Activation of Methyltrioxorhenium for Olefin Metathesis by a Frustrated Lewis Pair

Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2–Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 48; pp. 33214 - 33228
Main Authors Stöferle, Yannick, Kalapos, Péter Pál, Willi, Patrik, Chen, Peter
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.12.2024
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.4c12888

Cover

Loading…
Abstract Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2–Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C–H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris­(pentafluorophenyl)­borane (B­(C6F5)3), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.
AbstractList Methyltrioxorhenium (MTO) supported on Al O or SiO -Al O is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C-H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris(pentafluorophenyl)borane (B(C F ) ), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.
Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2–Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C–H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris­(pentafluorophenyl)­borane (B­(C6F5)3), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.
Methyltrioxorhenium (MTO) supported on Al₂O₃ or SiO₂–Al₂O₃ is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C–H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris­(pentafluorophenyl)­borane (B­(C₆F₅)₃), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.
Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2-Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C-H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris(pentafluorophenyl)borane (B(C6F5)3), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2-Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C-H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris(pentafluorophenyl)borane (B(C6F5)3), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.
Author Kalapos, Péter Pál
Stöferle, Yannick
Willi, Patrik
Chen, Peter
AuthorAffiliation ETH Zurich
Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry
AuthorAffiliation_xml – name: Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry
– name: ETH Zurich
Author_xml – sequence: 1
  givenname: Yannick
  surname: Stöferle
  fullname: Stöferle, Yannick
– sequence: 2
  givenname: Péter Pál
  surname: Kalapos
  fullname: Kalapos, Péter Pál
– sequence: 3
  givenname: Patrik
  surname: Willi
  fullname: Willi, Patrik
– sequence: 4
  givenname: Peter
  orcidid: 0000-0002-9280-4369
  surname: Chen
  fullname: Chen, Peter
  email: peter.chen@org.chem.ethz.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39571142$$D View this record in MEDLINE/PubMed
BookMark eNqNkb1PwzAQxS1URFtgY0YZGUjx-SN1R1RRQCoqQt0jJz2rrtIYbAfof0-iFlgYmE5399M73XtD0qtdjYRcAB0BZXCz0WUYiRKYUuqIDEAymkpgWY8MKKUsHauM98kwhE3bCqbghPT5RI4BBBuQl9sy2ncdrasTZ5InjOtdFb11n86vsbbNNjHOJ4sKja27tY5rDDYkxS7Rycw3IXodcZXM8aOdPmvrz8ix0VXA80M9JcvZ3XL6kM4X94_T23mqOYiYCsMmXHGZCQkZHXMsVkZrZXRBBaVGZYwhFOOCrUSJhrWvTqTKDBqTSYAJPyVXe9lX794aDDHf2lBiVekaXRNyDlIw2YLwD5SDEopnnerlAW2KLa7yV2-32u_yb8da4HoPlN6F4NH8IEDzLpC8CyQ_BPJ7uhtuXOPr1pK_0S8akooC
Cites_doi 10.1002/anie.200805392
10.1002/1522-2675(20000906)83:9<2192::AID-HLCA2192>3.0.CO;2-G
10.1021/ct300900e
10.1002/qua.21985
10.1002/mrc.4394
10.1016/j.chemphys.2008.10.036
10.1021/acs.jctc.8b01176
10.1002/chem.202203611
10.1016/j.jcat.2007.10.007
10.1039/C4CY01710B
10.1021/ja00175a047
10.1002/jcc.10255
10.1021/jacs.7b06997
10.1002/jcc.1056
10.1021/acs.accounts.9b00225
10.1021/ja980004s
10.1002/anie.200700211
10.1021/jasms.0c00430
10.1021/acs.inorgchem.0c00658
10.1002/cphc.202200670
10.1021/om0100479
10.1002/anie.200351496
10.1016/j.pnmrs.2006.09.001
10.1021/jacs.5b06794
10.1039/a907908d
10.1039/C9CP06869D
10.1021/om049029s
10.1002/anie.199116361
10.1021/jacs.8b08630
10.1063/1.466059
10.1021/acs.jctc.6b00410
10.1039/b508541a
10.1063/1.478813
10.1021/ja00356a019
10.1063/5.0004608
10.1021/om050962k
10.1007/BF01114537
10.1021/jacs.9b04019
10.1016/S0920-5861(99)00051-6
10.1002/anie.196400011
10.1021/jacs.6b00447
10.1021/acs.jctc.9b00143
10.1063/1.3382344
10.1063/1.467943
10.1063/1.478522
10.1021/jacs.1c10845
10.1002/wcms.1606
10.1021/ja971285r
10.1021/jacs.6b06953
10.1021/om300852s
10.1039/b515623h
10.1515/pac-2015-0703
10.1021/cr900122p
10.1021/ja3042383
10.1021/ja900572x
10.1021/ja5111392
10.1002/wcms.81
10.1002/cctc.201000066
10.1002/jcc.21759
10.1021/jp810292n
10.1002/anie.201409800
10.1021/ic000128h
10.1002/jcc.10318
10.1039/D0SC06880B
10.1021/jacs.2c08886
10.1021/ic960701q
10.1016/j.ccr.2015.03.015
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.4c12888
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 33228
ExternalDocumentID 39571142
10_1021_jacs_4c12888
c041493069
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a314t-4f29383564516073ebdfaa8fab0400f8622e1b7b2d4cef20219586feff651193
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Sep 05 06:50:26 EDT 2025
Fri Sep 05 10:41:16 EDT 2025
Thu Apr 03 06:58:56 EDT 2025
Tue Jul 01 03:11:18 EDT 2025
Thu Dec 19 03:14:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a314t-4f29383564516073ebdfaa8fab0400f8622e1b7b2d4cef20219586feff651193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9280-4369
PMID 39571142
PQID 3131848369
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3154251931
proquest_miscellaneous_3131848369
pubmed_primary_39571142
crossref_primary_10_1021_jacs_4c12888
acs_journals_10_1021_jacs_4c12888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-04
PublicationDateYYYYMMDD 2024-12-04
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref58/cit58
ref22/cit22
ADF (ref41/cit41)
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref61/cit61
  doi: 10.1002/anie.200805392
– ident: ref53/cit53
  doi: 10.1002/1522-2675(20000906)83:9<2192::AID-HLCA2192>3.0.CO;2-G
– ident: ref46/cit46
  doi: 10.1021/ct300900e
– ident: ref39/cit39
  doi: 10.1002/qua.21985
– ident: ref55/cit55
  doi: 10.1002/mrc.4394
– ident: ref35/cit35
  doi: 10.1016/j.chemphys.2008.10.036
– ident: ref26/cit26
  doi: 10.1021/acs.jctc.8b01176
– ident: ref62/cit62
  doi: 10.1002/chem.202203611
– ident: ref15/cit15
  doi: 10.1016/j.jcat.2007.10.007
– ident: ref4/cit4
  doi: 10.1039/C4CY01710B
– ident: ref58/cit58
  doi: 10.1021/ja00175a047
– ident: ref42/cit42
  doi: 10.1002/jcc.10255
– ident: ref49/cit49
  doi: 10.1021/jacs.7b06997
– ident: ref40/cit40
  doi: 10.1002/jcc.1056
– ident: ref50/cit50
  doi: 10.1021/acs.accounts.9b00225
– ident: ref54/cit54
  doi: 10.1021/ja980004s
– ident: ref14/cit14
  doi: 10.1002/anie.200700211
– ident: ref57/cit57
  doi: 10.1021/jasms.0c00430
– ident: ref65/cit65
  doi: 10.1021/acs.inorgchem.0c00658
– ident: ref13/cit13
  doi: 10.1002/cphc.202200670
– ident: ref17/cit17
  doi: 10.1021/om0100479
– ident: ref7/cit7
  doi: 10.1002/anie.200351496
– ident: ref56/cit56
  doi: 10.1016/j.pnmrs.2006.09.001
– ident: ref20/cit20
  doi: 10.1021/jacs.5b06794
– ident: ref16/cit16
  doi: 10.1039/a907908d
– ident: ref24/cit24
  doi: 10.1039/C9CP06869D
– ident: ref23/cit23
  doi: 10.1021/om049029s
– ident: ref1/cit1
  doi: 10.1002/anie.199116361
– ident: ref6/cit6
  doi: 10.1021/jacs.8b08630
– ident: ref43/cit43
  doi: 10.1063/1.466059
– ident: ref47/cit47
  doi: 10.1021/acs.jctc.6b00410
– ident: ref33/cit33
  doi: 10.1039/b508541a
– ident: ref45/cit45
  doi: 10.1063/1.478813
– ident: ref63/cit63
  doi: 10.1021/ja00356a019
– ident: ref29/cit29
  doi: 10.1063/5.0004608
– ident: ref10/cit10
  doi: 10.1021/om050962k
– ident: ref34/cit34
  doi: 10.1007/BF01114537
– ident: ref51/cit51
  doi: 10.1021/jacs.9b04019
– ident: ref3/cit3
  doi: 10.1016/S0920-5861(99)00051-6
– volume-title: 2023.1, SCM, Theoretical Chemistry
  ident: ref41/cit41
– ident: ref60/cit60
  doi: 10.1002/anie.196400011
– ident: ref5/cit5
  doi: 10.1021/jacs.6b00447
– ident: ref25/cit25
  doi: 10.1021/acs.jctc.9b00143
– ident: ref31/cit31
  doi: 10.1063/1.3382344
– ident: ref44/cit44
  doi: 10.1063/1.467943
– ident: ref30/cit30
  doi: 10.1063/1.478522
– ident: ref22/cit22
  doi: 10.1021/jacs.1c10845
– ident: ref28/cit28
  doi: 10.1002/wcms.1606
– ident: ref52/cit52
  doi: 10.1021/ja971285r
– ident: ref9/cit9
  doi: 10.1021/jacs.6b06953
– ident: ref18/cit18
  doi: 10.1021/om300852s
– ident: ref37/cit37
  doi: 10.1039/b515623h
– ident: ref48/cit48
  doi: 10.1515/pac-2015-0703
– ident: ref11/cit11
  doi: 10.1021/cr900122p
– ident: ref12/cit12
  doi: 10.1021/ja3042383
– ident: ref19/cit19
  doi: 10.1021/ja900572x
– ident: ref59/cit59
  doi: 10.1021/ja5111392
– ident: ref27/cit27
  doi: 10.1002/wcms.81
– ident: ref8/cit8
  doi: 10.1002/cctc.201000066
– ident: ref32/cit32
  doi: 10.1002/jcc.21759
– ident: ref38/cit38
  doi: 10.1021/jp810292n
– ident: ref21/cit21
  doi: 10.1002/anie.201409800
– ident: ref67/cit67
  doi: 10.1021/ic000128h
– ident: ref36/cit36
  doi: 10.1002/jcc.10318
– ident: ref2/cit2
  doi: 10.1039/D0SC06880B
– ident: ref64/cit64
  doi: 10.1021/jacs.2c08886
– ident: ref66/cit66
  doi: 10.1021/ic960701q
– ident: ref68/cit68
  doi: 10.1016/j.ccr.2015.03.015
SSID ssj0004281
Score 2.4663084
Snippet Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2–Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and...
Methyltrioxorhenium (MTO) supported on Al O or SiO -Al O is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates...
Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2-Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and...
Methyltrioxorhenium (MTO) supported on Al₂O₃ or SiO₂–Al₂O₃ is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 33214
SubjectTerms aluminum
ambient temperature
catalysts
catalytic activity
deprotonation
olefin
polymerization
protonation
species
Title Activation of Methyltrioxorhenium for Olefin Metathesis by a Frustrated Lewis Pair
URI http://dx.doi.org/10.1021/jacs.4c12888
https://www.ncbi.nlm.nih.gov/pubmed/39571142
https://www.proquest.com/docview/3131848369
https://www.proquest.com/docview/3154251931
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCvpRNRoJjKuK4jnOsKgpCFBAUiVtkO7aIKAlKUrF8PeM0oQJU4Oo4ymTG43n2bAgd6ohywzgFTYOzKpWSOoH2qSP8ICARZ0od20Th_iU7u6Pn9-37SYDsdw8-sfWBVN6iCvZRzmfRHGHctzXyO93bSf4j4W4Nc33OvCrA_fvb1gCp_KsBmoIqS-vSW0KndY7OOKjksTUqZEu9_yzZ-Afhy2ixApi4M14RK2hGJ6tovlv3dVtDNx1VtzTDqcF9DaIaFlmcvqbZg07i0RMGIIuvhtrEiX1sMWIe51i-YYF7WXk5AjgVX-gXGL0WcbaOBr2TQffMqTorOMJzaeFQA1YesBezbXpBybWMjBDcCGl12sAph2hX-pJEVGlD4G-CNmdGG8Os39HbQI0kTfQWwj430lcREbBP0jYIgunIBz2XHth903ab6ADYEFaKkYelz5vAmcOOVsxpoqNaIuHzuMbGlHkHtbhC4Jn1bIhEp6M89FzYmij3WPDbHCDP4lWgaXMs68-vWWelTSre_ge1O2gBGFIWezymu6hRZCO9B8CkkPvlqvwAfbrb3Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54HMaF9_uVSXDsRNssTY_TxDRgGwiGtFuVpImoGC1qO_H49ThduwkkENc0bV07jj_XsY3QmQoJ05QR0DTwVYkQxPKVRyzu-b4TMirlhUkU7g9o95Fcj5qjMlnd5MIAERk8KSuC-PPqAqZMEAwSCdspY4toGXCIY0rlt9oP8zRIh9kV2vUYdctz7j_vNnZIZt_t0C_gsjAynTU0mJFXnC15bkxy0ZCfPyo3_pv-dbRawk3cmq6PDbSg4k1Ua1dd3rbQfUtWDc5wonFfgeDGeRol70n6pOJo8oIB1uLbsdJRbC4bxJhFGRYfmONOWvwqAdSKe-oNRu94lG6jYedy2O5aZZ8Fi7s2yS2iweYDEqOmaS-ovBKh5pxpLoyGa_B5HGULTzghkUo78DV-k1GttKYmCunuoKU4idUewh7TwpOhw2HXJE2QB1WhB1ovXEABumnvozqwISjVJAuKCLgDHogZLZmzj84rwQSv04obv8yrV1ILgGcmzsFjlUyywLVhoyLMpf5fc4A8g16Bpt2pyGdvM6FLk2J88A9qT1GtO-z3gt7V4OYQrQBzijKQF-QILeXpRB0DZMnFSbFQvwCVSOQ-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDLZgSMAL931lEjwWrW2Wpo_TYOJm4pB4q5I2ERWjRW0njl-P07UgkEDwmqStY8fxlzq2AXZVRLlmnKKm4VmVSkktX3nUEp7vOxFnYdgygcLnF-zolp7cte_GwK5jYZCIHN-Ul058o9VPka4yDJhUQdhBQ9xSOR-HCeOxM-nyO93rz1BIh9s14vU4c6u77t-fNrYozL_aoh8AZmloerNw9UFieb_kYX9YyP3w7Vv2xn_NYQ5mKthJOqN1Mg9jKlmAqW5d7W0RrjphXeiMpJqcKxTgoMji9CXN7lUSDx8JwltyOVA6Tky3QY55nBP5SgTpZeUvE0Sv5Ew9Y2tfxNkS3PQOb7pHVlVvwRKuTQuLarT9iMiYKd6Lqq9kpIXgWkij6RrPPo6ypSediIZKOzgbv82ZVloz4410l6GRpIlaBeJxLb0wcgTunrSNMmEq8lD7pYtoQLftNWgiG4JKXfKg9IQ7eBIxrRVz1mCvFk7wNMq88cO4Zi25AHlm_B0iUekwD1wbNyzKXeb_NgbJMygWaVoZif3ja8aFaUKN1_9A7Q5M9g96wdnxxekGTCNvymyQLboJjSIbqi1ELoXcLtfqOx5L5sE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+Methyltrioxorhenium+for+Olefin+Metathesis+by+a+Frustrated+Lewis+Pair&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=St%C3%B6ferle%2C+Yannick&rft.au=Kalapos%2C+P%C3%A9ter+P%C3%A1l&rft.au=Willi%2C+Patrik&rft.au=Chen%2C+Bide&rft.date=2024-12-04&rft.issn=1520-5126&rft.volume=146&rft.issue=48+p.33214-33228&rft.spage=33214&rft.epage=33228&rft_id=info:doi/10.1021%2Fjacs.4c12888&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon