Insights into Dehydrogenative Coupling of Alcohols and Amines Catalyzed by a (PNN)–Ru(II) Hydride Complex: Unusual Metal–Ligand Cooperation

Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN–Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed wh...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 50; no. 21; pp. 10572 - 10580
Main Authors Zeng, Guixiang, Li, Shuhua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.11.2011
Online AccessGet full text

Cover

Loading…
Abstract Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN–Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H2; (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H2. The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H2 liberation to regenerate the catalyst. In all these steps, the metal–ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal–ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C–H bond and two ionic hydrogen bonds supported by the PNN ligand.
AbstractList Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand.Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand.
Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN–Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H2; (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H2. The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H2 liberation to regenerate the catalyst. In all these steps, the metal–ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal–ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C–H bond and two ionic hydrogen bonds supported by the PNN ligand.
Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand.
Author Zeng, Guixiang
Li, Shuhua
AuthorAffiliation Nanjing University
AuthorAffiliation_xml – name: Nanjing University
Author_xml – sequence: 1
  givenname: Guixiang
  surname: Zeng
  fullname: Zeng, Guixiang
– sequence: 2
  givenname: Shuhua
  surname: Li
  fullname: Li, Shuhua
  email: shuhua@nju.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21942421$$D View this record in MEDLINE/PubMed
BookMark eNptkc9u1DAQhy1URLeFAy-AfEF0D6Fjx0k2va3Cn660FISoxM1ynMmuK8cOdoJYTrwBB96QJyHLthxQTyONvt83mpkTcuS8Q0KeMnjJgLNzozkAhwwfkBnLOCQZg89HZLZvJizPy2NyEuMNAJSpyB-RY85KwQVnM_Jz5aLZbIdIjRs8fYXbXRP8Bp0azFeklR97a9yG-pYurfZbbyNVrqHLzjiMtFKDsrvv2NB6RxU9-3B1Nf_949fH8Wy1mtPLyWWavaXrLX67oNdujKOy9B1OsYlbm81eVnnfY5gmeveYPGyVjfjktp6S6zevP1WXyfr921W1XCcqZWJI2KLOIdXY1CpFVmCR15AxkRcgxIIrlaaImIuyKLNCFIKVLdMLaOuFLgDLXKSn5MXB2wf_ZcQ4yM5EjdYqh36MsgSWQsYzNpHPbsmx7rCRfTCdCjt5d8MJOD8AOvgYA7ZSm-HvMkNQxkoGcv8l-e9LU2L-X-JOeh_7_MAqHeWNH4ObznIP9wc3e57I
CitedBy_id crossref_primary_10_1021_ic500743u
crossref_primary_10_1038_s41929_024_01286_2
crossref_primary_10_1039_C4DT01842G
crossref_primary_10_1039_D2CS00093H
crossref_primary_10_1021_ja409368a
crossref_primary_10_1021_cs401101m
crossref_primary_10_1021_ic300175b
crossref_primary_10_1002_ange_201311104
crossref_primary_10_1021_ja411568a
crossref_primary_10_1002_zaac_201500568
crossref_primary_10_3389_fchem_2019_00557
crossref_primary_10_1039_C4QO00214H
crossref_primary_10_1021_jacs_9b09326
crossref_primary_10_1039_c2dt30816a
crossref_primary_10_1021_cs5008156
crossref_primary_10_1039_C9DT03886H
crossref_primary_10_1002_chem_201400400
crossref_primary_10_1002_cctc_201800629
crossref_primary_10_1021_acscatal_6b02324
crossref_primary_10_1021_ic301967r
crossref_primary_10_1002_cctc_201902180
crossref_primary_10_1021_acscatal_0c00491
crossref_primary_10_1002_anie_201311104
crossref_primary_10_1002_chem_201202400
crossref_primary_10_1021_acs_organomet_9b00542
crossref_primary_10_1002_chem_201504709
crossref_primary_10_1021_om4001428
crossref_primary_10_1021_acs_organomet_4c00214
crossref_primary_10_1134_S1070328416010097
crossref_primary_10_1039_C8CY00859K
crossref_primary_10_1021_cr5002782
crossref_primary_10_1002_ejic_201403027
crossref_primary_10_1039_c3cc43517b
crossref_primary_10_1021_acscatal_8b04495
crossref_primary_10_1021_acs_organomet_7b00521
crossref_primary_10_1021_cs501875z
crossref_primary_10_1002_ejoc_201700089
crossref_primary_10_1021_acscatal_4c04475
crossref_primary_10_1002_chem_201402952
crossref_primary_10_1126_science_1229712
crossref_primary_10_1007_s11426_012_4713_8
crossref_primary_10_1039_D1SC00703C
crossref_primary_10_1021_jacs_6b05742
crossref_primary_10_1039_c3ra40618k
crossref_primary_10_1021_acs_inorgchem_5b00672
crossref_primary_10_1039_C7CY02488F
crossref_primary_10_1039_C9RA03309B
crossref_primary_10_1021_acscatal_5b02616
crossref_primary_10_1039_D4DT01829J
crossref_primary_10_1021_om5011758
crossref_primary_10_1021_ja5076629
crossref_primary_10_1021_acscatal_5b01642
crossref_primary_10_1039_C6RA19175D
crossref_primary_10_1021_acs_joc_3c00682
crossref_primary_10_1021_om400688v
crossref_primary_10_1021_acscatal_3c01049
crossref_primary_10_1002_asia_202201069
crossref_primary_10_1021_acscatal_7b02415
crossref_primary_10_1039_C7DT04000H
crossref_primary_10_1021_ja303121v
crossref_primary_10_1021_om300248r
crossref_primary_10_1039_D2DT00361A
crossref_primary_10_1021_cs300619q
crossref_primary_10_1021_acs_inorgchem_6b00766
crossref_primary_10_1021_jacs_5b13519
crossref_primary_10_1021_om300516j
crossref_primary_10_1039_C5DT02163D
crossref_primary_10_1002_cctc_201800017
crossref_primary_10_1021_om300403b
crossref_primary_10_1021_om400126v
crossref_primary_10_1021_acs_organomet_0c00327
crossref_primary_10_1021_om4005127
Cites_doi 10.1063/1.456010
10.1021/om8008525
10.1002/cctc.200900124
10.1021/cr00031a013
10.1021/ja9041065
10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5
10.1351/pac200375040445
10.1002/anie.200702943
10.1007/s11244-010-9523-7
10.1021/ja061438n
10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L
10.1016/0009-2614(93)80086-5
10.1021/cr0104330
10.1055/s-2005-869831
10.1021/ar700261a
10.1002/chem.200400514
10.1021/cr960118r
10.1002/anie.200907018
10.1039/DT9910001789
10.1126/science.1145295
10.1021/cr9411785
10.1039/b909852f
10.1021/ja064479s
10.1002/tcr.200900019
10.1039/C39870000443
10.1021/om9608364
10.1002/1521-3765(20020603)8:11<2422::AID-CHEM2422>3.0.CO;2-B
10.1063/1.2370993
10.1021/ar9502341
10.1021/ja0620989
10.1002/anie.200300635
10.1002/anie.200903193
10.1021/om049716j
10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6
10.1021/cr0509760
10.1021/ar970316k
10.1126/science.1168600
10.1021/ja905073s
10.1021/ic9013587
10.1021/ic900285b
10.1021/ja107770y
10.1039/a903573g
10.1126/science.1114731
10.1039/B308864M
10.1002/anie.200503771
10.1103/PhysRevB.37.785
10.1021/ja059914h
10.1021/jo970944f
10.1007/s00214-007-0310-x
10.1073/pnas.0610747104
10.1039/b922312f
10.1021/jo010721w
10.1021/ic901032c
10.1063/1.464913
10.1021/ja101044c
10.1021/ja1080019
10.1039/b806837m
10.1002/anie.200902455
10.1039/B904495G
10.1063/1.448975
10.1039/B613785G
10.1021/ja109944n
10.1002/qua.560140503
10.1063/1.1383587
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2011 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ic200205e
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 10580
ExternalDocumentID 21942421
10_1021_ic200205e
c277192638
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
~02
NPM
7X8
ID FETCH-LOGICAL-a314t-18b603cedba3e17e76b05146704482aa33eee649795747419f1c80fb8c70e9643
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Thu Aug 07 15:03:56 EDT 2025
Mon Jul 21 05:59:51 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Tue Jul 01 02:05:36 EDT 2025
Thu Aug 27 13:42:11 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License 2011 American Chemical Society
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a314t-18b603cedba3e17e76b05146704482aa33eee649795747419f1c80fb8c70e9643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21942421
PQID 901305251
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_901305251
pubmed_primary_21942421
crossref_citationtrail_10_1021_ic200205e
crossref_primary_10_1021_ic200205e
acs_journals_10_1021_ic200205e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20111107
2011-11-07
2011-Nov-07
PublicationDateYYYYMMDD 2011-11-07
PublicationDate_xml – month: 11
  year: 2011
  text: 20111107
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Noyori R. (ref1/cit1c) 2001; 66
Kanai M. (ref2/cit2b) 2005
Lee C. (ref13/cit13b) 1988; 37
Albrecht M. (ref5/cit5c) 2001; 40
Ehlers A. W. (ref17/cit17) 1993; 208
Ohkuma T. (ref1/cit1b) 2006; 128
Paull D. H. (ref2/cit2c) 2008; 41
Taylor R. A. (ref5/cit5b) 2009; 48
Zhang J. (ref8/cit8b) 2005; 127
Hay P. J. (ref15/cit15) 1985; 82
Brookhart M. (ref28/cit28b) 2007; 104
van der Vlugt J. I. (ref5/cit5i) 2009; 48
Morris R. H. (ref1/cit1a) 2009; 38
Noyori R. (ref1/cit1e) 1997; 30
Gunanathan C. (ref6/cit6b) 2010; 132
Martinelli J. R. (ref11/cit11b) 2007; 46
van der Vlugt J. I. (ref5/cit5a) 2009; 48
Vigalok A. (ref5/cit5f) 2001; 34
Noyori R. (ref1/cit1d) 2001; 40
Zhao Y. (ref22/cit22) 2006; 125
Pople J. A. (ref23/cit23a) 1978; 14
Johnson T. C. (ref12/cit12b) 2010; 39
Brammer L. (ref27/cit27a) 1987
Brammer L. (ref27/cit27b) 1991
Sieffert N. (ref12/cit12d) 2010; 132
Ma J. A. (ref2/cit2a) 2004; 43
Poverenov E. (ref9/cit9c) 2004; 10
Keense F. R. (ref11/cit11a) 1999; 187
Sakaki S. (ref20/cit20a) 2010; 10
Frisch M. J. (ref14/cit14b) 2009
Iikura H. (ref25/cit25) 2001; 115
van der Boom M. E. (ref5/cit5d) 2003; 103
Ohnishi Y. (ref20/cit20d) 2009; 28
Jun C. H. (ref3/cit3b) 2002; 8
Raghavachari K. (ref23/cit23b) 1980; 72
Jun C. H. (ref4/cit4a) 2004; 33
Ishikawa A. (ref20/cit20c) 2009; 48
Milstein D. (ref5/cit5g) 2003; 75
Gnanaprakasam B. (ref29/cit29) 2011; 133
Ishikawa A. (ref20/cit20b) 2010; 39
Yang X. (ref10/cit10b) 2010; 132
Zhang J. (ref8/cit8a) 2004; 23
Gonzalez C. (ref18/cit18) 1989; 90
Milstein D. (ref5/cit5h) 2010; 53
Couty M. (ref16/cit16) 1996; 17
Tomasi J. (ref19/cit19) 1994; 94
Braga D. (ref27/cit27c) 1997; 16
Calhorda M. J. (ref28/cit28a) 2000
Chan W. K. (ref11/cit11c) 2006; 128
Hetterscheid D. G. H. J. (ref7/cit7b) 2009; 48
Jensen C. M. (ref5/cit5e) 1999
Ritleng V. (ref3/cit3a) 2002; 102
Balaraman E. (ref8/cit8d) 2010; 132
Zhang J. (ref6/cit6a) 2006; 128
Gunanathan C. (ref9/cit9a) 2007; 317
Iron M. A. (ref10/cit10d) 2009
Zhang J. (ref8/cit8c) 2006; 45
Gnanaprakasam B. (ref9/cit9b) 2010; 49
Junge H. (ref12/cit12c) 2007
Becke A. D. (ref13/cit13a) 1993; 98
Kohl S. W. (ref7/cit7a) 2009; 324
Zeng G. (ref10/cit10c) 2009; 48
Mammen M. (ref21/cit21) 1998; 63
Frisch M. J. (ref14/cit14a) 2004
Zhao Y. (ref24/cit24) 2008; 120
Godula K. (ref3/cit3c) 2006; 312
Li J. (ref10/cit10a) 2009; 131
Friendrich A. (ref12/cit12a) 2009; 1
Alberico D. (ref4/cit4b) 2007; 107
Mautner M. (ref26/cit26) 2005; 105
References_xml – volume: 90
  start-page: 2154
  year: 1989
  ident: ref18/cit18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456010
– volume: 28
  start-page: 2583
  year: 2009
  ident: ref20/cit20d
  publication-title: Organometallics
  doi: 10.1021/om8008525
– volume: 1
  start-page: 72
  year: 2009
  ident: ref12/cit12a
  publication-title: ChemCatChem
  doi: 10.1002/cctc.200900124
– volume: 94
  start-page: 2027
  year: 1994
  ident: ref19/cit19
  publication-title: Chem. Rev.
  doi: 10.1021/cr00031a013
– volume: 132
  start-page: 120
  year: 2010
  ident: ref10/cit10b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9041065
– volume: 40
  start-page: 40
  year: 2001
  ident: ref1/cit1d
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5
– volume: 75
  start-page: 445
  year: 2003
  ident: ref5/cit5g
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200375040445
– volume: 46
  start-page: 8460
  year: 2007
  ident: ref11/cit11b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702943
– volume: 53
  start-page: 915
  year: 2010
  ident: ref5/cit5h
  publication-title: Top. Catal.
  doi: 10.1007/s11244-010-9523-7
– volume: 128
  start-page: 15930
  year: 2006
  ident: ref6/cit6a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061438n
– volume: 17
  start-page: 1359
  year: 1996
  ident: ref16/cit16
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L
– volume: 208
  start-page: 111
  year: 1993
  ident: ref17/cit17
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)80086-5
– volume: 102
  start-page: 1731
  year: 2002
  ident: ref3/cit3a
  publication-title: Chem. Rev.
  doi: 10.1021/cr0104330
– start-page: 1491
  year: 2005
  ident: ref2/cit2b
  publication-title: Synlett
  doi: 10.1055/s-2005-869831
– volume: 41
  start-page: 655
  year: 2008
  ident: ref2/cit2c
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700261a
– volume: 10
  start-page: 4673
  year: 2004
  ident: ref9/cit9c
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200400514
– volume: 103
  start-page: 1759
  year: 2003
  ident: ref5/cit5d
  publication-title: Chem. Rev.
  doi: 10.1021/cr960118r
– volume: 49
  start-page: 1468
  year: 2010
  ident: ref9/cit9b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907018
– start-page: 1789
  year: 1991
  ident: ref27/cit27b
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/DT9910001789
– volume: 317
  start-page: 790
  year: 2007
  ident: ref9/cit9a
  publication-title: Science
  doi: 10.1126/science.1145295
– volume: 105
  start-page: 213
  year: 2005
  ident: ref26/cit26
  publication-title: Chem. Rev.
  doi: 10.1021/cr9411785
– start-page: 9433
  year: 2009
  ident: ref10/cit10d
  publication-title: Dalton Trans.
  doi: 10.1039/b909852f
– volume: 128
  start-page: 14796
  year: 2006
  ident: ref11/cit11c
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja064479s
– volume: 10
  start-page: 29
  year: 2010
  ident: ref20/cit20a
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.200900019
– start-page: 443
  year: 1987
  ident: ref27/cit27a
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/C39870000443
– volume: 16
  start-page: 1846
  year: 1997
  ident: ref27/cit27c
  publication-title: Organometallics
  doi: 10.1021/om9608364
– volume: 8
  start-page: 2422
  year: 2002
  ident: ref3/cit3b
  publication-title: Chem.—Eur. J.
  doi: 10.1002/1521-3765(20020603)8:11<2422::AID-CHEM2422>3.0.CO;2-B
– volume: 125
  start-page: 194101
  year: 2006
  ident: ref22/cit22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2370993
– volume: 30
  start-page: 97
  year: 1997
  ident: ref1/cit1e
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9502341
– start-page: 80
  year: 2000
  ident: ref28/cit28a
  publication-title: Chem. Commun.
– volume: 128
  start-page: 8724
  year: 2006
  ident: ref1/cit1b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0620989
– volume: 43
  start-page: 4566
  year: 2004
  ident: ref2/cit2a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300635
– volume: 48
  start-page: 8832
  year: 2009
  ident: ref5/cit5a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200903193
– volume: 23
  start-page: 4026
  year: 2004
  ident: ref8/cit8a
  publication-title: Organometallics
  doi: 10.1021/om049716j
– volume: 40
  start-page: 3750
  year: 2001
  ident: ref5/cit5c
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6
– volume: 107
  start-page: 174
  year: 2007
  ident: ref4/cit4b
  publication-title: Chem. Rev.
  doi: 10.1021/cr0509760
– volume: 34
  start-page: 798
  year: 2001
  ident: ref5/cit5f
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar970316k
– volume: 324
  start-page: 74
  year: 2009
  ident: ref7/cit7a
  publication-title: Science
  doi: 10.1126/science.1168600
– volume: 131
  start-page: 13584
  year: 2009
  ident: ref10/cit10a
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905073s
– volume: 48
  start-page: 10257
  year: 2009
  ident: ref10/cit10c
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9013587
– volume: 48
  start-page: 8154
  year: 2009
  ident: ref20/cit20c
  publication-title: Inorg. Chem.
  doi: 10.1021/ic900285b
– volume: 132
  start-page: 14763
  year: 2010
  ident: ref6/cit6b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja107770y
– volume-title: Gaussian 03
  year: 2004
  ident: ref14/cit14a
– start-page: 2443
  year: 1999
  ident: ref5/cit5e
  publication-title: Chem. Commun.
  doi: 10.1039/a903573g
– volume: 312
  start-page: 67
  year: 2006
  ident: ref3/cit3c
  publication-title: Science
  doi: 10.1126/science.1114731
– volume: 33
  start-page: 610
  year: 2004
  ident: ref4/cit4a
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B308864M
– volume: 45
  start-page: 1113
  year: 2006
  ident: ref8/cit8c
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200503771
– volume: 37
  start-page: 785
  year: 1988
  ident: ref13/cit13b
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.37.785
– volume: 127
  start-page: 12429
  year: 2005
  ident: ref8/cit8b
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja059914h
– volume: 63
  start-page: 3821
  year: 1998
  ident: ref21/cit21
  publication-title: J. Org. Chem.
  doi: 10.1021/jo970944f
– volume: 120
  start-page: 215
  year: 2008
  ident: ref24/cit24
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 104
  start-page: 6908
  year: 2007
  ident: ref28/cit28b
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0610747104
– volume: 39
  start-page: 3279
  year: 2010
  ident: ref20/cit20b
  publication-title: Dalton Trans.
  doi: 10.1039/b922312f
– volume: 66
  start-page: 7931
  year: 2001
  ident: ref1/cit1c
  publication-title: J. Org. Chem.
  doi: 10.1021/jo010721w
– volume: 48
  start-page: 7513
  year: 2009
  ident: ref5/cit5i
  publication-title: Inorg. Chem.
  doi: 10.1021/ic901032c
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref13/cit13a
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 132
  start-page: 8056
  year: 2010
  ident: ref12/cit12d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101044c
– volume: 132
  start-page: 16756
  year: 2010
  ident: ref8/cit8d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1080019
– volume: 38
  start-page: 2282
  year: 2009
  ident: ref1/cit1a
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b806837m
– volume: 48
  start-page: 8178
  year: 2009
  ident: ref5/cit5b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200902455
– volume: 39
  start-page: 81
  year: 2010
  ident: ref12/cit12b
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B904495G
– volume-title: Gaussian 09
  year: 2009
  ident: ref14/cit14b
– volume: 82
  start-page: 299
  year: 1985
  ident: ref15/cit15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448975
– start-page: 522
  year: 2007
  ident: ref12/cit12c
  publication-title: Chem. Commun.
  doi: 10.1039/B613785G
– volume: 48
  start-page: 8178
  year: 2009
  ident: ref7/cit7b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200902455
– volume: 187
  start-page: I21
  year: 1999
  ident: ref11/cit11a
  publication-title: Coord. Chem. Rev.
– volume: 133
  start-page: 1682
  year: 2011
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja109944n
– volume: 72
  start-page: 4244
  year: 1980
  ident: ref23/cit23b
  publication-title: Chem. Phys. Lett.
– volume: 14
  start-page: 91
  year: 1978
  ident: ref23/cit23a
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560140503
– volume: 115
  start-page: 3540
  year: 2001
  ident: ref25/cit25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1383587
SSID ssj0009346
Score 2.3202248
Snippet Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10572
Title Insights into Dehydrogenative Coupling of Alcohols and Amines Catalyzed by a (PNN)–Ru(II) Hydride Complex: Unusual Metal–Ligand Cooperation
URI http://dx.doi.org/10.1021/ic200205e
https://www.ncbi.nlm.nih.gov/pubmed/21942421
https://www.proquest.com/docview/901305251
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKe4AL0PJaHpVVOGwPKXGc2DG3VUq1i9oVAlbqLbKdSVkBSdUkEttT_0EP_EN-CZ5kswXRwi2H8cjKTOJ5-fsIeWVsLsEq7uU-BF6oOPOU1pl7yrTIpNZ5y3V4NBXjWfjuODpeIy9v6OAH7PXc4hyBH8EtshGIWGKGNUo-XiHr8u42DuZBTAjVwwf9vhSPHlv9efTcEE-258rBPbLf387pxkm-7DW12bPnf4M1_mvL98ndZVxJR50jbJI1KLbI7aSnc3tALidFhYl4RedFXdJ9-LzIzkrnPi3yN03KBu_mntAyp6OONreiusjo6BsOxtMEyzyLc8ioWVBNh--n092fFz8-NMPJZJeOF8jSjloQbPj7Gzormqpx-zkCt8zJHc5PUFlSlqfQ-dxDMjt4-ykZe0s2Bk9zFtYei43wuYXMaA5MghQGsdOF9F2GF2jNOQCIUEkVuRQlZCpnNvZzE1vpA6J-PSLrRVnAE0IjH2LNpeFhmLsEjWmpM2mUW49qcjUg285c6fJrqtK2UR6wdPVeB2TYWzK1SyxzpNT4ep3ozkr0tAPwuE6I9u6QOrNgz0QXUDZVqrCzG7kgcEAed26y0uL-9SE21J_-b7fPyJ22Eo3FaPmcrNdnDbxwoUxttltX_gXhWu5N
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHMql_MPyUyzEYXtIiddJvOa2ClS7sLtC0JV6i2xnUlaFpKoTie2JN-DAG_IkeJzsFlAR3HIYj0b2OJ7xjL-PkOfaFAKM5EERwiCIJGeBVCp3X7lKcqFU4bkOZ_NkvIjeHMVHHUwOvoVxRlinyfoi_gW6AHuxNNhOEMZwlVxzQcgAE61R-uECYJe3j3IwHWJJItcoQr8OxRPI2N9PoL-Elf54ObjR8hR5w3xXycl-U-t9c_4HZuP_WX6T7HRRJh21bnGLXIHyNtlO1-Rud8i3SWkxLbd0WdYVfQUfV_lZ5ZzJ44DTtGrwpe4xrQo6akl0LVVlTkefsU2epnjpszqHnOoVVbT_bj7f-_H1-_umP5ns0fEKOdtRC0IPf3lJF2VjG2fPDNwwJzddHqOytKpOofXAu2Rx8PowHQcdN0OgOIvqgA11EnIDuVYcmACRaERST0To8r2BUpwDQBJJIWOXsERMFswMw0IPjQgBMcDuka2yKuEBoXEIQ8WF5lFUuHSNKaFyoaUbj2oK2SO7blqzbm_ZzJfNByzbzGuP9NcLmpkO2RwJNj5dJvpsI3rawnlcJkTXXpG5ZcEKiiqhamwmsc4bu5CwR-633rLR4v78EZbXH_7L2qdke3w4m2bTyfztI3Ld31HjNbV4TLbqswaeuCCn1rveu38C9IH2rg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgkYAL70d5LBbi0D1kN66TuOZWZala2C0roNLeIj8mSwUk1TqR6J74Bxz4h_wSPElaHloENx_Go5E91sznsb8h5Jk2uQAjeZCHMAgiyVkglbJ-ZFVihVJ50-vwcJZM5tHL4_i4A4r4F8Yb4bwm1xTx8VQvbd4xDLC9hcEnBWEMF8klLNch2Bqlb3-S7PL2Yw5CIpYkcs0k9OtUjELG_R6F_pJaNiFmfJ283hjXvCz5sFtXetec_cHb-P_W3yDXumyTjlr3uEkuQHGLXEnXTd5uk6_TwiE8d3RRVCXdh_cre1p6p2r4wGla1vhj94SWOR21zXQdVYWlo0_4XJ6mePmzOgNL9Yoq2j-azXa-f_n2pu5Ppzt0ssLe7agFKYg_P6fzona1t-cQ_DQvd7A4QWVpWS6h9cQ7ZD5-8S6dBF2PhkBxFlUBG-ok5AasVhyYAJFoZFRPROhx30ApzgEgiaSQsQcuEZM5M8Mw10MjQkAusLtkqygLuE9oHMJQcaF5FOUetjEllBVa-vmoJpc9su2XNuvOmMua8vmAZZt17ZH-elMz0zGcY6ONj-eJPt2ILltaj_OE6NozMr8tWElRBZS1yyTWe2OfGvbIvdZjNlp8BIiwzP7gX9Y-IZeP9sfZwXT26iG52lxV4221eES2qtMaHvtcp9LbjYP_AAFM-TE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+dehydrogenative+coupling+of+alcohols+and+amines+catalyzed+by+a+%28PNN%29-Ru%28II%29+hydride+complex%3A+unusual+metal-ligand+cooperation&rft.jtitle=Inorganic+chemistry&rft.au=Zeng%2C+Guixiang&rft.au=Li%2C+Shuhua&rft.date=2011-11-07&rft.issn=1520-510X&rft.eissn=1520-510X&rft.volume=50&rft.issue=21&rft.spage=10572&rft_id=info:doi/10.1021%2Fic200205e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon