifluoromethane)sulfonimide (TFSA, sometimes TFSI). By accurately modeling the effective lifetime curves corresponding to the superacid treated SiO2 samples, we have determined that the enhanced passivation is mainly due to a reduction in the interface defect density (D it) at the Si/SiO2 interface, with a minor contribution also arising from the presence of negative charge. X-ray photoelectron spectroscopy of the treated SiO2 films reveals the presence of fluorine, and this, along with hydrogen, is a strong candidate for the chemical passivation of defects at the Si/SiO2 interface. Post treatment, the SiO2 films show short time scale electronic instability, whereby a degradation and then recovery are observed over a period of 1–10 h which is attributed to variations in the D it, as determined from our analysis of the injection-dependent lifetime data. Following the instability period, the surface passivation remains relatively stable for days. Nuclear magnetic resonance measurements of superacid-based solutions reveal that electron-donating solvents should be avoided, as they exacerbate surface passivation instabilities. The results presented demonstrate that simple strategies can be used to enhance the passivation properties of ultrathin films greatly, which in the age of nanotechnology could offer benefits to device performance in a range of applications including solar cells and batteries. |
---|---|
AbstractList | Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface passivation and can detrimentally impact subsequent processing steps. Here we develop a process whereby the surface passivation of nanometer and subnanometer SiO2 films is enhanced by up to 2 orders of magnitude by a simple room temperature treatment using the superacid bis(trifluoromethane)sulfonimide (TFSA, sometimes TFSI). By accurately modeling the effective lifetime curves corresponding to the superacid treated SiO2 samples, we have determined that the enhanced passivation is mainly due to a reduction in the interface defect density (D it) at the Si/SiO2 interface, with a minor contribution also arising from the presence of negative charge. X-ray photoelectron spectroscopy of the treated SiO2 films reveals the presence of fluorine, and this, along with hydrogen, is a strong candidate for the chemical passivation of defects at the Si/SiO2 interface. Post treatment, the SiO2 films show short time scale electronic instability, whereby a degradation and then recovery are observed over a period of 1–10 h which is attributed to variations in the D it, as determined from our analysis of the injection-dependent lifetime data. Following the instability period, the surface passivation remains relatively stable for days. Nuclear magnetic resonance measurements of superacid-based solutions reveal that electron-donating solvents should be avoided, as they exacerbate surface passivation instabilities. The results presented demonstrate that simple strategies can be used to enhance the passivation properties of ultrathin films greatly, which in the age of nanotechnology could offer benefits to device performance in a range of applications including solar cells and batteries. |
Author | White, Joshua T Walker, Marc Grant, Nicholas E Pain, Sophie L Murphy, John D Prokes, Ivan |
AuthorAffiliation | Department of Chemistry School of Engineering Department of Physics |
AuthorAffiliation_xml | – name: School of Engineering – name: Department of Physics – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Nicholas E orcidid: 0000-0002-3943-838X surname: Grant fullname: Grant, Nicholas E email: nicholas.e.grant@warwick.ac.uk organization: School of Engineering – sequence: 2 givenname: Sophie L orcidid: 0000-0003-1333-2023 surname: Pain fullname: Pain, Sophie L organization: School of Engineering – sequence: 3 givenname: Joshua T surname: White fullname: White, Joshua T organization: Department of Chemistry – sequence: 4 givenname: Marc surname: Walker fullname: Walker, Marc organization: Department of Physics – sequence: 5 givenname: Ivan surname: Prokes fullname: Prokes, Ivan organization: Department of Chemistry – sequence: 6 givenname: John D orcidid: 0000-0003-0993-5972 surname: Murphy fullname: Murphy, John D organization: School of Engineering |
BookMark | eNp1kEFLAzEQRoNUsNZePecs7Jpkt8nmKLVVoaDQehOW2WQWU7pJSbZi_70r7cGLpxke3zcM75qMfPBIyC1nOWeC34NJgF3ODRO6mF2QsZipMmNaitGf_YpMU9oyxrjmUmg9Jh8L_wneoKXrQ2zBIH2DlNwX9C54GtoBNx586LDHSNdu58zAH134dhbp0u26RJvjkNpjBOOsM3QTEfoOfZ9uyGULu4TT85yQ9-ViM3_OVq9PL_OHVQYFL_usUtxApcuKKY0ahFJMCquFrAqrpBBNA2VTigKkkY2daeAWRVtJ0yosKyyKCclPd00MKUVs6310HcRjzVn9q6c-6anPeobC3akw8HobDtEP7_0X_gEvmWn9 |
CitedBy_id | crossref_primary_10_1016_j_solmat_2024_112799 crossref_primary_10_1039_D3RA03956K crossref_primary_10_1039_D3NR01374J crossref_primary_10_1002_smtd_202300423 crossref_primary_10_1002_smll_202303442 |
Cites_doi | 10.1039/p29880001157 10.1039/c2ra01183b 10.1016/j.apsusc.2017.03.204 10.1109/16.2441 10.1007/BF00648901 10.3390/cryst10111056 10.1021/acsenergylett.0c02081 10.1002/pssa.201700293 10.1109/TED.2019.2901281 10.1109/JPHOTOV.2017.2751511 10.1016/j.solmat.2014.06.015 10.1346/CCMN.1997.0450506 10.1103/PhysRevB.86.165202 10.1021/acs.cgd.5b00374 10.1021/acs.jpcc.6b07659 10.1002/(SICI)1099-159X(199703/04)5:2<109::AID-PIP160>3.0.CO;2-8 10.1038/ncomms7230 10.1063/1.350782 10.1063/1.347181 10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8 10.1007/BF00650369 10.1063/1.3559260 10.1116/11.20121101 10.1039/C6CP00651E 10.1039/D0FD00018C 10.1021/acsami.6b07822 10.1063/1.1621720 10.1016/j.apsusc.2020.146026 10.1021/acsaem.0c01337 10.1021/ic00191a011 10.1002/pssr.201600080 10.1002/pssa.201600360 10.1016/j.solmat.2018.03.028 10.1063/5.0003704 10.1109/LED.2009.2025898 10.1016/j.solmat.2019.110155 10.1016/0168-9002(96)00205-7 10.1016/0169-4332(89)90450-9 10.1021/jp3019815 10.1021/nl505011f 10.1016/0378-3820(79)90029-8 10.1021/acsaelm.9b00251 10.1021/acsami.0c03158 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaem.1c02935 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2574-0962 |
EndPage | 1550 |
ExternalDocumentID | 10_1021_acsaem_1c02935 a686003692 |
GroupedDBID | ABFRP ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX ABQRX BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a314t-871ca8948079e9a277062d92683d7622bba4b423a6c6bd59a1de2f86cf7e48e33 |
IEDL.DBID | ACS |
ISSN | 2574-0962 |
IngestDate | Fri Aug 23 03:45:09 EDT 2024 Wed Mar 02 10:58:13 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | lifetime passivation silicon dioxide nanometer superacid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a314t-871ca8948079e9a277062d92683d7622bba4b423a6c6bd59a1de2f86cf7e48e33 |
ORCID | 0000-0003-1333-2023 0000-0003-0993-5972 0000-0002-3943-838X |
OpenAccessLink | https://doi.org/10.1021/acsaem.1c02935 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_acsaem_1c02935 acs_journals_10_1021_acsaem_1c02935 |
PublicationCentury | 2000 |
PublicationDate | 20220228 2022-02-28 |
PublicationDateYYYYMMDD | 2022-02-28 |
PublicationDate_xml | – month: 02 year: 2022 text: 20220228 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied energy materials |
PublicationTitleAlternate | ACS Appl. Energy Mater |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Reichardt C. (ref37/cit37) 2011 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref41/cit41 doi: 10.1039/p29880001157 – ident: ref4/cit4 doi: 10.1039/c2ra01183b – ident: ref17/cit17 doi: 10.1016/j.apsusc.2017.03.204 – ident: ref26/cit26 – ident: ref27/cit27 doi: 10.1109/16.2441 – ident: ref40/cit40 doi: 10.1007/BF00648901 – ident: ref33/cit33 doi: 10.3390/cryst10111056 – ident: ref5/cit5 doi: 10.1021/acsenergylett.0c02081 – ident: ref25/cit25 doi: 10.1002/pssa.201700293 – ident: ref31/cit31 doi: 10.1109/TED.2019.2901281 – ident: ref22/cit22 doi: 10.1109/JPHOTOV.2017.2751511 – ident: ref9/cit9 doi: 10.1016/j.solmat.2014.06.015 – ident: ref43/cit43 doi: 10.1346/CCMN.1997.0450506 – ident: ref29/cit29 doi: 10.1103/PhysRevB.86.165202 – ident: ref2/cit2 doi: 10.1021/acs.cgd.5b00374 – ident: ref45/cit45 doi: 10.1021/acs.jpcc.6b07659 – ident: ref16/cit16 doi: 10.1002/(SICI)1099-159X(199703/04)5:2<109::AID-PIP160>3.0.CO;2-8 – ident: ref34/cit34 doi: 10.1038/ncomms7230 – ident: ref28/cit28 doi: 10.1063/1.350782 – ident: ref1/cit1 doi: 10.1063/1.347181 – ident: ref32/cit32 doi: 10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8 – ident: ref39/cit39 doi: 10.1007/BF00650369 – ident: ref18/cit18 doi: 10.1063/1.3559260 – ident: ref36/cit36 doi: 10.1116/11.20121101 – volume-title: Solvent and Solvent Effects in Organic Chemistry year: 2011 ident: ref37/cit37 contributor: fullname: Reichardt C. – ident: ref44/cit44 doi: 10.1039/C6CP00651E – ident: ref10/cit10 doi: 10.1039/D0FD00018C – ident: ref21/cit21 doi: 10.1021/acsami.6b07822 – ident: ref12/cit12 doi: 10.1063/1.1621720 – ident: ref3/cit3 doi: 10.1016/j.apsusc.2020.146026 – ident: ref6/cit6 doi: 10.1021/acsaem.0c01337 – ident: ref38/cit38 doi: 10.1021/ic00191a011 – ident: ref19/cit19 doi: 10.1002/pssr.201600080 – ident: ref20/cit20 doi: 10.1002/pssa.201600360 – ident: ref23/cit23 doi: 10.1016/j.solmat.2018.03.028 – ident: ref24/cit24 doi: 10.1063/5.0003704 – ident: ref11/cit11 doi: 10.1109/LED.2009.2025898 – ident: ref13/cit13 doi: 10.1016/j.solmat.2019.110155 – ident: ref14/cit14 doi: 10.1016/0168-9002(96)00205-7 – ident: ref15/cit15 doi: 10.1016/0169-4332(89)90450-9 – ident: ref35/cit35 doi: 10.1021/jp3019815 – ident: ref8/cit8 doi: 10.1021/nl505011f – ident: ref42/cit42 doi: 10.1016/0378-3820(79)90029-8 – ident: ref30/cit30 doi: 10.1021/acsaelm.9b00251 – ident: ref7/cit7 doi: 10.1021/acsami.0c03158 |
SSID | ssj0001916299 |
Score | 2.26237 |
Snippet | Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 1542 |
Title | Enhanced Surface Passivation of Subnanometer Silicon Dioxide Films by Superacidic Treatments |
URI | http://dx.doi.org/10.1021/acsaem.1c02935 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvBBR86lzSNEkfZW4MQRG2wR6EkqQpFrdurB2ov97Ty9hwiD62hFBOT_J9yTnnOwjdACQBzaCuo2VkHSY84fjMazpw1gg1UZGRRbjg6Zl3B-xx6A2X9x0_I_iU3CmTKjtuENMEZPI20RYVsDJyEtTqLW9TgOXQolkkuCBzgJfThULj2hQ5Dpl0BYdWAKWzV6obpYUOYZ5H8t6YZ7phvtZVGv_81n20W7FKfF-6wQHasMkh2lnRGjxCr-3krYj24958Filj8Qvw5qq3GZ5E8FonKpmM8_wY3ItH4CIJfognH3FocScejVOsP2HU1M6UicPY4P4iST09RoNOu9_qOlVrBUe5hGWwBxKjpJ_Xk_vWV1SIJqehT7l0Q9geqdaKaWBaihuuQ89XJLQ0ktxEwjJpXfcE1ZJJYk8R9qynNCfKwsmNGQmMAx6E4T4VwGaErKNrMEtQLY00KKLelASlrYLKVnV0u_gdwbTU2fhl5Nm_5jtH2zQvVCiKzy9QLZvN7SXQh0xfFZ7zDYXMvko |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDb7E-FxQ8pW0276PUlqptKbSFHoSwu9lgsE1Kk4L6652kiS2KoMcsyzBMJvt9m3kB3CAkIc2gmsJtXyq6ZViKoxs1Be8aHleZL-wsXNDpmq2h_jgyRmtQLWphUIkYJcVZEH_ZXUCt4hqTk4oqaghQxjpsGBaiZcqF6v3lTxUkOzSbGYmeqCtIz2nRqPGHiBSORLwCRyu40tyF3pdGWTrJa2We8Ir4-Nas8R8q78FOzjHJ3cIp9mFNhgewvdJ58BCeG-FLFvsn_fnMZ0KSHrLofNIZiXxc5iELo0maLUP6wRgdJiT3QfQWeJI0g_EkJvwdd03ljInACwQZFCnr8REMm41BvaXkgxYUpql6gieiKpjtpNXljnQYtdC01HOoaWseHpaUc6Zz5F3MFCb3DIepnqS-bQrfkrotNe0YSmEUyhMghjQYN1Um8R6nCxv5Bz5YwnSohdzGsstwjWZx8w8ldrMYOFXdha3c3FZluC3eijtddN34Zefpn-RdwWZr0Gm77Yfu0xls0bSEIStLP4dSMpvLCyQWCb_MnOkTVmDGrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBuzivAQWfOpf0kvZx7MK8jcE22INQkjTF4taOtQP113uadToUQR8TwuFwcpLzJeeG0BWYJIAZ1DSEGyrDYjYzPMuuGvDWCAThoXS1u-Cx47QH1t3QHhZ53HkuDDCRAqVUO_HzUz0JwqLCALmBea7GFSKrYKTsVbRmM6J9s7V67-tjBQAP1X0jQRstAyA6XRRr_EEiN0kyXTJJS7altY36n1zpkJKXyiwTFfn-rWDjP9neQVsF1sS1uXLsohUV76HNpQqE--ipGT_rGADcm01DLhXuApouOp7hJIRpEfM4GedRM7gXjUBxYtyIktcoULgVjcYpFm-waqKmXEZBJHF_EbqeHqBBq9mvt42i4YLBTWJlcDMSyV0vzzL3lMcpY1WHBh51XDOAS5MKwS0B-Is70hGB7XESKBq6jgyZslxlmoeoFCexOkLYVjYXDuEK3nOWdAGHwIBJx6MMMA5zy-gSxOIXByb1tS-cEn8uK7-QVRldL3bGn8yrb_yy8vhP9C7QerfR8h9uO_cnaIPmmQw6O_0UlbLpTJ0BvsjEudanD-LJySk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Surface+Passivation+of+Subnanometer+Silicon+Dioxide+Films+by+Superacidic+Treatments&rft.jtitle=ACS+applied+energy+materials&rft.au=Grant%2C+Nicholas+E.&rft.au=Pain%2C+Sophie+L.&rft.au=White%2C+Joshua+T.&rft.au=Walker%2C+Marc&rft.date=2022-02-28&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=5&rft.issue=2&rft.spage=1542&rft.epage=1550&rft_id=info:doi/10.1021%2Facsaem.1c02935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaem_1c02935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon |