Explorations of New Second-Order Nonlinear Optical Materials in the Potassium Vanadyl Iodate System
Four new potassium vanadyl iodates based on lone-pair-containing IO3 and second-order Jahn−Teller distorted VO5 or VO6 asymmetric units, namely, α-KVO2(IO3)2(H2O) (Pbca), β-KVO2(IO3)2(H2O) (P212121), K4[(VO)(IO3)5]2(HIO3)(H2O)2 ·H2O (P1), and K(VO)2O2(IO3)3 ( Ima2) have been successfully synthesized...
Saved in:
Published in | Journal of the American Chemical Society Vol. 133; no. 14; pp. 5561 - 5572 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.04.2011
|
Online Access | Get full text |
Cover
Loading…
Abstract | Four new potassium vanadyl iodates based on lone-pair-containing IO3 and second-order Jahn−Teller distorted VO5 or VO6 asymmetric units, namely, α-KVO2(IO3)2(H2O) (Pbca), β-KVO2(IO3)2(H2O) (P212121), K4[(VO)(IO3)5]2(HIO3)(H2O)2 ·H2O (P1), and K(VO)2O2(IO3)3 ( Ima2) have been successfully synthesized by hydrothermal reactions. α-KVO2(IO3)2(H2O) and β-KVO2(IO3)2(H2O) exhibit two different types of 1D [VO2(IO3)2]− anionic chains. Neighboring VO6 octahedra in the α-phase are corner-sharing into a 1D chain with the IO3 groups attached on both sides of the chain in a uni- or bidentate bridging fashion, whereas those of VO5 polyhedra in the β-phase are bridged by IO3 groups into a right-handed helical chain with remaining IO3 groups being grafted unidentately on both sides of the helical chain. The structure of K4[(VO)(IO3)5]2(HIO3)(H2O)2 ·H2O contains novel isolated [(VO)(IO3)5]2− units composed of one VO6 octahedron linked to five IO3 groups and one terminal O2− anion. The structure of K(VO)2O2(IO3)3 exhibits a 1D [(VO)2O2(IO3)3]− chain in which neighboring VO6 octahedra are interconnected by both oxo and bridging iodate anions. Most interestingly, three of four compounds are noncentrosymmetric (NCS), and K(VO)2O2(IO3)3 displays a very strong second-harmonic generation response of about 3.6 × KTP, which is phase matchable. It also has high thermal stability, a wide transparent region and moderate hardness as well as an excellent growth habit. Thermal analyses and optical and ferroelectric properties as well as theoretical calculations have also been performed. |
---|---|
AbstractList | Four new potassium vanadyl iodates based on lone-pair-containing IO3 and second-order Jahn−Teller distorted VO5 or VO6 asymmetric units, namely, α-KVO2(IO3)2(H2O) (Pbca), β-KVO2(IO3)2(H2O) (P212121), K4[(VO)(IO3)5]2(HIO3)(H2O)2 ·H2O (P1), and K(VO)2O2(IO3)3 ( Ima2) have been successfully synthesized by hydrothermal reactions. α-KVO2(IO3)2(H2O) and β-KVO2(IO3)2(H2O) exhibit two different types of 1D [VO2(IO3)2]− anionic chains. Neighboring VO6 octahedra in the α-phase are corner-sharing into a 1D chain with the IO3 groups attached on both sides of the chain in a uni- or bidentate bridging fashion, whereas those of VO5 polyhedra in the β-phase are bridged by IO3 groups into a right-handed helical chain with remaining IO3 groups being grafted unidentately on both sides of the helical chain. The structure of K4[(VO)(IO3)5]2(HIO3)(H2O)2 ·H2O contains novel isolated [(VO)(IO3)5]2− units composed of one VO6 octahedron linked to five IO3 groups and one terminal O2− anion. The structure of K(VO)2O2(IO3)3 exhibits a 1D [(VO)2O2(IO3)3]− chain in which neighboring VO6 octahedra are interconnected by both oxo and bridging iodate anions. Most interestingly, three of four compounds are noncentrosymmetric (NCS), and K(VO)2O2(IO3)3 displays a very strong second-harmonic generation response of about 3.6 × KTP, which is phase matchable. It also has high thermal stability, a wide transparent region and moderate hardness as well as an excellent growth habit. Thermal analyses and optical and ferroelectric properties as well as theoretical calculations have also been performed. Four new potassium vanadyl iodates based on lone-pair-containing IO(3) and second-order Jahn-Teller distorted VO(5) or VO(6) asymmetric units, namely, α-KVO(2)(IO(3))(2)(H(2)O) (Pbca), β-KVO(2)(IO(3))(2)(H(2)O) (P2(1)2(1)2(1)), K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O (P1), and K(VO)(2)O(2)(IO(3))(3) (Ima2) have been successfully synthesized by hydrothermal reactions. α-KVO(2)(IO(3))(2)(H(2)O) and β-KVO(2)(IO(3))(2)(H(2)O) exhibit two different types of 1D [VO(2)(IO(3))(2)](-) anionic chains. Neighboring VO(6) octahedra in the α-phase are corner-sharing into a 1D chain with the IO(3) groups attached on both sides of the chain in a uni- or bidentate bridging fashion, whereas those of VO(5) polyhedra in the β-phase are bridged by IO(3) groups into a right-handed helical chain with remaining IO(3) groups being grafted unidentately on both sides of the helical chain. The structure of K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O contains novel isolated [(VO)(IO(3))(5)](2-) units composed of one VO(6) octahedron linked to five IO(3) groups and one terminal O(2-) anion. The structure of K(VO)(2)O(2)(IO(3))(3) exhibits a 1D [(VO)(2)O(2)(IO(3))(3)](-) chain in which neighboring VO(6) octahedra are interconnected by both oxo and bridging iodate anions. Most interestingly, three of four compounds are noncentrosymmetric (NCS), and K(VO)(2)O(2)(IO(3))(3) displays a very strong second-harmonic generation response of about 3.6 × KTP, which is phase matchable. It also has high thermal stability, a wide transparent region and moderate hardness as well as an excellent growth habit. Thermal analyses and optical and ferroelectric properties as well as theoretical calculations have also been performed. Four new potassium vanadyl iodates based on lone-pair-containing IO(3) and second-order Jahn-Teller distorted VO(5) or VO(6) asymmetric units, namely, α-KVO(2)(IO(3))(2)(H(2)O) (Pbca), β-KVO(2)(IO(3))(2)(H(2)O) (P2(1)2(1)2(1)), K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O (P1), and K(VO)(2)O(2)(IO(3))(3) (Ima2) have been successfully synthesized by hydrothermal reactions. α-KVO(2)(IO(3))(2)(H(2)O) and β-KVO(2)(IO(3))(2)(H(2)O) exhibit two different types of 1D [VO(2)(IO(3))(2)](-) anionic chains. Neighboring VO(6) octahedra in the α-phase are corner-sharing into a 1D chain with the IO(3) groups attached on both sides of the chain in a uni- or bidentate bridging fashion, whereas those of VO(5) polyhedra in the β-phase are bridged by IO(3) groups into a right-handed helical chain with remaining IO(3) groups being grafted unidentately on both sides of the helical chain. The structure of K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O contains novel isolated [(VO)(IO(3))(5)](2-) units composed of one VO(6) octahedron linked to five IO(3) groups and one terminal O(2-) anion. The structure of K(VO)(2)O(2)(IO(3))(3) exhibits a 1D [(VO)(2)O(2)(IO(3))(3)](-) chain in which neighboring VO(6) octahedra are interconnected by both oxo and bridging iodate anions. Most interestingly, three of four compounds are noncentrosymmetric (NCS), and K(VO)(2)O(2)(IO(3))(3) displays a very strong second-harmonic generation response of about 3.6 × KTP, which is phase matchable. It also has high thermal stability, a wide transparent region and moderate hardness as well as an excellent growth habit. Thermal analyses and optical and ferroelectric properties as well as theoretical calculations have also been performed.Four new potassium vanadyl iodates based on lone-pair-containing IO(3) and second-order Jahn-Teller distorted VO(5) or VO(6) asymmetric units, namely, α-KVO(2)(IO(3))(2)(H(2)O) (Pbca), β-KVO(2)(IO(3))(2)(H(2)O) (P2(1)2(1)2(1)), K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O (P1), and K(VO)(2)O(2)(IO(3))(3) (Ima2) have been successfully synthesized by hydrothermal reactions. α-KVO(2)(IO(3))(2)(H(2)O) and β-KVO(2)(IO(3))(2)(H(2)O) exhibit two different types of 1D [VO(2)(IO(3))(2)](-) anionic chains. Neighboring VO(6) octahedra in the α-phase are corner-sharing into a 1D chain with the IO(3) groups attached on both sides of the chain in a uni- or bidentate bridging fashion, whereas those of VO(5) polyhedra in the β-phase are bridged by IO(3) groups into a right-handed helical chain with remaining IO(3) groups being grafted unidentately on both sides of the helical chain. The structure of K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O contains novel isolated [(VO)(IO(3))(5)](2-) units composed of one VO(6) octahedron linked to five IO(3) groups and one terminal O(2-) anion. The structure of K(VO)(2)O(2)(IO(3))(3) exhibits a 1D [(VO)(2)O(2)(IO(3))(3)](-) chain in which neighboring VO(6) octahedra are interconnected by both oxo and bridging iodate anions. Most interestingly, three of four compounds are noncentrosymmetric (NCS), and K(VO)(2)O(2)(IO(3))(3) displays a very strong second-harmonic generation response of about 3.6 × KTP, which is phase matchable. It also has high thermal stability, a wide transparent region and moderate hardness as well as an excellent growth habit. Thermal analyses and optical and ferroelectric properties as well as theoretical calculations have also been performed. |
Author | Mao, Jiang-Gao Sun, Chuan-Fu Hu, Chun-Li Xu, Xiang Yang, Bing-Ping |
AuthorAffiliation | Graduate School of the Chinese Academy of Sciences Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Graduate School of the Chinese Academy of Sciences – name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Chuan-Fu surname: Sun fullname: Sun, Chuan-Fu – sequence: 2 givenname: Chun-Li surname: Hu fullname: Hu, Chun-Li – sequence: 3 givenname: Xiang surname: Xu fullname: Xu, Xiang – sequence: 4 givenname: Bing-Ping surname: Yang fullname: Yang, Bing-Ping – sequence: 5 givenname: Jiang-Gao surname: Mao fullname: Mao, Jiang-Gao email: mjg@fjirsm.ac.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21428302$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0M9PHCEUwHHS2NTV9tB_oOFijIepwAwzzNEYfyXWbWLb6-QtPFI2M7AFJrr_vdS1HhpPwMvncfgekD0fPBLymbOvnAl-ugbBmJAdvCMLLgWrJBftHlmwMq061db75CCldXk2QvEPZF_wcqmZWBB98bgZQ4Tsgk80WHqHD_QedfCmWkaDkd4FPzqPEOlyk52GkX6DjNHBmKjzNP9G-j1kSMnNE_0FHsx2pDfBFETvtynj9JG8t0Xjp5fzkPy8vPhxfl3dLq9uzs9uK6h5k6u6RWuNQWystUox1ApAsp7LznILSvQtrrpe6qZtQMgWuO1XXWMlSKP6lakPyfHu300Mf2ZMeZhc0jiO4DHMaVAtU13XqL7ILy9yXk1ohk10E8Tt8K9LASc7oGNIKaJ9JZwNf5sPr82LPf3Papefg-YIbnxz42i3AToN6zBHX7K84Z4A7RWPzA |
CitedBy_id | crossref_primary_10_1039_C4DT01535E crossref_primary_10_1039_C9CC08739G crossref_primary_10_1021_ic301334c crossref_primary_10_1021_ja408982d crossref_primary_10_1039_C7CC04340F crossref_primary_10_1002_anie_201209151 crossref_primary_10_1021_acs_chemmater_0c03268 crossref_primary_10_1002_anie_202001855 crossref_primary_10_1021_ic4028942 crossref_primary_10_1039_D2TC01638A crossref_primary_10_1016_j_solidstatesciences_2016_11_010 crossref_primary_10_1039_C4CE01658K crossref_primary_10_1002_advs_202301374 crossref_primary_10_1021_ic201991m crossref_primary_10_1039_C6RA23193D crossref_primary_10_1021_acs_chemmater_7b05350 crossref_primary_10_1016_j_mtphys_2023_101145 crossref_primary_10_1021_jacs_8b04762 crossref_primary_10_1002_ejic_201301075 crossref_primary_10_1021_ic2021337 crossref_primary_10_1039_c3dt50706h crossref_primary_10_1002_ange_201606782 crossref_primary_10_1016_j_molstruc_2017_09_036 crossref_primary_10_1039_D4QI00261J crossref_primary_10_1021_acs_inorgchem_1c00425 crossref_primary_10_1039_c3ce26938h crossref_primary_10_1021_ic5003995 crossref_primary_10_1039_C9CC02774B crossref_primary_10_1021_cm2015143 crossref_primary_10_1002_slct_201900926 crossref_primary_10_1002_chem_201504117 crossref_primary_10_1039_C6DT01602B crossref_primary_10_1021_acs_chemmater_5b04511 crossref_primary_10_1002_ejic_202100649 crossref_primary_10_1039_c3dt33107e crossref_primary_10_1039_C6RA24321E crossref_primary_10_1039_c2cc30326d crossref_primary_10_1039_c3tc30151f crossref_primary_10_1039_C6RA15159K crossref_primary_10_1002_ange_201611770 crossref_primary_10_1021_acs_inorgchem_3c02207 crossref_primary_10_1021_acs_chemmater_7b05252 crossref_primary_10_1039_C9SC04832D crossref_primary_10_1021_acs_chemmater_9b03214 crossref_primary_10_1039_C7DT00087A crossref_primary_10_1021_cg4004774 crossref_primary_10_3390_ma11101809 crossref_primary_10_1021_acs_inorgchem_4c03630 crossref_primary_10_1039_C4DT00546E crossref_primary_10_1021_acs_inorgchem_8b00220 crossref_primary_10_1021_acs_inorgchem_1c02861 crossref_primary_10_1016_j_ccr_2018_09_011 crossref_primary_10_1039_C4CC00537F crossref_primary_10_1002_asia_202001002 crossref_primary_10_1021_acs_jpcc_9b08478 crossref_primary_10_1021_cm500898q crossref_primary_10_1002_anie_201904383 crossref_primary_10_1021_cm500339z crossref_primary_10_1039_C6CP02672A crossref_primary_10_1002_adfm_202424059 crossref_primary_10_1016_j_jssc_2023_124385 crossref_primary_10_1016_j_solidstatesciences_2017_12_013 crossref_primary_10_1021_jacs_5b11712 crossref_primary_10_1039_D1CC04462A crossref_primary_10_1021_jp2069336 crossref_primary_10_1039_D1QM01054A crossref_primary_10_1107_S2052520623005462 crossref_primary_10_1007_s10853_017_1803_1 crossref_primary_10_1016_j_ccr_2018_07_013 crossref_primary_10_1021_acs_inorgchem_0c00086 crossref_primary_10_1016_j_jallcom_2017_08_235 crossref_primary_10_1016_j_inoche_2022_109471 crossref_primary_10_1021_cg5010374 crossref_primary_10_1039_C6CC09986F crossref_primary_10_1016_j_jssc_2012_01_036 crossref_primary_10_1016_j_jssc_2022_122934 crossref_primary_10_1021_acs_inorgchem_5b00401 crossref_primary_10_1039_D2NJ02226E crossref_primary_10_1021_acs_cgd_7b00250 crossref_primary_10_1134_S0022476624100068 crossref_primary_10_1021_acs_inorgchem_9b00593 crossref_primary_10_1021_acs_inorgchem_5b01848 crossref_primary_10_1021_jacs_6b03734 crossref_primary_10_1016_j_cjsc_2023_100025 crossref_primary_10_1039_D2CC02353A crossref_primary_10_1002_ange_202106335 crossref_primary_10_1039_D1SC01401C crossref_primary_10_1002_ange_201209151 crossref_primary_10_1039_C6RA08692F crossref_primary_10_1039_C7TC05693A crossref_primary_10_1021_acs_chemmater_1c00392 crossref_primary_10_1021_jacs_6b06680 crossref_primary_10_1021_acsami_0c12251 crossref_primary_10_1007_s40843_022_2417_2 crossref_primary_10_1021_acs_accounts_1c00188 crossref_primary_10_1016_j_jcrysgro_2017_11_030 crossref_primary_10_1039_c3tc30523f crossref_primary_10_1039_C4DT00008K crossref_primary_10_1002_anie_202106335 crossref_primary_10_1016_j_cjsc_2023_100014 crossref_primary_10_1016_j_jssc_2019_04_035 crossref_primary_10_1002_ejic_201500399 crossref_primary_10_1039_C5TC02925B crossref_primary_10_1039_D4MH01043D crossref_primary_10_1021_acs_inorgchem_8b01365 crossref_primary_10_1039_C7DT03781C crossref_primary_10_1002_ange_201904383 crossref_primary_10_1016_j_jssc_2013_03_021 crossref_primary_10_1021_acs_inorgchem_3c00868 crossref_primary_10_1021_acs_inorgchem_5b00187 crossref_primary_10_1039_C7TC00622E crossref_primary_10_1016_j_jpcs_2016_08_011 crossref_primary_10_1039_c3cc45747h crossref_primary_10_1021_acs_inorgchem_3c00189 crossref_primary_10_1021_ic202602q crossref_primary_10_1039_C5CE00509D crossref_primary_10_1039_C4TC00264D crossref_primary_10_1039_D2SC02137D crossref_primary_10_1021_acs_inorgchem_7b00872 crossref_primary_10_1039_C5TC00328H crossref_primary_10_1021_acs_inorgchem_5b02074 crossref_primary_10_1021_ic501009c crossref_primary_10_1021_acs_inorgchem_5c00736 crossref_primary_10_1016_j_jallcom_2021_162547 crossref_primary_10_1002_anie_201813968 crossref_primary_10_1021_acs_cgd_0c01407 crossref_primary_10_1002_ange_201813122 crossref_primary_10_1021_ic2012217 crossref_primary_10_1039_C8DT05120H crossref_primary_10_1002_ejic_201200792 crossref_primary_10_1039_c3ce41037d crossref_primary_10_1021_acs_inorgchem_2c03167 crossref_primary_10_1016_j_matpr_2019_06_713 crossref_primary_10_1016_j_inoche_2012_10_023 crossref_primary_10_1002_smll_202407130 crossref_primary_10_1039_c3dt50952d crossref_primary_10_1039_D3DT03304J crossref_primary_10_1039_c4ce00183d crossref_primary_10_1039_C7DT02795H crossref_primary_10_1021_jacs_8b11485 crossref_primary_10_1021_acs_inorgchem_5b02859 crossref_primary_10_1021_ic402404a crossref_primary_10_1021_jacs_6b02203 crossref_primary_10_1039_D3DT04343F crossref_primary_10_1016_j_ccr_2020_213380 crossref_primary_10_1016_j_optmat_2018_12_043 crossref_primary_10_1021_acs_inorgchem_2c04368 crossref_primary_10_1039_D3SC04818G crossref_primary_10_1021_acs_cgd_7b00924 crossref_primary_10_1021_jacs_1c06061 crossref_primary_10_1016_j_materresbull_2016_05_019 crossref_primary_10_1021_ja400500m crossref_primary_10_1039_D1SC06026K crossref_primary_10_1021_acs_inorgchem_6b01298 crossref_primary_10_1039_D1DT00536G crossref_primary_10_1039_c2dt31188g crossref_primary_10_1002_chem_201301346 crossref_primary_10_1002_anie_202000587 crossref_primary_10_1039_C3TC31433B crossref_primary_10_1021_acs_inorgchem_1c00158 crossref_primary_10_1021_acs_chemmater_8b00630 crossref_primary_10_3390_cryst6040042 crossref_primary_10_1021_acs_chemmater_0c02929 crossref_primary_10_1021_acs_inorgchem_7b03116 crossref_primary_10_1039_C9CC07288H crossref_primary_10_1021_ic302357h crossref_primary_10_1021_ic5001842 crossref_primary_10_1039_D1CE01234G crossref_primary_10_1002_adma_201104297 crossref_primary_10_1021_ic401175r crossref_primary_10_1016_j_physb_2013_10_034 crossref_primary_10_1039_C4CP04248D crossref_primary_10_1002_ange_202001855 crossref_primary_10_1039_D2QI01720B crossref_primary_10_1021_acs_cgd_1c00317 crossref_primary_10_1021_ic501089f crossref_primary_10_1039_D2CC00134A crossref_primary_10_1002_anie_201611770 crossref_primary_10_1021_acs_inorgchem_3c03928 crossref_primary_10_1039_D4MA00067F crossref_primary_10_1039_c2dt12493a crossref_primary_10_1002_anie_201606782 crossref_primary_10_1039_C7TC05382G crossref_primary_10_1021_acs_chemmater_4c02343 crossref_primary_10_1039_C7QI00004A crossref_primary_10_1016_j_jssc_2013_04_011 crossref_primary_10_1021_acs_cgd_9b00291 crossref_primary_10_1021_acs_inorgchem_5b01588 crossref_primary_10_1021_ic2021403 crossref_primary_10_1002_ange_202318107 crossref_primary_10_1016_j_jssc_2015_08_031 crossref_primary_10_1080_00268976_2013_872810 crossref_primary_10_1039_D4DT00431K crossref_primary_10_1016_j_inoche_2012_05_026 crossref_primary_10_1039_C9DT01833F crossref_primary_10_3390_cryst13050726 crossref_primary_10_1021_acs_inorgchem_9b00860 crossref_primary_10_1039_D2TC02489F crossref_primary_10_1021_acs_chemmater_0c00878 crossref_primary_10_1021_ic4003324 crossref_primary_10_1021_ic401891f crossref_primary_10_1016_j_inoche_2015_05_022 crossref_primary_10_1021_acs_inorgchem_0c02426 crossref_primary_10_1016_j_inoche_2016_01_006 crossref_primary_10_1063_1_4943650 crossref_primary_10_1016_j_jssc_2011_12_022 crossref_primary_10_1039_c2ce06658k crossref_primary_10_1039_c3ra40247a crossref_primary_10_1016_j_jssc_2012_04_022 crossref_primary_10_1021_jacs_8b08803 crossref_primary_10_1016_j_jallcom_2015_11_023 crossref_primary_10_1002_ange_201813968 crossref_primary_10_1007_s11243_013_9706_8 crossref_primary_10_1016_j_ccr_2015_01_005 crossref_primary_10_1002_ange_202000587 crossref_primary_10_1021_acs_chemmater_0c01054 crossref_primary_10_1021_acs_inorgchem_9b00075 crossref_primary_10_1002_anie_201813122 crossref_primary_10_1039_D1QI00595B crossref_primary_10_1039_C8TC00851E crossref_primary_10_1021_acs_inorgchem_7b01989 crossref_primary_10_1039_C8CP07894G crossref_primary_10_1039_C7TC04857B crossref_primary_10_1039_C4QI00132J crossref_primary_10_1039_D0DT00593B crossref_primary_10_1016_j_jssc_2012_08_019 crossref_primary_10_1002_ange_201705672 crossref_primary_10_1039_c2cc35432b crossref_primary_10_1021_cm401737s crossref_primary_10_1021_acs_inorgchem_7b02508 crossref_primary_10_1039_C9DT02575H crossref_primary_10_1039_c3ce41653d crossref_primary_10_1021_ja4117389 crossref_primary_10_1016_j_jallcom_2016_02_168 crossref_primary_10_1002_ange_201700540 crossref_primary_10_1021_ja205456b crossref_primary_10_1039_D0DT00035C crossref_primary_10_1002_anie_202318107 crossref_primary_10_1021_acs_chemmater_0c02167 crossref_primary_10_1016_j_jssc_2014_07_032 crossref_primary_10_1039_C5RA24601F crossref_primary_10_1002_anie_201700540 crossref_primary_10_1039_c1ce05922j crossref_primary_10_1002_anie_201705672 crossref_primary_10_1016_j_jssc_2024_125143 crossref_primary_10_1002_smll_202306459 |
Cites_doi | 10.1039/c0dt00305k 10.1016/0022-0248(67)90038-3 10.1021/cm9002614 10.1021/ja9091209 10.1021/ic025992j 10.1021/cm071188p 10.1021/ja106066k 10.1021/ic100234e 10.1021/ic048428c 10.1016/B978-0-12-523450-4.50005-5 10.1021/cm7019334 10.1021/ja0620991 10.1039/b903159f 10.1002/zaac.19764200103 10.1021/cm980140w 10.1021/cm902639p 10.1021/ic048766d 10.1016/0022-4596(75)90092-4 10.1021/ic8005629 10.1007/978-3-662-13830-4 10.1021/cm902902j 10.1039/B917907K 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C 10.1021/ja035314b 10.1103/PhysRevLett.64.2815 10.1063/1.1656857 10.1021/cm020021n 10.1039/b511119f 10.1016/S0022-4596(03)00090-2 10.1002/anie.200703340 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N 10.1021/ja034121l 10.1039/b612677d 10.1021/ic101370v 10.1021/ja903881m 10.1063/1.1653673 10.1103/PhysRevB.72.075416 10.1021/ja0633114 10.1021/cm052614e 10.1103/PhysRevB.60.9435 10.1021/ic8022375 10.1021/cm049297g 10.1107/S0108768190011041 10.1038/373322a0 10.1021/ja9015099 10.1021/ja9030566 10.1103/PhysRevB.69.205416 10.1103/PhysRevB.47.4174 10.1107/S0108768185002063 10.1016/j.mee.2005.03.055 10.1021/ja012190z 10.1146/annurev.ms.16.080186.001223 10.1021/cm00052a004 10.1103/PhysRevB.77.049901 10.1103/PhysRevB.36.6497 10.1002/chem.200701440 10.1002/anie.200460367 10.1021/ja808469a 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.43.8990 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2011 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ja200257a |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 5572 |
ExternalDocumentID | 21428302 10_1021_ja200257a c187862940 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 AAYWT |
ID | FETCH-LOGICAL-a314t-36effddee4fff880ec8aa509157f1fa8296eb795c464a256a1f9b74f5a5d89bd3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Tue Aug 05 10:33:12 EDT 2025 Wed Feb 19 01:53:32 EST 2025 Tue Jul 01 02:08:02 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Thu Aug 27 13:42:09 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | 2011 American Chemical Society |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a314t-36effddee4fff880ec8aa509157f1fa8296eb795c464a256a1f9b74f5a5d89bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21428302 |
PQID | 860877489 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_860877489 pubmed_primary_21428302 crossref_primary_10_1021_ja200257a crossref_citationtrail_10_1021_ja200257a acs_journals_10_1021_ja200257a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110413 2011-04-13 2011-Apr-13 |
PublicationDateYYYYMMDD | 2011-04-13 |
PublicationDate_xml | – month: 04 year: 2011 text: 20110413 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Sykora R. E. (ref10/cit10b) 2002; 14 Phanon D. (ref6/cit6b) 2007; 46 Kurtz S. W. (ref15/cit15) 1968; 39 Ballman A. A. (ref2/cit2e) 1967; 1 Mao J. G. (ref8/cit8d) 2008; 47 Chen X. A. (ref13/cit13c) 2006; 62 ref17/cit17a Milman V. (ref18/cit18b) 2000; 77 Brown I. D. (ref24/cit24a) 1985; 41 Chang H. Y. (ref27/cit27d) 2009; 21 ref16/cit16 Izumi H. K. (ref27/cit27b) 2005; 44 Pan S. L. (ref4/cit4a) 2006; 128 Segall M. D. (ref18/cit18a) 2002; 14 Sun C. F. (ref25/cit25) 2010; 49 Guo G. Y. (ref23/cit23d) 2008; 77 Kim. J. H. (ref7/cit7c) 2007; 19 Godby R. W. (ref29/cit29a) 1987; 36 Chang H. Y. (ref11/cit11b) 2009; 131 Phanon D. (ref9/cit9) 2007; 17 Perdew J. P. (ref19/cit19) 1996; 77 Meschede W. (ref13/cit13a) 1976; 420 Duan C. G. (ref23/cit23a) 1999; 60 Terki R. (ref29/cit29c) 2005; 81 Zhang W. L. (ref4/cit4b) 2010; 132 ref21/cit21 Okoye C. M. I. (ref29/cit29b) 2003; 15 Chang H. Y. (ref11/cit11a) 2009; 131 Sivakumar T. (ref27/cit27c) 2007; 19 Chen C. T. (ref2/cit2c) 1984; 14 Kim. S. H. (ref6/cit6c) 2009; 21 Yang B. P. (ref12/cit12b) 2010; 22 Ra H. S. (ref7/cit7a) 2003; 125 Galy J. (ref28/cit28) 1975; 13 Shehee T. C. (ref10/cit10c) 2003; 42 Becker P. (ref2/cit2a) 1998; 10 Boyd G. D. (ref3/cit3b) 1971; 18 Chi E. O. (ref7/cit7b) 2006; 18 Spek A. L. (ref17/cit17b) 2001 Kong F. (ref8/cit8a) 2006; 128 Huang Y. Z. (ref4/cit4c) 2010; 132 Hagerman M. E. (ref2/cit2d) 1995; 7 Guo G. Y. (ref23/cit23c) 2005; 72 Ghahramani E. (ref22/cit22a) 1991; 43 Maggard P. A. (ref27/cit27a) 2003; 175 Sykora R. E. (ref10/cit10a) 2002; 124 Wendlandt W. M. (ref14/cit14) 1966 Sun C. F. (ref13/cit13d) 2010; 39 Lin J. S. (ref20/cit20) 1993; 47 Ok K. M. (ref1/cit1c) 2006; 35 Jiang H. L. (ref8/cit8b) 2008; 14 Halasyamani P. S. (ref1/cit1b) 1998; 10 Ghahramani E. (ref22/cit22b) 1990; 64 Liao J. H. (ref3/cit3c) 2003; 125 Zhang Q. (ref3/cit3d) 2009; 131 Sun C. F. (ref12/cit12a) 2009; 131 Ok K. M. (ref13/cit13b) 2005; 44 Zhou Y. (ref8/cit8c) 2009 Chen C. T. (ref2/cit2b) 1995; 373 Halasyamani P. S. (ref5/cit5) 2004; 16 Brese N. E. (ref24/cit24b) 1991; 47 Chen C. (ref1/cit1a) 1986; 16 Sun C. F. (ref13/cit13e) 2010; 39 Li P. X. (ref6/cit6d) 2010; 49 Guo G. Y. (ref23/cit23b) 2004; 69 Dmitriev V. G. (ref3/cit3a) 1991 Hu T. (ref8/cit8e) 2009; 48 Ok K. M. (ref6/cit6a) 2004; 43 Nyquist R. A. (ref26/cit26) 1971 |
References_xml | – volume: 39 start-page: 7960 year: 2010 ident: ref13/cit13e publication-title: Dalton Trans. doi: 10.1039/c0dt00305k – volume: 1 start-page: 311 year: 1967 ident: ref2/cit2e publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(67)90038-3 – volume: 15 start-page: 5945 year: 2003 ident: ref29/cit29b publication-title: J. Phys.: Condens. Matter – volume: 21 start-page: 1654 year: 2009 ident: ref27/cit27d publication-title: Chem. Mater. doi: 10.1021/cm9002614 – volume: 132 start-page: 1508 year: 2010 ident: ref4/cit4b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9091209 – volume: 42 start-page: 457 year: 2003 ident: ref10/cit10c publication-title: Inorg. Chem. doi: 10.1021/ic025992j – volume: 19 start-page: 4710 year: 2007 ident: ref27/cit27c publication-title: Chem. Mater. doi: 10.1021/cm071188p – volume: 132 start-page: 12788 year: 2010 ident: ref4/cit4c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106066k – volume: 49 start-page: 4599 year: 2010 ident: ref6/cit6d publication-title: Inorg. Chem. doi: 10.1021/ic100234e – volume: 44 start-page: 2263 year: 2005 ident: ref13/cit13b publication-title: Inorg. Chem. doi: 10.1021/ic048428c – volume-title: Infrared Spectra of Inorganic Compounds year: 1971 ident: ref26/cit26 doi: 10.1016/B978-0-12-523450-4.50005-5 – volume: 19 start-page: 5637 year: 2007 ident: ref7/cit7c publication-title: Chem. Mater. doi: 10.1021/cm7019334 – volume: 128 start-page: 7750 year: 2006 ident: ref8/cit8a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0620991 – start-page: 5747 year: 2009 ident: ref8/cit8c publication-title: Dalton Trans. doi: 10.1039/b903159f – volume: 420 start-page: 25 year: 1976 ident: ref13/cit13a publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19764200103 – volume: 14 start-page: 2717 year: 2002 ident: ref18/cit18a publication-title: J. Phys.: Condens. Matt. – volume: 10 start-page: 2753 year: 1998 ident: ref1/cit1b publication-title: Chem. Mater. doi: 10.1021/cm980140w – volume: 21 start-page: 5335 year: 2009 ident: ref6/cit6c publication-title: Chem. Mater. doi: 10.1021/cm902639p – volume: 14 start-page: 598 year: 1984 ident: ref2/cit2c publication-title: Sci. Sin., Ser B – volume: 44 start-page: 884 year: 2005 ident: ref27/cit27b publication-title: Inorg. Chem. doi: 10.1021/ic048766d – volume: 13 start-page: 142 year: 1975 ident: ref28/cit28 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(75)90092-4 – volume: 47 start-page: 8498 year: 2008 ident: ref8/cit8d publication-title: Inorg. Chem. doi: 10.1021/ic8005629 – volume-title: Handbook of Nonlinear Optical Crystals year: 1991 ident: ref3/cit3a doi: 10.1007/978-3-662-13830-4 – volume: 22 start-page: 1545 year: 2010 ident: ref12/cit12b publication-title: Chem. Mater. doi: 10.1021/cm902902j – volume: 39 start-page: 1473 year: 2010 ident: ref13/cit13d publication-title: Dalton Trans. doi: 10.1039/B917907K – volume: 77 start-page: 895 year: 2000 ident: ref18/cit18b publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C – volume: 125 start-page: 7764 year: 2003 ident: ref7/cit7a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035314b – ident: ref16/cit16 – volume-title: Reflectance Spectroscopy year: 1966 ident: ref14/cit14 – volume: 64 start-page: 2815 year: 1990 ident: ref22/cit22b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.2815 – volume: 39 start-page: 3798 year: 1968 ident: ref15/cit15 publication-title: J. Appl. Phys. doi: 10.1063/1.1656857 – volume: 14 start-page: 2741 year: 2002 ident: ref10/cit10b publication-title: Chem. Mater. doi: 10.1021/cm020021n – volume: 35 start-page: 710 year: 2006 ident: ref1/cit1c publication-title: Chem. Soc. Rev. doi: 10.1039/b511119f – volume: 175 start-page: 27 year: 2003 ident: ref27/cit27a publication-title: J. Solid State Chem. doi: 10.1016/S0022-4596(03)00090-2 – volume: 46 start-page: 8488 year: 2007 ident: ref6/cit6b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703340 – volume: 10 start-page: 979 year: 1998 ident: ref2/cit2a publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N – volume: 125 start-page: 9484 year: 2003 ident: ref3/cit3c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034121l – volume: 62 start-page: i76 year: 2006 ident: ref13/cit13c publication-title: Acta Crystallogr. – volume: 17 start-page: 1123 year: 2007 ident: ref9/cit9 publication-title: J. Mater. Chem. doi: 10.1039/b612677d – volume: 49 start-page: 9581 year: 2010 ident: ref25/cit25 publication-title: Inorg. Chem. doi: 10.1021/ic101370v – ident: ref17/cit17a – ident: ref21/cit21 – volume: 131 start-page: 9896 year: 2009 ident: ref3/cit3d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903881m – volume: 18 start-page: 301 year: 1971 ident: ref3/cit3b publication-title: Appl. Phys. Lett. doi: 10.1063/1.1653673 – volume: 72 start-page: 075416 year: 2005 ident: ref23/cit23c publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.075416 – volume: 128 start-page: 11631 year: 2006 ident: ref4/cit4a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0633114 – volume: 18 start-page: 2070 year: 2006 ident: ref7/cit7b publication-title: Chem. Mater. doi: 10.1021/cm052614e – volume: 60 start-page: 9435 year: 1999 ident: ref23/cit23a publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.9435 – volume: 48 start-page: 2193 year: 2009 ident: ref8/cit8e publication-title: Inorg. Chem. doi: 10.1021/ic8022375 – volume: 16 start-page: 3586 year: 2004 ident: ref5/cit5 publication-title: Chem. Mater. doi: 10.1021/cm049297g – volume: 47 start-page: 192 year: 1991 ident: ref24/cit24b publication-title: Acta Crystallogr. doi: 10.1107/S0108768190011041 – volume: 373 start-page: 322 year: 1995 ident: ref2/cit2b publication-title: Nature doi: 10.1038/373322a0 – volume: 131 start-page: 6865 year: 2009 ident: ref11/cit11b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9015099 – volume: 131 start-page: 9486 year: 2009 ident: ref12/cit12a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9030566 – volume: 69 start-page: 205416 year: 2004 ident: ref23/cit23b publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.205416 – volume: 47 start-page: 4174 year: 1993 ident: ref20/cit20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.4174 – volume: 41 start-page: 244 year: 1985 ident: ref24/cit24a publication-title: Acta Crystallogr. doi: 10.1107/S0108768185002063 – volume: 81 start-page: 514 year: 2005 ident: ref29/cit29c publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2005.03.055 – volume-title: PLATON year: 2001 ident: ref17/cit17b – volume: 124 start-page: 1951 year: 2002 ident: ref10/cit10a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja012190z – volume: 16 start-page: 203 year: 1986 ident: ref1/cit1a publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.ms.16.080186.001223 – volume: 7 start-page: 602 year: 1995 ident: ref2/cit2d publication-title: Chem. Mater. doi: 10.1021/cm00052a004 – volume: 77 start-page: 049901 year: 2008 ident: ref23/cit23d publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.049901 – volume: 36 start-page: 6497 year: 1987 ident: ref29/cit29a publication-title: J. Phys. Rev. B doi: 10.1103/PhysRevB.36.6497 – volume: 14 start-page: 1972 year: 2008 ident: ref8/cit8b publication-title: Chem.—Eur. J. doi: 10.1002/chem.200701440 – volume: 43 start-page: 5489 year: 2004 ident: ref6/cit6a publication-title: Angew. Chem. In. Ed. doi: 10.1002/anie.200460367 – volume: 131 start-page: 2426 year: 2009 ident: ref11/cit11a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808469a – volume: 77 start-page: 3865 year: 1996 ident: ref19/cit19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 43 start-page: 8990 year: 1991 ident: ref22/cit22a publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.43.8990 |
SSID | ssj0004281 |
Score | 2.4821737 |
Snippet | Four new potassium vanadyl iodates based on lone-pair-containing IO3 and second-order Jahn−Teller distorted VO5 or VO6 asymmetric units, namely,... Four new potassium vanadyl iodates based on lone-pair-containing IO(3) and second-order Jahn-Teller distorted VO(5) or VO(6) asymmetric units, namely,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5561 |
Title | Explorations of New Second-Order Nonlinear Optical Materials in the Potassium Vanadyl Iodate System |
URI | http://dx.doi.org/10.1021/ja200257a https://www.ncbi.nlm.nih.gov/pubmed/21428302 https://www.proquest.com/docview/860877489 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZQGWDh_SgvWcDA4qpx7MQZUaEqSLRIpahbdHZiqQISRJMBfj123RQQLexny_KdfZ_v8Rmhc-aDtL0BhCdNTYy_bRJJWUAAmC8N3qBmoK226AadAbsd8uESOluQwaeWH8jWEfDQgKBlGpjDa_FPq__V_EiFV2HcUAR-RR_0fah1PWr80_UswJMTv9JeR1dVd44rJ3lqlIVsqI_fZI1_LXkDrU1xJb50hrCJltJsC620qu_ctpFy1XYuQIdzjc31hvv2OZyQnuXfxF3HmgFvuPc6iXDjOyicgeJRhg1SxPd5YcD2qHzBj7ZY7P0Z3-Q2ZIAd8fkOGrSvH1odMv1hgYDvsYL4Qaq1ueBSprU2JzlVAsBCCB5qT4OgUZDKMOKKBQwMOAJPRzJkmgNPRCQTfxfVsjxL9xHmiiagQDSlJ5lNt2nKFHihMGNlAryOTowK4ukJGceT5Dc1j49qr-rootJOrKb85PabjOd5oqcz0VdHyjFPCFcqjs1W2zwIZGlejmMRWBZEJqI62nOqn83iCOia9OC_1R6iVRddZsTzj1CteCvTYwNPCnkyMc9Pe-jeXQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T-wwELYQFNA87sdyWoiCxmjj2IlTohVouRYkDtFFYyeWEJAgki3g1zOOEy6B3utta2SPPZ_n-IaQHRGCdrUBTGZ9y9De9pnmImIAItSINzhOdNkWo2h4LY5v5W1Lk-NqYVCICleqmiD-B7uAowly6QQyRiw0hSCEO23eH1x-1EByFXRQN1ZR2LEIfZ7qLJCpvlqgX2BlY14OZ32fokawJqvkfm9c6z3z-o2z8f8knyN_WpRJ971azJOJvFgg04OuudsiMT73zrvraGkpPnb00n2OM3bu2DjpyHNowDM9f2r83fQMaq-u9K6giBvpRVkj9L4bP9Iblzr28kCPSudAoJ4GfYlcHx5cDYas7bfAIAxEzcIotxafu1xYa_Fe50YBOEAhYxtYUDyJch0n0ohIAEIlCGyiY2ElyEwlOguXyWRRFvkKodLwDAyovg60cME3y4WBIFY4V2cge2QTtypt70uVNqFwjl-Rbq96ZLc7pNS0bOWuacbDT0O334c-eYqOnwbR7qRT3GoXFYEiL8dVqiLHiShU0iN_vQa8r-Lp6Pp89V_SbpHp4dXZaXp6NDpZIzPe7yxYEK6Tyfp5nG8gcKn1ZqOxb9ER5r4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBaGFlh32atblz06YdihFxWxLdnyscgaNFubFGgz5GZQsgUU6-ygdg7bry9p2WlXZNjuokBQlPiJpD4x9llGYOhtgFD50AmMt0NhQhkLABkZxBshClK3xTQ-mcuvC7XoLor0FgaVqHGmui3i065e5q5jGCCqIGopUAnioW0q15FHH40u7t5Bhjro4W6i46hnErovSlHI1n9Gob9AyzbEjJ-x2Vq5trPkx-GqMYf29wPexv_X_jl72qFNfuTd4wV7VJQv2c6o_-Rtl1nfg-fTdrxyHA89fkGX5FzMiJWTTz2XBtzw2bLNe_MzaLzb8quSI37k51WDEPxq9ZN_pxayX9d8UlEigXs69FdsPj6-HJ2I7t8FAVEgGxHFhXN47BXSOYf7u7AagICFSlzgQIdpXJgkVVbGEhAyQeBSk0inQOU6NXn0mm2VVVm8YVzZMAcLemgCI6kI50JpIUg0ypoc1IDto7mybt_UWVsSD_FK0ttqwA76hcpsx1pOn2dcbxr6aT106ak6Ng3i_WpnaGqqjkBZVKs60zFxI0qdDtie94L1LJ6Wbhi-_Ze2H9nj8y_j7HQy_faOPfHpZymC6D3bam5WxQfEL43Zb532FmdI6UE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explorations+of+new+second-order+nonlinear+optical+materials+in+the+potassium+vanadyl+iodate+system&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sun%2C+Chuan-Fu&rft.au=Hu%2C+Chun-Li&rft.au=Xu%2C+Xiang&rft.au=Yang%2C+Bing-Ping&rft.date=2011-04-13&rft.eissn=1520-5126&rft.volume=133&rft.issue=14&rft.spage=5561&rft_id=info:doi/10.1021%2Fja200257a&rft_id=info%3Apmid%2F21428302&rft.externalDocID=21428302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |