Sintering Kinetics and Interfacial Heat Transfer Process of Binary Alloy Nanoparticles Catalysts: Molecular Dynamics Simulation
The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD) simulations were employed to investigate the interface heat transfer and sintering kinetics of binary alloy nanoparticles composed of Pt, Ni, and Fe s...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 63; no. 30; pp. 13356 - 13365 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
31.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD) simulations were employed to investigate the interface heat transfer and sintering kinetics of binary alloy nanoparticles composed of Pt, Ni, and Fe supported on graphene substrates. Analysis of the crystalline distribution, radial distribution function (RDF), and potential energy variations of the supported particles revealed that significant differences in the atomic radii and interaction energies (potentials) of the metals could lead to the formation of core–shell structures in alloy nanoparticles, whereas the reverse scenario might result in disordered alloy structures, with the particle structure closely tied to its thermal stability. Simulation results of the heat transfer process indicated that core–shell structures could enhance the cooling rate of the particles. Additionally, metal with superior thermal conductivity could increase the contact area between the particles and the substrate, thereby enhancing the interfacial thermal conductivity. Further analysis of the shrinkage of each alloy revealed that when a more stable (judged by the maximum shrinkage of the particles within the same time) metal comprised a higher proportion of the alloy, the particles exhibited greater stability and were less prone to sintering. |
---|---|
AbstractList | The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD) simulations were employed to investigate the interface heat transfer and sintering kinetics of binary alloy nanoparticles composed of Pt, Ni, and Fe supported on graphene substrates. Analysis of the crystalline distribution, radial distribution function (RDF), and potential energy variations of the supported particles revealed that significant differences in the atomic radii and interaction energies (potentials) of the metals could lead to the formation of core–shell structures in alloy nanoparticles, whereas the reverse scenario might result in disordered alloy structures, with the particle structure closely tied to its thermal stability. Simulation results of the heat transfer process indicated that core–shell structures could enhance the cooling rate of the particles. Additionally, metal with superior thermal conductivity could increase the contact area between the particles and the substrate, thereby enhancing the interfacial thermal conductivity. Further analysis of the shrinkage of each alloy revealed that when a more stable (judged by the maximum shrinkage of the particles within the same time) metal comprised a higher proportion of the alloy, the particles exhibited greater stability and were less prone to sintering. |
Author | Shi, Feng Deng, Shengwei Huang, Yudi Wang, Jian-guo Qiu, Chenglong |
AuthorAffiliation | Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering |
AuthorAffiliation_xml | – name: Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Shengwei orcidid: 0000-0003-0881-8475 surname: Deng fullname: Deng, Shengwei email: swdeng@zjut.edu.cn – sequence: 2 givenname: Feng surname: Shi fullname: Shi, Feng – sequence: 3 givenname: Yudi surname: Huang fullname: Huang, Yudi – sequence: 4 givenname: Chenglong surname: Qiu fullname: Qiu, Chenglong – sequence: 5 givenname: Jian-guo orcidid: 0000-0003-2391-4529 surname: Wang fullname: Wang, Jian-guo email: jgw@zjut.edu.cn |
BookMark | eNp9kEtPAjEUhRujiYDuXXbpwsGWToeOO8QHRHwk4Hpyp3RMSWmxLQtW_nU7wspEVzc595z7-Lro2DqrELqgpE_JgF6DDH2tpO_nkiShPEIdygck4yTnx6hDhBAZF4Kfom4IK0II53neQV9zbaPy2n7gJ21V1DJgsEs8bdUGpAaDJwoiXniwoVEev3knVQjYNfhWW_A7PDLG7fALWLcBnyYYFfAYIphdiOEGPzuj5NaAx3c7C-t2w1yvkxC1s2fopAET1Pmh9tD7w_1iPMlmr4_T8WiWAaMsZo1YlrwsZN2UjRyUhJZQM1EQKAWp6_RnDSynVICsGRuQZblUxTCXihPGuKxr1kOX-7kb7z63KsRqrYNUxoBVbhsqRjkrhkOR_D1U7K3SuxC8aiqp48-x0YM2FSVVS7xKxKuWeHUgnoLkV3Dj9ToR-i9ytY-0nZXbepsg_G3_BkewmX8 |
CitedBy_id | crossref_primary_10_1016_j_ceja_2025_100731 |
Cites_doi | 10.1038/s41929-019-0416-2 10.1142/S0217979220500496 10.1016/j.apcatb.2023.123630 10.1088/0965-0393/18/1/015012 10.1016/j.ijheatmasstransfer.2017.12.094 10.1038/nmat2584 10.1063/1.5084234 10.1016/j.jmst.2020.03.068 10.1038/nmat4824 10.1021/acs.langmuir.1c01628 10.1016/0009-2614(78)80033-5 10.1039/C7QI00326A 10.1021/cr00035a003 10.1103/PhysRevB.28.784 10.1016/j.apcatb.2016.01.007 10.1016/j.enchem.2022.100083 10.1021/acscatal.0c01765 10.1016/j.commatsci.2018.09.032 10.1016/j.matlet.2022.132917 10.1038/nmat3668 10.1016/j.ces.2020.115583 10.1021/jacs.2c13607 10.1126/science.abi9828 10.1002/cctc.201100090 10.1002/adma.202270147 10.1002/wcms.1405 10.1021/acs.chemrev.9b00417 10.1016/j.cej.2016.03.041 10.1016/j.cis.2020.102162 10.1126/science.1124268 10.1021/nl304488q 10.1038/s41929-018-0098-1 10.1021/acs.nanolett.5b03585 10.1016/j.ces.2023.118456 10.1021/cs5003096 10.1351/pac200072010317 10.1016/j.apsusc.2018.01.265 10.1016/j.commatsci.2018.09.039 10.1016/j.ijheatmasstransfer.2017.10.069 10.1016/0927-0256(94)90109-0 10.1016/j.apsusc.2021.149579 10.1002/adma.201902031 10.1021/acs.chemrev.0c00078 10.1021/acs.chemrev.7b00776 10.1038/s41467-021-23426-z 10.1021/jacs.7b06260 10.1103/PhysRevB.69.144113 10.1016/S0965-9773(98)00120-2 10.1016/j.apcata.2018.01.033 10.1103/PhysRevB.102.205406 10.1063/1.881812 10.1038/s41467-022-28366-w 10.1021/acs.iecr.8b04712 10.1063/1.481208 10.1021/acs.jpcc.5b04223 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.4c01029 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 13365 |
ExternalDocumentID | 10_1021_acs_iecr_4c01029 c22148771 |
GroupedDBID | -~X .DC .K2 4.4 53G 55A 5GY 5VS 6TJ 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 ~02 AAYXX ABBLG ABLBI CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-f8d9596cbf9fc29019ab3860a980bb520ba34118acb3320d9de674ce50335cbb3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Thu Jul 10 22:45:11 EDT 2025 Tue Jul 01 03:05:41 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Thu Aug 01 06:03:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-f8d9596cbf9fc29019ab3860a980bb520ba34118acb3320d9de674ce50335cbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2391-4529 0000-0003-0881-8475 |
PQID | 3153677803 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3153677803 crossref_citationtrail_10_1021_acs_iecr_4c01029 crossref_primary_10_1021_acs_iecr_4c01029 acs_journals_10_1021_acs_iecr_4c01029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-31 |
PublicationDateYYYYMMDD | 2024-07-31 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref54/cit54 Eckert E. R. G. (ref50/cit50) 1987 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1038/s41929-019-0416-2 – ident: ref22/cit22 doi: 10.1142/S0217979220500496 – ident: ref16/cit16 doi: 10.1016/j.apcatb.2023.123630 – ident: ref36/cit36 doi: 10.1088/0965-0393/18/1/015012 – ident: ref47/cit47 doi: 10.1016/j.ijheatmasstransfer.2017.12.094 – ident: ref27/cit27 doi: 10.1038/nmat2584 – ident: ref48/cit48 doi: 10.1063/1.5084234 – ident: ref30/cit30 doi: 10.1016/j.jmst.2020.03.068 – ident: ref14/cit14 doi: 10.1038/nmat4824 – volume-title: Analysis of Heat and Mass Transfer year: 1987 ident: ref50/cit50 – ident: ref37/cit37 doi: 10.1021/acs.langmuir.1c01628 – ident: ref34/cit34 doi: 10.1016/0009-2614(78)80033-5 – ident: ref20/cit20 doi: 10.1039/C7QI00326A – ident: ref51/cit51 doi: 10.1021/cr00035a003 – ident: ref43/cit43 doi: 10.1103/PhysRevB.28.784 – ident: ref8/cit8 doi: 10.1016/j.apcatb.2016.01.007 – ident: ref10/cit10 doi: 10.1016/j.enchem.2022.100083 – ident: ref38/cit38 doi: 10.1021/acscatal.0c01765 – ident: ref23/cit23 doi: 10.1016/j.commatsci.2018.09.032 – ident: ref39/cit39 doi: 10.1016/j.matlet.2022.132917 – ident: ref41/cit41 doi: 10.1038/nmat3668 – ident: ref29/cit29 doi: 10.1016/j.ces.2020.115583 – ident: ref9/cit9 doi: 10.1021/jacs.2c13607 – ident: ref54/cit54 doi: 10.1126/science.abi9828 – ident: ref5/cit5 doi: 10.1002/cctc.201100090 – ident: ref12/cit12 doi: 10.1002/adma.202270147 – ident: ref44/cit44 doi: 10.1002/wcms.1405 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.9b00417 – ident: ref18/cit18 doi: 10.1016/j.cej.2016.03.041 – ident: ref3/cit3 doi: 10.1016/j.cis.2020.102162 – ident: ref35/cit35 doi: 10.1126/science.1124268 – ident: ref57/cit57 doi: 10.1038/nmat2584 – ident: ref56/cit56 doi: 10.1021/nl304488q – ident: ref53/cit53 doi: 10.1038/s41929-018-0098-1 – ident: ref26/cit26 doi: 10.1021/acs.nanolett.5b03585 – ident: ref7/cit7 doi: 10.1016/j.ces.2023.118456 – ident: ref45/cit45 doi: 10.1021/cs5003096 – ident: ref42/cit42 doi: 10.1351/pac200072010317 – ident: ref17/cit17 doi: 10.1016/j.apsusc.2018.01.265 – ident: ref24/cit24 doi: 10.1016/j.commatsci.2018.09.039 – ident: ref49/cit49 doi: 10.1016/j.ijheatmasstransfer.2017.10.069 – ident: ref40/cit40 doi: 10.1016/0927-0256(94)90109-0 – ident: ref21/cit21 doi: 10.1016/j.apsusc.2021.149579 – ident: ref1/cit1 doi: 10.1002/adma.201902031 – ident: ref11/cit11 doi: 10.1021/acs.chemrev.0c00078 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.7b00776 – ident: ref52/cit52 doi: 10.1038/s41467-021-23426-z – ident: ref25/cit25 doi: 10.1021/jacs.7b06260 – ident: ref32/cit32 doi: 10.1103/PhysRevB.69.144113 – ident: ref55/cit55 doi: 10.1016/S0965-9773(98)00120-2 – ident: ref4/cit4 doi: 10.1016/j.apcata.2018.01.033 – ident: ref46/cit46 doi: 10.1103/PhysRevB.102.205406 – ident: ref28/cit28 doi: 10.1063/1.881812 – ident: ref13/cit13 doi: 10.1038/s41467-022-28366-w – ident: ref19/cit19 doi: 10.1021/acs.iecr.8b04712 – ident: ref33/cit33 doi: 10.1063/1.481208 – ident: ref31/cit31 doi: 10.1021/acs.jpcc.5b04223 |
SSID | ssj0005544 |
Score | 2.455497 |
Snippet | The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD)... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13356 |
SubjectTerms | alloy nanoparticles alloys graphene heat transfer longevity molecular dynamics nanocatalysts potential energy shrinkage thermal conductivity thermal stability Thermodynamics, Transport, and Fluid Mechanics |
Title | Sintering Kinetics and Interfacial Heat Transfer Process of Binary Alloy Nanoparticles Catalysts: Molecular Dynamics Simulation |
URI | http://dx.doi.org/10.1021/acs.iecr.4c01029 https://www.proquest.com/docview/3153677803 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4LDDwRpSXjAQDQ0oaJ6nNBoWqApWlILFFfkWqKClq0gEW_jp3iQsUEOpmWXFkOb5H7rv7jpDjJtZjxogPcqa80AjuSQkjqYWRlgkbMixw7t7FnYfw5jF6_KLJ-YngB40zqfN6H1yoeqiR_0zMk8UgBhlGN6jV-0rniMrGrSA0WEnEIwdJ_vUGNEQ6nzZE03q4NC7t1apLUV5yEmJOyVN9XKi6fvvN2DjDvtfIivMx6UV1KdbJnM02yPI35sFN8t5Dnggc01uYRa5mKjNDywBhKjGOTjugpmlpy1I7oq6igA5TelnW8NKLwWD4SkE9w3-3S6-jLYwGveZFfk67k8a79Krqep_TXv_ZdQvbIg_t6_tWx3O9GDzJGqzwUm5EJGKtUpFqxF6FVIzHvhTcVyoKfCXBHja41IqxwDfC2LgZaosoaaSVYttkIRtmdodQEaZxKMF1M8j-x1MJKk4bn5umAWvaNDVyAmeXOFnKkxImDxoJTuKBJu5Aa-Rs8gET7QjNsa_G4J8Vp58rXioyj3-ePZrciQQkDmEUmdnhOE8YGAmk3fPZ7ow73SNLAfhCVUh4nywUo7E9AF-mUIflJf4A4D_xAw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ98GiLCm2pkdpDD1mSOMnavS1b0PJYDl2QuEV-RUJdshXJHpYLf70zXi-UqkLtzbJiZzQZz0xmPN8AfOpSPWZB-UHBdZRZKSKlcKSMtMpx6TJOBc7Ds2JwkR1f5pdLkCxqYZCIBndqfBL_AV0g2aO5K_SkOpkhGDT5DFbQF0lJqHv90cOtjtz3b8WzQwVFIg-Zyb_tQPbINI_t0WN17G3M4Rp8v6fOXy350Zm2umNu_wBu_C_y12E1eJysNxeRDVhy9St4-RsO4Wu4GxFqBI3ZCc4ScjNTtWU-XFgpiqqzASpt5i1b5W5YqC9gk4rt-4pe1huPJzOGyhr_wsNlO9an2NCsaZuvbLhow8u-zWp1TW8YXV2H3mFv4OLw4Lw_iEJnhkjxhLdRJazMZWF0JStDmVipNBdFrKSItc7TWCu0jolQRnOexlZaV3Qz4yhnmhut-SYs15PavQUms6rIFDpylrAARaVQ4RkbC9u1aFu7dgs-I-_KcLKa0ifN06SkSWJoGRi6BXuL71iaAG9OXTbGT6z4cr_i5xza44lndxeiUeL5o6SKqt1k2pQcTQaB8MV8-x8p_QjPB-fD0_L06OzkHbxI0UuaB4vfw3J7M3Uf0Mtp9Y6X618SoPlk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkKbtAdgHgo0xI20Pe0hJ6yS199YVqg4GmtQx8Rb5U0KUFJH0obzsX9-d6zJAE9reIit2HOfOd7mf73cAH7qUj1kQPii4TjIrRaIUXikjrXJcuoxTgvPxSTE8zQ7P8rMlyBe5MDiJGkeqA4hPWn1lfWQYaO9R-zl6U63MEBWafAIrhNqRYPf6oz8nO_JQwxX1h5KKRB7Ryb-NQDbJ1Pdt0v0tOdiZwRr8vJ1hOF5y0Zo2umVuHpA3_vcrrMNq9DxZby4qL2DJVS_h-R0-wlfwa0TsEXTNjrCVGJyZqiwLYUOvKLrOhrh5s2DhvLtmMc-ATTz7EjJ7WW88nswYbtr4Nx4P3bE-xYhmdVN_ZseLcrxsf1apS3rC6Pwy1hB7DaeDgx_9YRIrNCSKt3mTeGFlLgujvfSGEFmpNBdFqqRItc47qVZoJdtCGc15J7XSuqKbGUfYaW605huwXE0qtwlMZr7IFDp0ljgBhVe48RmbCtu1aGO7dgs-4tqVUcPqMoDnnXZJjbSgZVzQLdhbfMvSRJpzqrYxfqTHp9seV3OKj0fu3V2IR4l6SOCKqtxkWpccTQeR8aX8zT_O9D08_b4_KL99PTl6C8866CzNY8bbsNxcT907dHYavRNE-zccS_vn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sintering+Kinetics+and+Interfacial+Heat+Transfer+Process+of+Binary+Alloy+Nanoparticles+Catalysts%3A+Molecular+Dynamics+Simulation&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Deng%2C+Shengwei&rft.au=Shi%2C+Feng&rft.au=Huang%2C+Yudi&rft.au=Qiu%2C+Chenglong&rft.date=2024-07-31&rft.issn=1520-5045&rft.volume=63&rft.issue=30+p.13356-13365&rft.spage=13356&rft.epage=13365&rft_id=info:doi/10.1021%2Facs.iecr.4c01029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |