Conformational Preferences of X-Pro Sequences: Ala-Pro and Aib-Pro Motifs

Conformational preferences and prolyl cis−trans isomerizations of the X-Pro motifs (Ac-X-Pro-NHMe, X = Ala and Aib) are explored using the meta-hybrid functional M06-2X and the double-hybrid functional B2PLYP-D with empirical dispersion corrections in the gas phase and in water, where solvation free...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 114; no. 44; pp. 14077 - 14086
Main Authors Byun, Byung Jin, Song, Il Keun, Chung, Yong Je, Ryu, Keun Ho, Kang, Young Kee
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.11.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Conformational preferences and prolyl cis−trans isomerizations of the X-Pro motifs (Ac-X-Pro-NHMe, X = Ala and Aib) are explored using the meta-hybrid functional M06-2X and the double-hybrid functional B2PLYP-D with empirical dispersion corrections in the gas phase and in water, where solvation free energies were calculated using the implicit SMD model. Ac-Ala-Pro-NHMe favors the type VI β-turns in the gas phase and the open conformations in water. The populations of type VI β-turns decrease from 71% in the gas phase to 21% in water, which is reasonably consistent with IR and NMR experimental results on tBoc-Ala-Pro-NHMe. However, Ac-Aib-Pro-NHMe prefers the type I β-turns with α-helical structures for both residues in the gas phase and in water, whose populations are estimated to be 66% in both phases. These calculated results may rationalize why most of the peptaibiotics containing the Aib-Pro sequence have a regular α-helical conformation at the N- or C-terminus but a kinked α-helical structure in the middle of the helix. The cis−trans isomerizations of the Ala-Pro and Aib-Pro peptide bonds proceed via the clockwise rotation with the different backbone conformations. The rotational barriers to cis-to-trans isomerization are estimated to be 19.73 kcal/mol for the Ala-Pro tripeptide and 16.64 kcal/mol for the Aib-Pro tripeptide in water, which indicates that the rotational barrier becomes lower by ∼3 kcal/mol for the Aib-Pro peptide bond. The calculated rotational barrier for Ac-Ala-Pro-NHMe is consistent with the observed value of 19.3 kcal/mol for Suc-Ala-Ala-Pro-Phe-pNA from NMR experiments in a buffered solution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
DOI:10.1021/jp107200f