Enhanced Surface Passivation of Subnanometer Silicon Dioxide Films by Superacidic Treatments

Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface passivation and can detrimentally impact subsequent processing steps. Here we develop a process whereby the surface passivation of nanometer and...

Full description

Saved in:
Bibliographic Details
Published inACS applied energy materials Vol. 5; no. 2; pp. 1542 - 1550
Main Authors Grant, Nicholas E, Pain, Sophie L, White, Joshua T, Walker, Marc, Prokes, Ivan, Murphy, John D
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface passivation and can detrimentally impact subsequent processing steps. Here we develop a process whereby the surface passivation of nanometer and subnanometer SiO2 films is enhanced by up to 2 orders of magnitude by a simple room temperature treatment using the superacid bis­(trifluoro­methane)­sulfonimide (TFSA, sometimes TFSI). By accurately modeling the effective lifetime curves corresponding to the superacid treated SiO2 samples, we have determined that the enhanced passivation is mainly due to a reduction in the interface defect density (D it) at the Si/SiO2 interface, with a minor contribution also arising from the presence of negative charge. X-ray photoelectron spectroscopy of the treated SiO2 films reveals the presence of fluorine, and this, along with hydrogen, is a strong candidate for the chemical passivation of defects at the Si/SiO2 interface. Post treatment, the SiO2 films show short time scale electronic instability, whereby a degradation and then recovery are observed over a period of 1–10 h which is attributed to variations in the D it, as determined from our analysis of the injection-dependent lifetime data. Following the instability period, the surface passivation remains relatively stable for days. Nuclear magnetic resonance measurements of superacid-based solutions reveal that electron-donating solvents should be avoided, as they exacerbate surface passivation instabilities. The results presented demonstrate that simple strategies can be used to enhance the passivation properties of ultrathin films greatly, which in the age of nanotechnology could offer benefits to device performance in a range of applications including solar cells and batteries.
AbstractList Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface passivation and can detrimentally impact subsequent processing steps. Here we develop a process whereby the surface passivation of nanometer and subnanometer SiO2 films is enhanced by up to 2 orders of magnitude by a simple room temperature treatment using the superacid bis­(trifluoro­methane)­sulfonimide (TFSA, sometimes TFSI). By accurately modeling the effective lifetime curves corresponding to the superacid treated SiO2 samples, we have determined that the enhanced passivation is mainly due to a reduction in the interface defect density (D it) at the Si/SiO2 interface, with a minor contribution also arising from the presence of negative charge. X-ray photoelectron spectroscopy of the treated SiO2 films reveals the presence of fluorine, and this, along with hydrogen, is a strong candidate for the chemical passivation of defects at the Si/SiO2 interface. Post treatment, the SiO2 films show short time scale electronic instability, whereby a degradation and then recovery are observed over a period of 1–10 h which is attributed to variations in the D it, as determined from our analysis of the injection-dependent lifetime data. Following the instability period, the surface passivation remains relatively stable for days. Nuclear magnetic resonance measurements of superacid-based solutions reveal that electron-donating solvents should be avoided, as they exacerbate surface passivation instabilities. The results presented demonstrate that simple strategies can be used to enhance the passivation properties of ultrathin films greatly, which in the age of nanotechnology could offer benefits to device performance in a range of applications including solar cells and batteries.
Author White, Joshua T
Walker, Marc
Grant, Nicholas E
Pain, Sophie L
Murphy, John D
Prokes, Ivan
AuthorAffiliation Department of Chemistry
School of Engineering
Department of Physics
AuthorAffiliation_xml – name: School of Engineering
– name: Department of Physics
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Nicholas E
  orcidid: 0000-0002-3943-838X
  surname: Grant
  fullname: Grant, Nicholas E
  email: nicholas.e.grant@warwick.ac.uk
  organization: School of Engineering
– sequence: 2
  givenname: Sophie L
  orcidid: 0000-0003-1333-2023
  surname: Pain
  fullname: Pain, Sophie L
  organization: School of Engineering
– sequence: 3
  givenname: Joshua T
  surname: White
  fullname: White, Joshua T
  organization: Department of Chemistry
– sequence: 4
  givenname: Marc
  surname: Walker
  fullname: Walker, Marc
  organization: Department of Physics
– sequence: 5
  givenname: Ivan
  surname: Prokes
  fullname: Prokes, Ivan
  organization: Department of Chemistry
– sequence: 6
  givenname: John D
  orcidid: 0000-0003-0993-5972
  surname: Murphy
  fullname: Murphy, John D
  organization: School of Engineering
BookMark eNp1kEFLAzEQRoNUsNZePecs7Jpkt8nmKLVVoaDQehOW2WQWU7pJSbZi_70r7cGLpxke3zcM75qMfPBIyC1nOWeC34NJgF3ODRO6mF2QsZipMmNaitGf_YpMU9oyxrjmUmg9Jh8L_wneoKXrQ2zBIH2DlNwX9C54GtoBNx586LDHSNdu58zAH134dhbp0u26RJvjkNpjBOOsM3QTEfoOfZ9uyGULu4TT85yQ9-ViM3_OVq9PL_OHVQYFL_usUtxApcuKKY0ahFJMCquFrAqrpBBNA2VTigKkkY2daeAWRVtJ0yosKyyKCclPd00MKUVs6310HcRjzVn9q6c-6anPeobC3akw8HobDtEP7_0X_gEvmWn9
CitedBy_id crossref_primary_10_1016_j_solmat_2024_112799
crossref_primary_10_1039_D3RA03956K
crossref_primary_10_1039_D3NR01374J
crossref_primary_10_1002_smtd_202300423
crossref_primary_10_1002_smll_202303442
Cites_doi 10.1039/p29880001157
10.1039/c2ra01183b
10.1016/j.apsusc.2017.03.204
10.1109/16.2441
10.1007/BF00648901
10.3390/cryst10111056
10.1021/acsenergylett.0c02081
10.1002/pssa.201700293
10.1109/TED.2019.2901281
10.1109/JPHOTOV.2017.2751511
10.1016/j.solmat.2014.06.015
10.1346/CCMN.1997.0450506
10.1103/PhysRevB.86.165202
10.1021/acs.cgd.5b00374
10.1021/acs.jpcc.6b07659
10.1002/(SICI)1099-159X(199703/04)5:2<109::AID-PIP160>3.0.CO;2-8
10.1038/ncomms7230
10.1063/1.350782
10.1063/1.347181
10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8
10.1007/BF00650369
10.1063/1.3559260
10.1116/11.20121101
10.1039/C6CP00651E
10.1039/D0FD00018C
10.1021/acsami.6b07822
10.1063/1.1621720
10.1016/j.apsusc.2020.146026
10.1021/acsaem.0c01337
10.1021/ic00191a011
10.1002/pssr.201600080
10.1002/pssa.201600360
10.1016/j.solmat.2018.03.028
10.1063/5.0003704
10.1109/LED.2009.2025898
10.1016/j.solmat.2019.110155
10.1016/0168-9002(96)00205-7
10.1016/0169-4332(89)90450-9
10.1021/jp3019815
10.1021/nl505011f
10.1016/0378-3820(79)90029-8
10.1021/acsaelm.9b00251
10.1021/acsami.0c03158
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaem.1c02935
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2574-0962
EndPage 1550
ExternalDocumentID 10_1021_acsaem_1c02935
a686003692
GroupedDBID ABFRP
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
AAYXX
ABQRX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a314t-871ca8948079e9a277062d92683d7622bba4b423a6c6bd59a1de2f86cf7e48e33
IEDL.DBID ACS
ISSN 2574-0962
IngestDate Fri Aug 23 03:45:09 EDT 2024
Wed Mar 02 10:58:13 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords lifetime
passivation
silicon dioxide
nanometer
superacid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a314t-871ca8948079e9a277062d92683d7622bba4b423a6c6bd59a1de2f86cf7e48e33
ORCID 0000-0003-1333-2023
0000-0003-0993-5972
0000-0002-3943-838X
OpenAccessLink https://doi.org/10.1021/acsaem.1c02935
PageCount 9
ParticipantIDs crossref_primary_10_1021_acsaem_1c02935
acs_journals_10_1021_acsaem_1c02935
PublicationCentury 2000
PublicationDate 20220228
2022-02-28
PublicationDateYYYYMMDD 2022-02-28
PublicationDate_xml – month: 02
  year: 2022
  text: 20220228
  day: 28
PublicationDecade 2020
PublicationTitle ACS applied energy materials
PublicationTitleAlternate ACS Appl. Energy Mater
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Reichardt C. (ref37/cit37) 2011
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref41/cit41
  doi: 10.1039/p29880001157
– ident: ref4/cit4
  doi: 10.1039/c2ra01183b
– ident: ref17/cit17
  doi: 10.1016/j.apsusc.2017.03.204
– ident: ref26/cit26
– ident: ref27/cit27
  doi: 10.1109/16.2441
– ident: ref40/cit40
  doi: 10.1007/BF00648901
– ident: ref33/cit33
  doi: 10.3390/cryst10111056
– ident: ref5/cit5
  doi: 10.1021/acsenergylett.0c02081
– ident: ref25/cit25
  doi: 10.1002/pssa.201700293
– ident: ref31/cit31
  doi: 10.1109/TED.2019.2901281
– ident: ref22/cit22
  doi: 10.1109/JPHOTOV.2017.2751511
– ident: ref9/cit9
  doi: 10.1016/j.solmat.2014.06.015
– ident: ref43/cit43
  doi: 10.1346/CCMN.1997.0450506
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.86.165202
– ident: ref2/cit2
  doi: 10.1021/acs.cgd.5b00374
– ident: ref45/cit45
  doi: 10.1021/acs.jpcc.6b07659
– ident: ref16/cit16
  doi: 10.1002/(SICI)1099-159X(199703/04)5:2<109::AID-PIP160>3.0.CO;2-8
– ident: ref34/cit34
  doi: 10.1038/ncomms7230
– ident: ref28/cit28
  doi: 10.1063/1.350782
– ident: ref1/cit1
  doi: 10.1063/1.347181
– ident: ref32/cit32
  doi: 10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8
– ident: ref39/cit39
  doi: 10.1007/BF00650369
– ident: ref18/cit18
  doi: 10.1063/1.3559260
– ident: ref36/cit36
  doi: 10.1116/11.20121101
– volume-title: Solvent and Solvent Effects in Organic Chemistry
  year: 2011
  ident: ref37/cit37
  contributor:
    fullname: Reichardt C.
– ident: ref44/cit44
  doi: 10.1039/C6CP00651E
– ident: ref10/cit10
  doi: 10.1039/D0FD00018C
– ident: ref21/cit21
  doi: 10.1021/acsami.6b07822
– ident: ref12/cit12
  doi: 10.1063/1.1621720
– ident: ref3/cit3
  doi: 10.1016/j.apsusc.2020.146026
– ident: ref6/cit6
  doi: 10.1021/acsaem.0c01337
– ident: ref38/cit38
  doi: 10.1021/ic00191a011
– ident: ref19/cit19
  doi: 10.1002/pssr.201600080
– ident: ref20/cit20
  doi: 10.1002/pssa.201600360
– ident: ref23/cit23
  doi: 10.1016/j.solmat.2018.03.028
– ident: ref24/cit24
  doi: 10.1063/5.0003704
– ident: ref11/cit11
  doi: 10.1109/LED.2009.2025898
– ident: ref13/cit13
  doi: 10.1016/j.solmat.2019.110155
– ident: ref14/cit14
  doi: 10.1016/0168-9002(96)00205-7
– ident: ref15/cit15
  doi: 10.1016/0169-4332(89)90450-9
– ident: ref35/cit35
  doi: 10.1021/jp3019815
– ident: ref8/cit8
  doi: 10.1021/nl505011f
– ident: ref42/cit42
  doi: 10.1016/0378-3820(79)90029-8
– ident: ref30/cit30
  doi: 10.1021/acsaelm.9b00251
– ident: ref7/cit7
  doi: 10.1021/acsami.0c03158
SSID ssj0001916299
Score 2.26237
Snippet Subnanometer-scale silicon dioxide (SiO2) films are frequently present before, during, and after silicon device processing, yet they offer minimal surface...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 1542
Title Enhanced Surface Passivation of Subnanometer Silicon Dioxide Films by Superacidic Treatments
URI http://dx.doi.org/10.1021/acsaem.1c02935
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvBBR86lzSNEkfZW4MQRG2wR6EkqQpFrdurB2ov97Ty9hwiD62hFBOT_J9yTnnOwjdACQBzaCuo2VkHSY84fjMazpw1gg1UZGRRbjg6Zl3B-xx6A2X9x0_I_iU3CmTKjtuENMEZPI20RYVsDJyEtTqLW9TgOXQolkkuCBzgJfThULj2hQ5Dpl0BYdWAKWzV6obpYUOYZ5H8t6YZ7phvtZVGv_81n20W7FKfF-6wQHasMkh2lnRGjxCr-3krYj24958Filj8Qvw5qq3GZ5E8FonKpmM8_wY3ItH4CIJfognH3FocScejVOsP2HU1M6UicPY4P4iST09RoNOu9_qOlVrBUe5hGWwBxKjpJ_Xk_vWV1SIJqehT7l0Q9geqdaKaWBaihuuQ89XJLQ0ktxEwjJpXfcE1ZJJYk8R9qynNCfKwsmNGQmMAx6E4T4VwGaErKNrMEtQLY00KKLelASlrYLKVnV0u_gdwbTU2fhl5Nm_5jtH2zQvVCiKzy9QLZvN7SXQh0xfFZ7zDYXMvko
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDb7E-FxQ8pW0276PUlqptKbSFHoSwu9lgsE1Kk4L6652kiS2KoMcsyzBMJvt9m3kB3CAkIc2gmsJtXyq6ZViKoxs1Be8aHleZL-wsXNDpmq2h_jgyRmtQLWphUIkYJcVZEH_ZXUCt4hqTk4oqaghQxjpsGBaiZcqF6v3lTxUkOzSbGYmeqCtIz2nRqPGHiBSORLwCRyu40tyF3pdGWTrJa2We8Ir4-Nas8R8q78FOzjHJ3cIp9mFNhgewvdJ58BCeG-FLFvsn_fnMZ0KSHrLofNIZiXxc5iELo0maLUP6wRgdJiT3QfQWeJI0g_EkJvwdd03ljInACwQZFCnr8REMm41BvaXkgxYUpql6gieiKpjtpNXljnQYtdC01HOoaWseHpaUc6Zz5F3MFCb3DIepnqS-bQrfkrotNe0YSmEUyhMghjQYN1Um8R6nCxv5Bz5YwnSohdzGsstwjWZx8w8ldrMYOFXdha3c3FZluC3eijtddN34Zefpn-RdwWZr0Gm77Yfu0xls0bSEIStLP4dSMpvLCyQWCb_MnOkTVmDGrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBuzivAQWfOpf0kvZx7MK8jcE22INQkjTF4taOtQP113uadToUQR8TwuFwcpLzJeeG0BWYJIAZ1DSEGyrDYjYzPMuuGvDWCAThoXS1u-Cx47QH1t3QHhZ53HkuDDCRAqVUO_HzUz0JwqLCALmBea7GFSKrYKTsVbRmM6J9s7V67-tjBQAP1X0jQRstAyA6XRRr_EEiN0kyXTJJS7altY36n1zpkJKXyiwTFfn-rWDjP9neQVsF1sS1uXLsohUV76HNpQqE--ipGT_rGADcm01DLhXuApouOp7hJIRpEfM4GedRM7gXjUBxYtyIktcoULgVjcYpFm-waqKmXEZBJHF_EbqeHqBBq9mvt42i4YLBTWJlcDMSyV0vzzL3lMcpY1WHBh51XDOAS5MKwS0B-Is70hGB7XESKBq6jgyZslxlmoeoFCexOkLYVjYXDuEK3nOWdAGHwIBJx6MMMA5zy-gSxOIXByb1tS-cEn8uK7-QVRldL3bGn8yrb_yy8vhP9C7QerfR8h9uO_cnaIPmmQw6O_0UlbLpTJ0BvsjEudanD-LJySk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Surface+Passivation+of+Subnanometer+Silicon+Dioxide+Films+by+Superacidic+Treatments&rft.jtitle=ACS+applied+energy+materials&rft.au=Grant%2C+Nicholas+E.&rft.au=Pain%2C+Sophie+L.&rft.au=White%2C+Joshua+T.&rft.au=Walker%2C+Marc&rft.date=2022-02-28&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=5&rft.issue=2&rft.spage=1542&rft.epage=1550&rft_id=info:doi/10.1021%2Facsaem.1c02935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaem_1c02935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon