Sintering Kinetics and Interfacial Heat Transfer Process of Binary Alloy Nanoparticles Catalysts: Molecular Dynamics Simulation

The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD) simulations were employed to investigate the interface heat transfer and sintering kinetics of binary alloy nanoparticles composed of Pt, Ni, and Fe s...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 63; no. 30; pp. 13356 - 13365
Main Authors Deng, Shengwei, Shi, Feng, Huang, Yudi, Qiu, Chenglong, Wang, Jian-guo
Format Journal Article
LanguageEnglish
Published American Chemical Society 31.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD) simulations were employed to investigate the interface heat transfer and sintering kinetics of binary alloy nanoparticles composed of Pt, Ni, and Fe supported on graphene substrates. Analysis of the crystalline distribution, radial distribution function (RDF), and potential energy variations of the supported particles revealed that significant differences in the atomic radii and interaction energies (potentials) of the metals could lead to the formation of core–shell structures in alloy nanoparticles, whereas the reverse scenario might result in disordered alloy structures, with the particle structure closely tied to its thermal stability. Simulation results of the heat transfer process indicated that core–shell structures could enhance the cooling rate of the particles. Additionally, metal with superior thermal conductivity could increase the contact area between the particles and the substrate, thereby enhancing the interfacial thermal conductivity. Further analysis of the shrinkage of each alloy revealed that when a more stable (judged by the maximum shrinkage of the particles within the same time) metal comprised a higher proportion of the alloy, the particles exhibited greater stability and were less prone to sintering.
AbstractList The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD) simulations were employed to investigate the interface heat transfer and sintering kinetics of binary alloy nanoparticles composed of Pt, Ni, and Fe supported on graphene substrates. Analysis of the crystalline distribution, radial distribution function (RDF), and potential energy variations of the supported particles revealed that significant differences in the atomic radii and interaction energies (potentials) of the metals could lead to the formation of core–shell structures in alloy nanoparticles, whereas the reverse scenario might result in disordered alloy structures, with the particle structure closely tied to its thermal stability. Simulation results of the heat transfer process indicated that core–shell structures could enhance the cooling rate of the particles. Additionally, metal with superior thermal conductivity could increase the contact area between the particles and the substrate, thereby enhancing the interfacial thermal conductivity. Further analysis of the shrinkage of each alloy revealed that when a more stable (judged by the maximum shrinkage of the particles within the same time) metal comprised a higher proportion of the alloy, the particles exhibited greater stability and were less prone to sintering.
Author Shi, Feng
Deng, Shengwei
Huang, Yudi
Wang, Jian-guo
Qiu, Chenglong
AuthorAffiliation Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering
AuthorAffiliation_xml – name: Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering
Author_xml – sequence: 1
  givenname: Shengwei
  orcidid: 0000-0003-0881-8475
  surname: Deng
  fullname: Deng, Shengwei
  email: swdeng@zjut.edu.cn
– sequence: 2
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
– sequence: 3
  givenname: Yudi
  surname: Huang
  fullname: Huang, Yudi
– sequence: 4
  givenname: Chenglong
  surname: Qiu
  fullname: Qiu, Chenglong
– sequence: 5
  givenname: Jian-guo
  orcidid: 0000-0003-2391-4529
  surname: Wang
  fullname: Wang, Jian-guo
  email: jgw@zjut.edu.cn
BookMark eNp9kEtPAjEUhRujiYDuXXbpwsGWToeOO8QHRHwk4Hpyp3RMSWmxLQtW_nU7wspEVzc595z7-Lro2DqrELqgpE_JgF6DDH2tpO_nkiShPEIdygck4yTnx6hDhBAZF4Kfom4IK0II53neQV9zbaPy2n7gJ21V1DJgsEs8bdUGpAaDJwoiXniwoVEev3knVQjYNfhWW_A7PDLG7fALWLcBnyYYFfAYIphdiOEGPzuj5NaAx3c7C-t2w1yvkxC1s2fopAET1Pmh9tD7w_1iPMlmr4_T8WiWAaMsZo1YlrwsZN2UjRyUhJZQM1EQKAWp6_RnDSynVICsGRuQZblUxTCXihPGuKxr1kOX-7kb7z63KsRqrYNUxoBVbhsqRjkrhkOR_D1U7K3SuxC8aiqp48-x0YM2FSVVS7xKxKuWeHUgnoLkV3Dj9ToR-i9ytY-0nZXbepsg_G3_BkewmX8
CitedBy_id crossref_primary_10_1016_j_ceja_2025_100731
Cites_doi 10.1038/s41929-019-0416-2
10.1142/S0217979220500496
10.1016/j.apcatb.2023.123630
10.1088/0965-0393/18/1/015012
10.1016/j.ijheatmasstransfer.2017.12.094
10.1038/nmat2584
10.1063/1.5084234
10.1016/j.jmst.2020.03.068
10.1038/nmat4824
10.1021/acs.langmuir.1c01628
10.1016/0009-2614(78)80033-5
10.1039/C7QI00326A
10.1021/cr00035a003
10.1103/PhysRevB.28.784
10.1016/j.apcatb.2016.01.007
10.1016/j.enchem.2022.100083
10.1021/acscatal.0c01765
10.1016/j.commatsci.2018.09.032
10.1016/j.matlet.2022.132917
10.1038/nmat3668
10.1016/j.ces.2020.115583
10.1021/jacs.2c13607
10.1126/science.abi9828
10.1002/cctc.201100090
10.1002/adma.202270147
10.1002/wcms.1405
10.1021/acs.chemrev.9b00417
10.1016/j.cej.2016.03.041
10.1016/j.cis.2020.102162
10.1126/science.1124268
10.1021/nl304488q
10.1038/s41929-018-0098-1
10.1021/acs.nanolett.5b03585
10.1016/j.ces.2023.118456
10.1021/cs5003096
10.1351/pac200072010317
10.1016/j.apsusc.2018.01.265
10.1016/j.commatsci.2018.09.039
10.1016/j.ijheatmasstransfer.2017.10.069
10.1016/0927-0256(94)90109-0
10.1016/j.apsusc.2021.149579
10.1002/adma.201902031
10.1021/acs.chemrev.0c00078
10.1021/acs.chemrev.7b00776
10.1038/s41467-021-23426-z
10.1021/jacs.7b06260
10.1103/PhysRevB.69.144113
10.1016/S0965-9773(98)00120-2
10.1016/j.apcata.2018.01.033
10.1103/PhysRevB.102.205406
10.1063/1.881812
10.1038/s41467-022-28366-w
10.1021/acs.iecr.8b04712
10.1063/1.481208
10.1021/acs.jpcc.5b04223
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.4c01029
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 13365
ExternalDocumentID 10_1021_acs_iecr_4c01029
c22148771
GroupedDBID -~X
.DC
.K2
4.4
53G
55A
5GY
5VS
6TJ
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
~02
AAYXX
ABBLG
ABLBI
CITATION
7S9
L.6
ID FETCH-LOGICAL-a313t-f8d9596cbf9fc29019ab3860a980bb520ba34118acb3320d9de674ce50335cbb3
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Thu Jul 10 22:45:11 EDT 2025
Tue Jul 01 03:05:41 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Thu Aug 01 06:03:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-f8d9596cbf9fc29019ab3860a980bb520ba34118acb3320d9de674ce50335cbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2391-4529
0000-0003-0881-8475
PQID 3153677803
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_3153677803
crossref_citationtrail_10_1021_acs_iecr_4c01029
crossref_primary_10_1021_acs_iecr_4c01029
acs_journals_10_1021_acs_iecr_4c01029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-31
PublicationDateYYYYMMDD 2024-07-31
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-31
  day: 31
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref54/cit54
Eckert E. R. G. (ref50/cit50) 1987
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1038/s41929-019-0416-2
– ident: ref22/cit22
  doi: 10.1142/S0217979220500496
– ident: ref16/cit16
  doi: 10.1016/j.apcatb.2023.123630
– ident: ref36/cit36
  doi: 10.1088/0965-0393/18/1/015012
– ident: ref47/cit47
  doi: 10.1016/j.ijheatmasstransfer.2017.12.094
– ident: ref27/cit27
  doi: 10.1038/nmat2584
– ident: ref48/cit48
  doi: 10.1063/1.5084234
– ident: ref30/cit30
  doi: 10.1016/j.jmst.2020.03.068
– ident: ref14/cit14
  doi: 10.1038/nmat4824
– volume-title: Analysis of Heat and Mass Transfer
  year: 1987
  ident: ref50/cit50
– ident: ref37/cit37
  doi: 10.1021/acs.langmuir.1c01628
– ident: ref34/cit34
  doi: 10.1016/0009-2614(78)80033-5
– ident: ref20/cit20
  doi: 10.1039/C7QI00326A
– ident: ref51/cit51
  doi: 10.1021/cr00035a003
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.28.784
– ident: ref8/cit8
  doi: 10.1016/j.apcatb.2016.01.007
– ident: ref10/cit10
  doi: 10.1016/j.enchem.2022.100083
– ident: ref38/cit38
  doi: 10.1021/acscatal.0c01765
– ident: ref23/cit23
  doi: 10.1016/j.commatsci.2018.09.032
– ident: ref39/cit39
  doi: 10.1016/j.matlet.2022.132917
– ident: ref41/cit41
  doi: 10.1038/nmat3668
– ident: ref29/cit29
  doi: 10.1016/j.ces.2020.115583
– ident: ref9/cit9
  doi: 10.1021/jacs.2c13607
– ident: ref54/cit54
  doi: 10.1126/science.abi9828
– ident: ref5/cit5
  doi: 10.1002/cctc.201100090
– ident: ref12/cit12
  doi: 10.1002/adma.202270147
– ident: ref44/cit44
  doi: 10.1002/wcms.1405
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.9b00417
– ident: ref18/cit18
  doi: 10.1016/j.cej.2016.03.041
– ident: ref3/cit3
  doi: 10.1016/j.cis.2020.102162
– ident: ref35/cit35
  doi: 10.1126/science.1124268
– ident: ref57/cit57
  doi: 10.1038/nmat2584
– ident: ref56/cit56
  doi: 10.1021/nl304488q
– ident: ref53/cit53
  doi: 10.1038/s41929-018-0098-1
– ident: ref26/cit26
  doi: 10.1021/acs.nanolett.5b03585
– ident: ref7/cit7
  doi: 10.1016/j.ces.2023.118456
– ident: ref45/cit45
  doi: 10.1021/cs5003096
– ident: ref42/cit42
  doi: 10.1351/pac200072010317
– ident: ref17/cit17
  doi: 10.1016/j.apsusc.2018.01.265
– ident: ref24/cit24
  doi: 10.1016/j.commatsci.2018.09.039
– ident: ref49/cit49
  doi: 10.1016/j.ijheatmasstransfer.2017.10.069
– ident: ref40/cit40
  doi: 10.1016/0927-0256(94)90109-0
– ident: ref21/cit21
  doi: 10.1016/j.apsusc.2021.149579
– ident: ref1/cit1
  doi: 10.1002/adma.201902031
– ident: ref11/cit11
  doi: 10.1021/acs.chemrev.0c00078
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.7b00776
– ident: ref52/cit52
  doi: 10.1038/s41467-021-23426-z
– ident: ref25/cit25
  doi: 10.1021/jacs.7b06260
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.69.144113
– ident: ref55/cit55
  doi: 10.1016/S0965-9773(98)00120-2
– ident: ref4/cit4
  doi: 10.1016/j.apcata.2018.01.033
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.102.205406
– ident: ref28/cit28
  doi: 10.1063/1.881812
– ident: ref13/cit13
  doi: 10.1038/s41467-022-28366-w
– ident: ref19/cit19
  doi: 10.1021/acs.iecr.8b04712
– ident: ref33/cit33
  doi: 10.1063/1.481208
– ident: ref31/cit31
  doi: 10.1021/acs.jpcc.5b04223
SSID ssj0005544
Score 2.455497
Snippet The thermal stability of supported alloy nanocatalysts is a crucial factor limiting the lifespan of catalysts. In this study, molecular dynamics (MD)...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13356
SubjectTerms alloy nanoparticles
alloys
graphene
heat transfer
longevity
molecular dynamics
nanocatalysts
potential energy
shrinkage
thermal conductivity
thermal stability
Thermodynamics, Transport, and Fluid Mechanics
Title Sintering Kinetics and Interfacial Heat Transfer Process of Binary Alloy Nanoparticles Catalysts: Molecular Dynamics Simulation
URI http://dx.doi.org/10.1021/acs.iecr.4c01029
https://www.proquest.com/docview/3153677803
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4LDDwRpSXjAQDQ0oaJ6nNBoWqApWlILFFfkWqKClq0gEW_jp3iQsUEOpmWXFkOb5H7rv7jpDjJtZjxogPcqa80AjuSQkjqYWRlgkbMixw7t7FnYfw5jF6_KLJ-YngB40zqfN6H1yoeqiR_0zMk8UgBhlGN6jV-0rniMrGrSA0WEnEIwdJ_vUGNEQ6nzZE03q4NC7t1apLUV5yEmJOyVN9XKi6fvvN2DjDvtfIivMx6UV1KdbJnM02yPI35sFN8t5Dnggc01uYRa5mKjNDywBhKjGOTjugpmlpy1I7oq6igA5TelnW8NKLwWD4SkE9w3-3S6-jLYwGveZFfk67k8a79Krqep_TXv_ZdQvbIg_t6_tWx3O9GDzJGqzwUm5EJGKtUpFqxF6FVIzHvhTcVyoKfCXBHja41IqxwDfC2LgZaosoaaSVYttkIRtmdodQEaZxKMF1M8j-x1MJKk4bn5umAWvaNDVyAmeXOFnKkxImDxoJTuKBJu5Aa-Rs8gET7QjNsa_G4J8Vp58rXioyj3-ePZrciQQkDmEUmdnhOE8YGAmk3fPZ7ow73SNLAfhCVUh4nywUo7E9AF-mUIflJf4A4D_xAw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQ98GiLCm2pkdpDD1mSOMnavS1b0PJYDl2QuEV-RUJdshXJHpYLf70zXi-UqkLtzbJiZzQZz0xmPN8AfOpSPWZB-UHBdZRZKSKlcKSMtMpx6TJOBc7Ds2JwkR1f5pdLkCxqYZCIBndqfBL_AV0g2aO5K_SkOpkhGDT5DFbQF0lJqHv90cOtjtz3b8WzQwVFIg-Zyb_tQPbINI_t0WN17G3M4Rp8v6fOXy350Zm2umNu_wBu_C_y12E1eJysNxeRDVhy9St4-RsO4Wu4GxFqBI3ZCc4ScjNTtWU-XFgpiqqzASpt5i1b5W5YqC9gk4rt-4pe1huPJzOGyhr_wsNlO9an2NCsaZuvbLhow8u-zWp1TW8YXV2H3mFv4OLw4Lw_iEJnhkjxhLdRJazMZWF0JStDmVipNBdFrKSItc7TWCu0jolQRnOexlZaV3Qz4yhnmhut-SYs15PavQUms6rIFDpylrAARaVQ4RkbC9u1aFu7dgs-I-_KcLKa0ifN06SkSWJoGRi6BXuL71iaAG9OXTbGT6z4cr_i5xza44lndxeiUeL5o6SKqt1k2pQcTQaB8MV8-x8p_QjPB-fD0_L06OzkHbxI0UuaB4vfw3J7M3Uf0Mtp9Y6X618SoPlk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xkKbtAdgHgo0xI20Pe0hJ6yS199YVqg4GmtQx8Rb5U0KUFJH0obzsX9-d6zJAE9reIit2HOfOd7mf73cAH7qUj1kQPii4TjIrRaIUXikjrXJcuoxTgvPxSTE8zQ7P8rMlyBe5MDiJGkeqA4hPWn1lfWQYaO9R-zl6U63MEBWafAIrhNqRYPf6oz8nO_JQwxX1h5KKRB7Ryb-NQDbJ1Pdt0v0tOdiZwRr8vJ1hOF5y0Zo2umVuHpA3_vcrrMNq9DxZby4qL2DJVS_h-R0-wlfwa0TsEXTNjrCVGJyZqiwLYUOvKLrOhrh5s2DhvLtmMc-ATTz7EjJ7WW88nswYbtr4Nx4P3bE-xYhmdVN_ZseLcrxsf1apS3rC6Pwy1hB7DaeDgx_9YRIrNCSKt3mTeGFlLgujvfSGEFmpNBdFqqRItc47qVZoJdtCGc15J7XSuqKbGUfYaW605huwXE0qtwlMZr7IFDp0ljgBhVe48RmbCtu1aGO7dgs-4tqVUcPqMoDnnXZJjbSgZVzQLdhbfMvSRJpzqrYxfqTHp9seV3OKj0fu3V2IR4l6SOCKqtxkWpccTQeR8aX8zT_O9D08_b4_KL99PTl6C8866CzNY8bbsNxcT907dHYavRNE-zccS_vn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sintering+Kinetics+and+Interfacial+Heat+Transfer+Process+of+Binary+Alloy+Nanoparticles+Catalysts%3A+Molecular+Dynamics+Simulation&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Deng%2C+Shengwei&rft.au=Shi%2C+Feng&rft.au=Huang%2C+Yudi&rft.au=Qiu%2C+Chenglong&rft.date=2024-07-31&rft.issn=1520-5045&rft.volume=63&rft.issue=30+p.13356-13365&rft.spage=13356&rft.epage=13365&rft_id=info:doi/10.1021%2Facs.iecr.4c01029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon