Insights into Dehydrogenative Coupling of Alcohols and Amines Catalyzed by a (PNN)–Ru(II) Hydride Complex: Unusual Metal–Ligand Cooperation
Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN–Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed wh...
Saved in:
Published in | Inorganic chemistry Vol. 50; no. 21; pp. 10572 - 10580 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.11.2011
|
Online Access | Get full text |
Cover
Loading…
Abstract | Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN–Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H2; (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H2. The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H2 liberation to regenerate the catalyst. In all these steps, the metal–ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal–ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C–H bond and two ionic hydrogen bonds supported by the PNN ligand. |
---|---|
AbstractList | Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand.Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand. Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN–Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H2; (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H2. The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H2 liberation to regenerate the catalyst. In all these steps, the metal–ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal–ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C–H bond and two ionic hydrogen bonds supported by the PNN ligand. Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand. |
Author | Zeng, Guixiang Li, Shuhua |
AuthorAffiliation | Nanjing University |
AuthorAffiliation_xml | – name: Nanjing University |
Author_xml | – sequence: 1 givenname: Guixiang surname: Zeng fullname: Zeng, Guixiang – sequence: 2 givenname: Shuhua surname: Li fullname: Li, Shuhua email: shuhua@nju.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21942421$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9u1DAQhy1URLeFAy-AfEF0D6Fjx0k2va3Cn660FISoxM1ynMmuK8cOdoJYTrwBB96QJyHLthxQTyONvt83mpkTcuS8Q0KeMnjJgLNzozkAhwwfkBnLOCQZg89HZLZvJizPy2NyEuMNAJSpyB-RY85KwQVnM_Jz5aLZbIdIjRs8fYXbXRP8Bp0azFeklR97a9yG-pYurfZbbyNVrqHLzjiMtFKDsrvv2NB6RxU9-3B1Nf_949fH8Wy1mtPLyWWavaXrLX67oNdujKOy9B1OsYlbm81eVnnfY5gmeveYPGyVjfjktp6S6zevP1WXyfr921W1XCcqZWJI2KLOIdXY1CpFVmCR15AxkRcgxIIrlaaImIuyKLNCFIKVLdMLaOuFLgDLXKSn5MXB2wf_ZcQ4yM5EjdYqh36MsgSWQsYzNpHPbsmx7rCRfTCdCjt5d8MJOD8AOvgYA7ZSm-HvMkNQxkoGcv8l-e9LU2L-X-JOeh_7_MAqHeWNH4ObznIP9wc3e57I |
CitedBy_id | crossref_primary_10_1021_ic500743u crossref_primary_10_1038_s41929_024_01286_2 crossref_primary_10_1039_C4DT01842G crossref_primary_10_1039_D2CS00093H crossref_primary_10_1021_ja409368a crossref_primary_10_1021_cs401101m crossref_primary_10_1021_ic300175b crossref_primary_10_1002_ange_201311104 crossref_primary_10_1021_ja411568a crossref_primary_10_1002_zaac_201500568 crossref_primary_10_3389_fchem_2019_00557 crossref_primary_10_1039_C4QO00214H crossref_primary_10_1021_jacs_9b09326 crossref_primary_10_1039_c2dt30816a crossref_primary_10_1021_cs5008156 crossref_primary_10_1039_C9DT03886H crossref_primary_10_1002_chem_201400400 crossref_primary_10_1002_cctc_201800629 crossref_primary_10_1021_acscatal_6b02324 crossref_primary_10_1021_ic301967r crossref_primary_10_1002_cctc_201902180 crossref_primary_10_1021_acscatal_0c00491 crossref_primary_10_1002_anie_201311104 crossref_primary_10_1002_chem_201202400 crossref_primary_10_1021_acs_organomet_9b00542 crossref_primary_10_1002_chem_201504709 crossref_primary_10_1021_om4001428 crossref_primary_10_1021_acs_organomet_4c00214 crossref_primary_10_1134_S1070328416010097 crossref_primary_10_1039_C8CY00859K crossref_primary_10_1021_cr5002782 crossref_primary_10_1002_ejic_201403027 crossref_primary_10_1039_c3cc43517b crossref_primary_10_1021_acscatal_8b04495 crossref_primary_10_1021_acs_organomet_7b00521 crossref_primary_10_1021_cs501875z crossref_primary_10_1002_ejoc_201700089 crossref_primary_10_1021_acscatal_4c04475 crossref_primary_10_1002_chem_201402952 crossref_primary_10_1126_science_1229712 crossref_primary_10_1007_s11426_012_4713_8 crossref_primary_10_1039_D1SC00703C crossref_primary_10_1021_jacs_6b05742 crossref_primary_10_1039_c3ra40618k crossref_primary_10_1021_acs_inorgchem_5b00672 crossref_primary_10_1039_C7CY02488F crossref_primary_10_1039_C9RA03309B crossref_primary_10_1021_acscatal_5b02616 crossref_primary_10_1039_D4DT01829J crossref_primary_10_1021_om5011758 crossref_primary_10_1021_ja5076629 crossref_primary_10_1021_acscatal_5b01642 crossref_primary_10_1039_C6RA19175D crossref_primary_10_1021_acs_joc_3c00682 crossref_primary_10_1021_om400688v crossref_primary_10_1021_acscatal_3c01049 crossref_primary_10_1002_asia_202201069 crossref_primary_10_1021_acscatal_7b02415 crossref_primary_10_1039_C7DT04000H crossref_primary_10_1021_ja303121v crossref_primary_10_1021_om300248r crossref_primary_10_1039_D2DT00361A crossref_primary_10_1021_cs300619q crossref_primary_10_1021_acs_inorgchem_6b00766 crossref_primary_10_1021_jacs_5b13519 crossref_primary_10_1021_om300516j crossref_primary_10_1039_C5DT02163D crossref_primary_10_1002_cctc_201800017 crossref_primary_10_1021_om300403b crossref_primary_10_1021_om400126v crossref_primary_10_1021_acs_organomet_0c00327 crossref_primary_10_1021_om4005127 |
Cites_doi | 10.1063/1.456010 10.1021/om8008525 10.1002/cctc.200900124 10.1021/cr00031a013 10.1021/ja9041065 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5 10.1351/pac200375040445 10.1002/anie.200702943 10.1007/s11244-010-9523-7 10.1021/ja061438n 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L 10.1016/0009-2614(93)80086-5 10.1021/cr0104330 10.1055/s-2005-869831 10.1021/ar700261a 10.1002/chem.200400514 10.1021/cr960118r 10.1002/anie.200907018 10.1039/DT9910001789 10.1126/science.1145295 10.1021/cr9411785 10.1039/b909852f 10.1021/ja064479s 10.1002/tcr.200900019 10.1039/C39870000443 10.1021/om9608364 10.1002/1521-3765(20020603)8:11<2422::AID-CHEM2422>3.0.CO;2-B 10.1063/1.2370993 10.1021/ar9502341 10.1021/ja0620989 10.1002/anie.200300635 10.1002/anie.200903193 10.1021/om049716j 10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6 10.1021/cr0509760 10.1021/ar970316k 10.1126/science.1168600 10.1021/ja905073s 10.1021/ic9013587 10.1021/ic900285b 10.1021/ja107770y 10.1039/a903573g 10.1126/science.1114731 10.1039/B308864M 10.1002/anie.200503771 10.1103/PhysRevB.37.785 10.1021/ja059914h 10.1021/jo970944f 10.1007/s00214-007-0310-x 10.1073/pnas.0610747104 10.1039/b922312f 10.1021/jo010721w 10.1021/ic901032c 10.1063/1.464913 10.1021/ja101044c 10.1021/ja1080019 10.1039/b806837m 10.1002/anie.200902455 10.1039/B904495G 10.1063/1.448975 10.1039/B613785G 10.1021/ja109944n 10.1002/qua.560140503 10.1063/1.1383587 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2011 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ic200205e |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 10580 |
ExternalDocumentID | 21942421 10_1021_ic200205e c277192638 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK IH2 XSW ~02 NPM 7X8 |
ID | FETCH-LOGICAL-a314t-18b603cedba3e17e76b05146704482aa33eee649795747419f1c80fb8c70e9643 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Thu Aug 07 15:03:56 EDT 2025 Mon Jul 21 05:59:51 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Tue Jul 01 02:05:36 EDT 2025 Thu Aug 27 13:42:11 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | 2011 American Chemical Society |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a314t-18b603cedba3e17e76b05146704482aa33eee649795747419f1c80fb8c70e9643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21942421 |
PQID | 901305251 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_901305251 pubmed_primary_21942421 crossref_citationtrail_10_1021_ic200205e crossref_primary_10_1021_ic200205e acs_journals_10_1021_ic200205e |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20111107 2011-11-07 2011-Nov-07 |
PublicationDateYYYYMMDD | 2011-11-07 |
PublicationDate_xml | – month: 11 year: 2011 text: 20111107 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Noyori R. (ref1/cit1c) 2001; 66 Kanai M. (ref2/cit2b) 2005 Lee C. (ref13/cit13b) 1988; 37 Albrecht M. (ref5/cit5c) 2001; 40 Ehlers A. W. (ref17/cit17) 1993; 208 Ohkuma T. (ref1/cit1b) 2006; 128 Paull D. H. (ref2/cit2c) 2008; 41 Taylor R. A. (ref5/cit5b) 2009; 48 Zhang J. (ref8/cit8b) 2005; 127 Hay P. J. (ref15/cit15) 1985; 82 Brookhart M. (ref28/cit28b) 2007; 104 van der Vlugt J. I. (ref5/cit5i) 2009; 48 Morris R. H. (ref1/cit1a) 2009; 38 Noyori R. (ref1/cit1e) 1997; 30 Gunanathan C. (ref6/cit6b) 2010; 132 Martinelli J. R. (ref11/cit11b) 2007; 46 van der Vlugt J. I. (ref5/cit5a) 2009; 48 Vigalok A. (ref5/cit5f) 2001; 34 Noyori R. (ref1/cit1d) 2001; 40 Zhao Y. (ref22/cit22) 2006; 125 Pople J. A. (ref23/cit23a) 1978; 14 Johnson T. C. (ref12/cit12b) 2010; 39 Brammer L. (ref27/cit27a) 1987 Brammer L. (ref27/cit27b) 1991 Sieffert N. (ref12/cit12d) 2010; 132 Ma J. A. (ref2/cit2a) 2004; 43 Poverenov E. (ref9/cit9c) 2004; 10 Keense F. R. (ref11/cit11a) 1999; 187 Sakaki S. (ref20/cit20a) 2010; 10 Frisch M. J. (ref14/cit14b) 2009 Iikura H. (ref25/cit25) 2001; 115 van der Boom M. E. (ref5/cit5d) 2003; 103 Ohnishi Y. (ref20/cit20d) 2009; 28 Jun C. H. (ref3/cit3b) 2002; 8 Raghavachari K. (ref23/cit23b) 1980; 72 Jun C. H. (ref4/cit4a) 2004; 33 Ishikawa A. (ref20/cit20c) 2009; 48 Milstein D. (ref5/cit5g) 2003; 75 Gnanaprakasam B. (ref29/cit29) 2011; 133 Ishikawa A. (ref20/cit20b) 2010; 39 Yang X. (ref10/cit10b) 2010; 132 Zhang J. (ref8/cit8a) 2004; 23 Gonzalez C. (ref18/cit18) 1989; 90 Milstein D. (ref5/cit5h) 2010; 53 Couty M. (ref16/cit16) 1996; 17 Tomasi J. (ref19/cit19) 1994; 94 Braga D. (ref27/cit27c) 1997; 16 Calhorda M. J. (ref28/cit28a) 2000 Chan W. K. (ref11/cit11c) 2006; 128 Hetterscheid D. G. H. J. (ref7/cit7b) 2009; 48 Jensen C. M. (ref5/cit5e) 1999 Ritleng V. (ref3/cit3a) 2002; 102 Balaraman E. (ref8/cit8d) 2010; 132 Zhang J. (ref6/cit6a) 2006; 128 Gunanathan C. (ref9/cit9a) 2007; 317 Iron M. A. (ref10/cit10d) 2009 Zhang J. (ref8/cit8c) 2006; 45 Gnanaprakasam B. (ref9/cit9b) 2010; 49 Junge H. (ref12/cit12c) 2007 Becke A. D. (ref13/cit13a) 1993; 98 Kohl S. W. (ref7/cit7a) 2009; 324 Zeng G. (ref10/cit10c) 2009; 48 Mammen M. (ref21/cit21) 1998; 63 Frisch M. J. (ref14/cit14a) 2004 Zhao Y. (ref24/cit24) 2008; 120 Godula K. (ref3/cit3c) 2006; 312 Li J. (ref10/cit10a) 2009; 131 Friendrich A. (ref12/cit12a) 2009; 1 Alberico D. (ref4/cit4b) 2007; 107 Mautner M. (ref26/cit26) 2005; 105 |
References_xml | – volume: 90 start-page: 2154 year: 1989 ident: ref18/cit18 publication-title: J. Chem. Phys. doi: 10.1063/1.456010 – volume: 28 start-page: 2583 year: 2009 ident: ref20/cit20d publication-title: Organometallics doi: 10.1021/om8008525 – volume: 1 start-page: 72 year: 2009 ident: ref12/cit12a publication-title: ChemCatChem doi: 10.1002/cctc.200900124 – volume: 94 start-page: 2027 year: 1994 ident: ref19/cit19 publication-title: Chem. Rev. doi: 10.1021/cr00031a013 – volume: 132 start-page: 120 year: 2010 ident: ref10/cit10b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9041065 – volume: 40 start-page: 40 year: 2001 ident: ref1/cit1d publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5 – volume: 75 start-page: 445 year: 2003 ident: ref5/cit5g publication-title: Pure Appl. Chem. doi: 10.1351/pac200375040445 – volume: 46 start-page: 8460 year: 2007 ident: ref11/cit11b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200702943 – volume: 53 start-page: 915 year: 2010 ident: ref5/cit5h publication-title: Top. Catal. doi: 10.1007/s11244-010-9523-7 – volume: 128 start-page: 15930 year: 2006 ident: ref6/cit6a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061438n – volume: 17 start-page: 1359 year: 1996 ident: ref16/cit16 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L – volume: 208 start-page: 111 year: 1993 ident: ref17/cit17 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)80086-5 – volume: 102 start-page: 1731 year: 2002 ident: ref3/cit3a publication-title: Chem. Rev. doi: 10.1021/cr0104330 – start-page: 1491 year: 2005 ident: ref2/cit2b publication-title: Synlett doi: 10.1055/s-2005-869831 – volume: 41 start-page: 655 year: 2008 ident: ref2/cit2c publication-title: Acc. Chem. Res. doi: 10.1021/ar700261a – volume: 10 start-page: 4673 year: 2004 ident: ref9/cit9c publication-title: Chem.—Eur. J. doi: 10.1002/chem.200400514 – volume: 103 start-page: 1759 year: 2003 ident: ref5/cit5d publication-title: Chem. Rev. doi: 10.1021/cr960118r – volume: 49 start-page: 1468 year: 2010 ident: ref9/cit9b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907018 – start-page: 1789 year: 1991 ident: ref27/cit27b publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/DT9910001789 – volume: 317 start-page: 790 year: 2007 ident: ref9/cit9a publication-title: Science doi: 10.1126/science.1145295 – volume: 105 start-page: 213 year: 2005 ident: ref26/cit26 publication-title: Chem. Rev. doi: 10.1021/cr9411785 – start-page: 9433 year: 2009 ident: ref10/cit10d publication-title: Dalton Trans. doi: 10.1039/b909852f – volume: 128 start-page: 14796 year: 2006 ident: ref11/cit11c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja064479s – volume: 10 start-page: 29 year: 2010 ident: ref20/cit20a publication-title: Chem. Rec. doi: 10.1002/tcr.200900019 – start-page: 443 year: 1987 ident: ref27/cit27a publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/C39870000443 – volume: 16 start-page: 1846 year: 1997 ident: ref27/cit27c publication-title: Organometallics doi: 10.1021/om9608364 – volume: 8 start-page: 2422 year: 2002 ident: ref3/cit3b publication-title: Chem.—Eur. J. doi: 10.1002/1521-3765(20020603)8:11<2422::AID-CHEM2422>3.0.CO;2-B – volume: 125 start-page: 194101 year: 2006 ident: ref22/cit22 publication-title: J. Chem. Phys. doi: 10.1063/1.2370993 – volume: 30 start-page: 97 year: 1997 ident: ref1/cit1e publication-title: Acc. Chem. Res. doi: 10.1021/ar9502341 – start-page: 80 year: 2000 ident: ref28/cit28a publication-title: Chem. Commun. – volume: 128 start-page: 8724 year: 2006 ident: ref1/cit1b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0620989 – volume: 43 start-page: 4566 year: 2004 ident: ref2/cit2a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300635 – volume: 48 start-page: 8832 year: 2009 ident: ref5/cit5a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200903193 – volume: 23 start-page: 4026 year: 2004 ident: ref8/cit8a publication-title: Organometallics doi: 10.1021/om049716j – volume: 40 start-page: 3750 year: 2001 ident: ref5/cit5c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6 – volume: 107 start-page: 174 year: 2007 ident: ref4/cit4b publication-title: Chem. Rev. doi: 10.1021/cr0509760 – volume: 34 start-page: 798 year: 2001 ident: ref5/cit5f publication-title: Acc. Chem. Res. doi: 10.1021/ar970316k – volume: 324 start-page: 74 year: 2009 ident: ref7/cit7a publication-title: Science doi: 10.1126/science.1168600 – volume: 131 start-page: 13584 year: 2009 ident: ref10/cit10a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905073s – volume: 48 start-page: 10257 year: 2009 ident: ref10/cit10c publication-title: Inorg. Chem. doi: 10.1021/ic9013587 – volume: 48 start-page: 8154 year: 2009 ident: ref20/cit20c publication-title: Inorg. Chem. doi: 10.1021/ic900285b – volume: 132 start-page: 14763 year: 2010 ident: ref6/cit6b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja107770y – volume-title: Gaussian 03 year: 2004 ident: ref14/cit14a – start-page: 2443 year: 1999 ident: ref5/cit5e publication-title: Chem. Commun. doi: 10.1039/a903573g – volume: 312 start-page: 67 year: 2006 ident: ref3/cit3c publication-title: Science doi: 10.1126/science.1114731 – volume: 33 start-page: 610 year: 2004 ident: ref4/cit4a publication-title: Chem. Soc. Rev. doi: 10.1039/B308864M – volume: 45 start-page: 1113 year: 2006 ident: ref8/cit8c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200503771 – volume: 37 start-page: 785 year: 1988 ident: ref13/cit13b publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.37.785 – volume: 127 start-page: 12429 year: 2005 ident: ref8/cit8b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja059914h – volume: 63 start-page: 3821 year: 1998 ident: ref21/cit21 publication-title: J. Org. Chem. doi: 10.1021/jo970944f – volume: 120 start-page: 215 year: 2008 ident: ref24/cit24 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 104 start-page: 6908 year: 2007 ident: ref28/cit28b publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0610747104 – volume: 39 start-page: 3279 year: 2010 ident: ref20/cit20b publication-title: Dalton Trans. doi: 10.1039/b922312f – volume: 66 start-page: 7931 year: 2001 ident: ref1/cit1c publication-title: J. Org. Chem. doi: 10.1021/jo010721w – volume: 48 start-page: 7513 year: 2009 ident: ref5/cit5i publication-title: Inorg. Chem. doi: 10.1021/ic901032c – volume: 98 start-page: 5648 year: 1993 ident: ref13/cit13a publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 132 start-page: 8056 year: 2010 ident: ref12/cit12d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101044c – volume: 132 start-page: 16756 year: 2010 ident: ref8/cit8d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1080019 – volume: 38 start-page: 2282 year: 2009 ident: ref1/cit1a publication-title: Chem. Soc. Rev. doi: 10.1039/b806837m – volume: 48 start-page: 8178 year: 2009 ident: ref5/cit5b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200902455 – volume: 39 start-page: 81 year: 2010 ident: ref12/cit12b publication-title: Chem. Soc. Rev. doi: 10.1039/B904495G – volume-title: Gaussian 09 year: 2009 ident: ref14/cit14b – volume: 82 start-page: 299 year: 1985 ident: ref15/cit15 publication-title: J. Chem. Phys. doi: 10.1063/1.448975 – start-page: 522 year: 2007 ident: ref12/cit12c publication-title: Chem. Commun. doi: 10.1039/B613785G – volume: 48 start-page: 8178 year: 2009 ident: ref7/cit7b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200902455 – volume: 187 start-page: I21 year: 1999 ident: ref11/cit11a publication-title: Coord. Chem. Rev. – volume: 133 start-page: 1682 year: 2011 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109944n – volume: 72 start-page: 4244 year: 1980 ident: ref23/cit23b publication-title: Chem. Phys. Lett. – volume: 14 start-page: 91 year: 1978 ident: ref23/cit23a publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560140503 – volume: 115 start-page: 3540 year: 2001 ident: ref25/cit25 publication-title: J. Chem. Phys. doi: 10.1063/1.1383587 |
SSID | ssj0009346 |
Score | 2.3202248 |
Snippet | Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10572 |
Title | Insights into Dehydrogenative Coupling of Alcohols and Amines Catalyzed by a (PNN)–Ru(II) Hydride Complex: Unusual Metal–Ligand Cooperation |
URI | http://dx.doi.org/10.1021/ic200205e https://www.ncbi.nlm.nih.gov/pubmed/21942421 https://www.proquest.com/docview/901305251 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKe4AL0PJaHpVVOGwPKXGc2DG3VUq1i9oVAlbqLbKdSVkBSdUkEttT_0EP_EN-CZ5kswXRwi2H8cjKTOJ5-fsIeWVsLsEq7uU-BF6oOPOU1pl7yrTIpNZ5y3V4NBXjWfjuODpeIy9v6OAH7PXc4hyBH8EtshGIWGKGNUo-XiHr8u42DuZBTAjVwwf9vhSPHlv9efTcEE-258rBPbLf387pxkm-7DW12bPnf4M1_mvL98ndZVxJR50jbJI1KLbI7aSnc3tALidFhYl4RedFXdJ9-LzIzkrnPi3yN03KBu_mntAyp6OONreiusjo6BsOxtMEyzyLc8ioWVBNh--n092fFz8-NMPJZJeOF8jSjloQbPj7Gzormqpx-zkCt8zJHc5PUFlSlqfQ-dxDMjt4-ykZe0s2Bk9zFtYei43wuYXMaA5MghQGsdOF9F2GF2jNOQCIUEkVuRQlZCpnNvZzE1vpA6J-PSLrRVnAE0IjH2LNpeFhmLsEjWmpM2mUW49qcjUg285c6fJrqtK2UR6wdPVeB2TYWzK1SyxzpNT4ep3ozkr0tAPwuE6I9u6QOrNgz0QXUDZVqrCzG7kgcEAed26y0uL-9SE21J_-b7fPyJ22Eo3FaPmcrNdnDbxwoUxttltX_gXhWu5N |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHMql_MPyUyzEYXtIiddJvOa2ClS7sLtC0JV6i2xnUlaFpKoTie2JN-DAG_IkeJzsFlAR3HIYj0b2OJ7xjL-PkOfaFAKM5EERwiCIJGeBVCp3X7lKcqFU4bkOZ_NkvIjeHMVHHUwOvoVxRlinyfoi_gW6AHuxNNhOEMZwlVxzQcgAE61R-uECYJe3j3IwHWJJItcoQr8OxRPI2N9PoL-Elf54ObjR8hR5w3xXycl-U-t9c_4HZuP_WX6T7HRRJh21bnGLXIHyNtlO1-Rud8i3SWkxLbd0WdYVfQUfV_lZ5ZzJ44DTtGrwpe4xrQo6akl0LVVlTkefsU2epnjpszqHnOoVVbT_bj7f-_H1-_umP5ns0fEKOdtRC0IPf3lJF2VjG2fPDNwwJzddHqOytKpOofXAu2Rx8PowHQcdN0OgOIvqgA11EnIDuVYcmACRaERST0To8r2BUpwDQBJJIWOXsERMFswMw0IPjQgBMcDuka2yKuEBoXEIQ8WF5lFUuHSNKaFyoaUbj2oK2SO7blqzbm_ZzJfNByzbzGuP9NcLmpkO2RwJNj5dJvpsI3rawnlcJkTXXpG5ZcEKiiqhamwmsc4bu5CwR-633rLR4v78EZbXH_7L2qdke3w4m2bTyfztI3Ld31HjNbV4TLbqswaeuCCn1rveu38C9IH2rg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgkYAL70d5LBbi0D1kN66TuOZWZala2C0roNLeIj8mSwUk1TqR6J74Bxz4h_wSPElaHloENx_Go5E91sznsb8h5Jk2uQAjeZCHMAgiyVkglbJ-ZFVihVJ50-vwcJZM5tHL4_i4A4r4F8Yb4bwm1xTx8VQvbd4xDLC9hcEnBWEMF8klLNch2Bqlb3-S7PL2Yw5CIpYkcs0k9OtUjELG_R6F_pJaNiFmfJ283hjXvCz5sFtXetec_cHb-P_W3yDXumyTjlr3uEkuQHGLXEnXTd5uk6_TwiE8d3RRVCXdh_cre1p6p2r4wGla1vhj94SWOR21zXQdVYWlo0_4XJ6mePmzOgNL9Yoq2j-azXa-f_n2pu5Ppzt0ssLe7agFKYg_P6fzona1t-cQ_DQvd7A4QWVpWS6h9cQ7ZD5-8S6dBF2PhkBxFlUBG-ok5AasVhyYAJFoZFRPROhx30ApzgEgiaSQsQcuEZM5M8Mw10MjQkAusLtkqygLuE9oHMJQcaF5FOUetjEllBVa-vmoJpc9su2XNuvOmMua8vmAZZt17ZH-elMz0zGcY6ONj-eJPt2ILltaj_OE6NozMr8tWElRBZS1yyTWe2OfGvbIvdZjNlp8BIiwzP7gX9Y-IZeP9sfZwXT26iG52lxV4221eES2qtMaHvtcp9LbjYP_AAFM-TE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+dehydrogenative+coupling+of+alcohols+and+amines+catalyzed+by+a+%28PNN%29-Ru%28II%29+hydride+complex%3A+unusual+metal-ligand+cooperation&rft.jtitle=Inorganic+chemistry&rft.au=Zeng%2C+Guixiang&rft.au=Li%2C+Shuhua&rft.date=2011-11-07&rft.issn=1520-510X&rft.eissn=1520-510X&rft.volume=50&rft.issue=21&rft.spage=10572&rft_id=info:doi/10.1021%2Fic200205e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |