Mechanistic Insight into the 1,3,2-Diazaphospholene-Catalyzed Reductant (HBpin/NH3BH3)‑Controlled Reaction of Allyl 2‑Phenylacrylate: Claisen Rearrangement or Hydrogenation?
Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland–Claisen (IC) rearr...
Saved in:
Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 125; no. 39; pp. 8658 - 8667 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland–Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal CC double bond of 4 is inserted into the P–H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB–H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG ≠) and Gibbs reaction energy (ΔG) of 23.9 and −27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG ≠ and ΔG values of 22.4 and −27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG ≠/ΔG = 24.1/–0.3 kcal/mol) first, which then prefers to undergo the enol–keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol–keto tautomerism. |
---|---|
AbstractList | Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland–Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal CC double bond of 4 is inserted into the P–H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB–H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG ≠) and Gibbs reaction energy (ΔG) of 23.9 and −27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG ≠ and ΔG values of 22.4 and −27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG ≠/ΔG = 24.1/–0.3 kcal/mol) first, which then prefers to undergo the enol–keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol–keto tautomerism. Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland-Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal C═C double bond of 4 is inserted into the P-H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB-H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG≠) and Gibbs reaction energy (ΔG) of 23.9 and -27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG≠ and ΔG values of 22.4 and -27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG≠/ΔG = 24.1/-0.3 kcal/mol) first, which then prefers to undergo the enol-keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol-keto tautomerism.Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland-Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal C═C double bond of 4 is inserted into the P-H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB-H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG≠) and Gibbs reaction energy (ΔG) of 23.9 and -27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG≠ and ΔG values of 22.4 and -27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG≠/ΔG = 24.1/-0.3 kcal/mol) first, which then prefers to undergo the enol-keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol-keto tautomerism. |
Author | Zeng, Guixiang Yang, Linlin Zhang, Shuoqi |
AuthorAffiliation | Kuang Yaming Honors School, Institute for Brain Sciences |
AuthorAffiliation_xml | – name: Kuang Yaming Honors School, Institute for Brain Sciences |
Author_xml | – sequence: 1 givenname: Linlin surname: Yang fullname: Yang, Linlin – sequence: 2 givenname: Shuoqi surname: Zhang fullname: Zhang, Shuoqi – sequence: 3 givenname: Guixiang orcidid: 0000-0001-5519-7611 surname: Zeng fullname: Zeng, Guixiang email: gxzeng@nju.edu.cn |
BookMark | eNp9kc1uEzEUhS1UJNrCnqWXRcqktifzxwa1A2UqlR8hWI9unOuMK8ee2s5iuuIVeJS-Up-kTtIVEixsX8nfObo654QcWWeRkLeczTkT_BxkmN-OEuZcsrIW9QtyzAvBskLw4ijNrG6yosybV-QkhFvGGM_F4pg8fEE5gNUhakmvbdDrIVJto6NxQMpn-UxkHzXcwzi4kI5Bi1kLEcx0jyv6A1dbGcFGetZdjtqef-3yyy5_9_j7T-ts9M6YPQUyamepU_TCmMlQkYDvA9rJgPTpivietgZ0QLujvQe7xg0mX-dpN628W6OFnceH1-SlAhPwzfN7Sn5dffrZdtnNt8_X7cVNBjnPY4ZsyTiKpZS8aMpGQcEVk0pw0SjF6oViUJVcllUppWLLRVOvuKyaBpkoUnwsPyVnB9_Ru7sththvdJBoDFh029CLoqoq0ZR1ndDygErvQvCoeqnjftvoQZues37XUZ866ncd9c8dJSH7Szh6vQE__U8yO0j2P27rbQrh3_gTjaGrrQ |
CitedBy_id | crossref_primary_10_1039_D2ME00007E |
Cites_doi | 10.1002/chem.201504870 10.1002/qua.26162 10.1002/anie.201904411 10.1039/b810189b 10.1016/j.tet.2011.06.104 10.1103/PhysRev.136.B864 10.1021/jacs.8b00614 10.1039/c2gc00006g 10.1039/c2nj40227k 10.1039/c0cc03163a 10.1021/jo970944f 10.1063/1.1674902 10.1021/ja057827j 10.1039/C4CC05886K 10.1021/jp810292n 10.1016/S0040-4020(02)00164-3 10.1002/ange.201801300 10.1002/anie.201307426 10.1002/chem.201201301 10.3390/molecules171214249 10.1039/b901177n 10.1002/chem.201304384 10.1021/acs.macromol.7b02750 10.1002/cctc.202000662 10.1080/00268976.2013.766366 10.1021/ja00010a074 10.1002/anie.200906302 10.1002/jcc.540040303 10.1063/1.447079 10.1021/cs401101m 10.1021/cr020703u 10.1002/chem.201805208 10.1007/BF00533485 10.1021/ja00771a062 10.1021/ol026273b 10.1021/ja00426a033 10.1103/PhysRev.140.A1133 10.1021/j100717a029 10.1039/D0OB01351J 10.1021/ic200749w 10.1039/C1OB06381B 10.1016/S0040-4020(01)81208-4 10.1021/ic202499u 10.1002/anie.201611570 10.1021/acscatal.7b01338 10.1021/ja00072a051 10.1002/anie.202010835 10.1021/ar00072a001 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.jpca.1c06828 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
EndPage | 8667 |
ExternalDocumentID | 10_1021_acs_jpca_1c06828 c211494653 |
GroupedDBID | - 02 123 29L 4.4 53G 55A 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACOHZ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ --- -~X .DC .K2 AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ ED~ JG~ XSW YQT ~02 7X8 |
ID | FETCH-LOGICAL-a313t-e0b01e2bcc15969fa51f0cf2129ff084f0a761c676ccf0b498d1c799e02582803 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Fri Jul 11 02:29:46 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Tue Jul 01 01:51:30 EDT 2025 Sat Oct 09 10:10:06 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-e0b01e2bcc15969fa51f0cf2129ff084f0a761c676ccf0b498d1c799e02582803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5519-7611 |
PQID | 2577729688 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2577729688 crossref_citationtrail_10_1021_acs_jpca_1c06828 crossref_primary_10_1021_acs_jpca_1c06828 acs_journals_10_1021_acs_jpca_1c06828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211007 2021-10-07 |
PublicationDateYYYYMMDD | 2021-10-07 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211007 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationTitleAlternate | J. Phys. Chem. A |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 McFarland C. M. (ref3/cit3) 2007 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1002/chem.201504870 – ident: ref23/cit23 doi: 10.1002/qua.26162 – ident: ref16/cit16 doi: 10.1002/anie.201904411 – ident: ref31/cit31 doi: 10.1039/b810189b – ident: ref19/cit19 doi: 10.1016/j.tet.2011.06.104 – ident: ref29/cit29 doi: 10.1103/PhysRev.136.B864 – ident: ref48/cit48 doi: 10.1021/jacs.8b00614 – ident: ref20/cit20 doi: 10.1039/c2gc00006g – ident: ref21/cit21 doi: 10.1039/c2nj40227k – ident: ref24/cit24 doi: 10.1039/c0cc03163a – ident: ref39/cit39 doi: 10.1021/jo970944f – ident: ref33/cit33 doi: 10.1063/1.1674902 – ident: ref45/cit45 doi: 10.1021/ja057827j – ident: ref26/cit26 doi: 10.1039/C4CC05886K – ident: ref32/cit32 doi: 10.1021/jp810292n – ident: ref1/cit1 doi: 10.1016/S0040-4020(02)00164-3 – ident: ref44/cit44 doi: 10.1002/ange.201801300 – ident: ref5/cit5 doi: 10.1002/anie.201307426 – ident: ref22/cit22 doi: 10.1002/chem.201201301 – ident: ref8/cit8 doi: 10.3390/molecules171214249 – ident: ref4/cit4 doi: 10.1039/b901177n – ident: ref11/cit11 doi: 10.1002/chem.201304384 – ident: ref47/cit47 doi: 10.1021/acs.macromol.7b02750 – ident: ref50/cit50 doi: 10.1002/cctc.202000662 – ident: ref18/cit18 doi: 10.1080/00268976.2013.766366 – ident: ref10/cit10 doi: 10.1021/ja00010a074 – ident: ref43/cit43 – ident: ref17/cit17 doi: 10.1002/anie.200906302 – ident: ref34/cit34 doi: 10.1002/jcc.540040303 – ident: ref36/cit36 doi: 10.1063/1.447079 – ident: ref42/cit42 doi: 10.1021/cs401101m – ident: ref2/cit2 doi: 10.1021/cr020703u – ident: ref15/cit15 doi: 10.1002/chem.201805208 – ident: ref35/cit35 doi: 10.1007/BF00533485 – ident: ref6/cit6 doi: 10.1021/ja00771a062 – ident: ref13/cit13 doi: 10.1021/ol026273b – ident: ref7/cit7 doi: 10.1021/ja00426a033 – ident: ref30/cit30 doi: 10.1103/PhysRev.140.A1133 – ident: ref37/cit37 doi: 10.1021/j100717a029 – ident: ref27/cit27 doi: 10.1039/D0OB01351J – ident: ref40/cit40 doi: 10.1021/ic200749w – ident: ref25/cit25 doi: 10.1039/C1OB06381B – ident: ref12/cit12 doi: 10.1016/S0040-4020(01)81208-4 – volume-title: The Claisen Rearrangement: Methods and Applications year: 2007 ident: ref3/cit3 – ident: ref41/cit41 doi: 10.1021/ic202499u – ident: ref46/cit46 doi: 10.1002/anie.201611570 – ident: ref49/cit49 doi: 10.1021/acscatal.7b01338 – ident: ref9/cit9 doi: 10.1021/ja00072a051 – ident: ref28/cit28 doi: 10.1002/anie.202010835 – ident: ref38/cit38 doi: 10.1021/ar00072a001 |
SSID | ssj0001324 |
Score | 2.3849723 |
Snippet | Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8658 |
SubjectTerms | A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters |
Title | Mechanistic Insight into the 1,3,2-Diazaphospholene-Catalyzed Reductant (HBpin/NH3BH3)‑Controlled Reaction of Allyl 2‑Phenylacrylate: Claisen Rearrangement or Hydrogenation? |
URI | http://dx.doi.org/10.1021/acs.jpca.1c06828 https://www.proquest.com/docview/2577729688 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3datVAEF60XuhN6y_WP1ZQsNA9TTbJJvFG2miJQouohd6FzWSX1oYkJDkX51z1FXwUX8kncSbJqVSl9CYXYTYsmdn52Zn5hrFXRR46EAAI8CUIPy-M0EHgCWK2VkqCCqhR-OBQpUf-p-Pg-A9Mzt8ZfOnuaOhm3xsM711wFMYHN9ktqfAMkxuUfL3QuhhV-WMxfSwCNLtTSvJ_XyBDBN1lQ3RZDw_GZX9jnFLUDZiEVFNyNpv3-QyW_yI2XmPfd9n65GPy3VEo7rEbprrPbier0W4P2M8DQw2_A0Yz_1h1FKDz06qvObqD3N32tqV4f6qXujmpu4Ym6FZGJHTRs1iagn8huFeaPszfpHsNRtaHqbeXelu_zn8kY-V7OVCNPRO8tny3LBcll0jw-cRUi1JDi4_evOVJSbmriqjblhod6LaS1y1PF0Vbo3QPkvPuITva__AtScU0u0Foz_V6YeiC1cgcAP0lFVsduNYBi4YyttaJfOvoULmgQgVgndyPo8KFMI4N-mARTcx6xNaqujKPGTe2MKEGx2oMHQspteeFxobo-IC2cQCb7DX-62w6e102pNWlmw0vkQHZxIBNtrNieAYTADrN4SivWLF1saIZwT-uoH25kqEMuUlpF12Zet5lqBQphFFR9OSaO33K7kgqnaE6hfAZW-vbuXmOvk-fvxiE_jfBfwP0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0CrlUC68EW15GAkkKtVtnk7CBW0DVQrdFSqt1FvkTGy1ECVRkj3snvgFPoVf4kuYyWYXFaEKLjlYY2uUGc_D82LsZZ4FFvgAAjwHhJflWijfdwURW0npgPSpUHg8kcmZ9-HcP19j9rIWBpFo8aS2D-L_7i5g79Palxq9fBssiW7CDXYTbRGHmHoUf14JX3SuvEVOfSR81L5DZPJvJ5A-gvaqProqjnsdc3iHnayw61NLvu5Nu2wP5n80bvwv9O-y24PFyUcLFrnH1nR5n23Ey0FvD9iPsaby375jMz8qW3LX-WXZVRyNQ27vuruOeHep5qq-qNqa5umWWsT07DOb65yfUPNXmkXMXycHNfrZk8Q9SNydn9--x4s8-KKHWlRQ8MrwUVHMCu4gwKcLXc4KBQ1-Ov2GxwVFskqCbhoqe6C3S141PJnlTYW83vPR24fs7PD9aZyIYZKDUK7tdkLTc6t2MgC0nmRklG8bCwyqzcgYK_SMpQJpgwwkgLEyLwpzG4Io0miRhTQ_6xFbL6tSP2Zcm1wHCiyj0JHMHUe5bqBNgGYQKBP5sMle4b9Oh5vYpn2Q3bHTfhEJkA4E2GT7S7qnMLRDp6kcxTU7dlY76kUrkGtgXyxZKUVqUhBGlbqatimKSHJoZBhu_SOmz9lGcjo-To-PJh-32S2HkmoogyF4wta7ZqqfolXUZc_6e_AL4YYMVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYALb0TLy0ggUalu83QSLmibskqBriqgVW-RM7HV0iiJkuxh98Rf4Kfwl_glzGSzKxWhCi45WOPIyYw983lejL3Ks8ACH0CA54DwslwL5fuuIGYrKR2QPiUKH05kcux9OPVP15i_zIXBRbT4prZ34tOurnMzVBiwd2n8W41I3wZLIlS4xq6T144EexR_WR3ACLC8RVx9JHzUwIN38m9vIJ0E7WWddPlI7vXM-A47Wa2wDy-52Jl22Q7M_yje-N-fcJfdHixPPlqIyj22psv77Ga8bPj2gP081JQG3Fdu5gdlS7Cdn5ddxdFI5Pa2u-2I_XM1V_VZ1dbUV7fUIqbrn9lc5_wzFYGlnsT8TbJXI96eJO5e4m79-v4jXsTDFz3VIpOCV4aPimJWcAcJjs50OSsUNPjo9FseF-TRKom6aSj9ge4wedXwZJY3Fcp8L0_vHrLj8fuvcSKGjg5CubbbCU3XrtrJANCKkpFRvm0sMKg-I2Os0DOWCqQNMpAAxsq8KMxtCKJIo2UWUh-tR2y9rEr9mHFtch0osIxCQJk7jnLdQJsAzSFQJvJhg73Gf50OO7JNe2e7Y6f9IDIgHRiwwXaXvE9hKItO3TmKK2ZsrWbUi5IgV9C-XIpTitwkZ4wqdTVtUzwqCdjIMNz8x5W-YDeO9sfpp4PJxyfslkOxNRTIEDxl610z1c_QOOqy5_1W-A1krA7Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insight+into+the+1%2C3%2C2-Diazaphospholene-Catalyzed+Reductant+%28HBpin%2FNH3BH3%29-Controlled+Reaction+of+Allyl+2-Phenylacrylate%3A+Claisen+Rearrangement+or+Hydrogenation%3F&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Yang%2C+Linlin&rft.au=Zhang%2C+Shuoqi&rft.au=Zeng%2C+Guixiang&rft.date=2021-10-07&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=125&rft.issue=39&rft.spage=8658&rft_id=info:doi/10.1021%2Facs.jpca.1c06828&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |