Mechanistic Insight into the 1,3,2-Diazaphospholene-Catalyzed Reductant (HBpin/NH3BH3)‑Controlled Reaction of Allyl 2‑Phenylacrylate: Claisen Rearrangement or Hydrogenation?

Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland–Claisen (IC) rearr...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 125; no. 39; pp. 8658 - 8667
Main Authors Yang, Linlin, Zhang, Shuoqi, Zeng, Guixiang
Format Journal Article
LanguageEnglish
Published American Chemical Society 07.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland–Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal CC double bond of 4 is inserted into the P–H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB–H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG ≠) and Gibbs reaction energy (ΔG) of 23.9 and −27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG ≠ and ΔG values of 22.4 and −27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG ≠/ΔG = 24.1/–0.3 kcal/mol) first, which then prefers to undergo the enol–keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol–keto tautomerism.
AbstractList Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland–Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal CC double bond of 4 is inserted into the P–H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB–H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG ≠) and Gibbs reaction energy (ΔG) of 23.9 and −27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG ≠ and ΔG values of 22.4 and −27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG ≠/ΔG = 24.1/–0.3 kcal/mol) first, which then prefers to undergo the enol–keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol–keto tautomerism.
Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland-Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal C═C double bond of 4 is inserted into the P-H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB-H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG≠) and Gibbs reaction energy (ΔG) of 23.9 and -27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG≠ and ΔG values of 22.4 and -27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG≠/ΔG = 24.1/-0.3 kcal/mol) first, which then prefers to undergo the enol-keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol-keto tautomerism.Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland-Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal C═C double bond of 4 is inserted into the P-H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB-H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG≠) and Gibbs reaction energy (ΔG) of 23.9 and -27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG≠ and ΔG values of 22.4 and -27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG≠/ΔG = 24.1/-0.3 kcal/mol) first, which then prefers to undergo the enol-keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol-keto tautomerism.
Author Zeng, Guixiang
Yang, Linlin
Zhang, Shuoqi
AuthorAffiliation Kuang Yaming Honors School, Institute for Brain Sciences
AuthorAffiliation_xml – name: Kuang Yaming Honors School, Institute for Brain Sciences
Author_xml – sequence: 1
  givenname: Linlin
  surname: Yang
  fullname: Yang, Linlin
– sequence: 2
  givenname: Shuoqi
  surname: Zhang
  fullname: Zhang, Shuoqi
– sequence: 3
  givenname: Guixiang
  orcidid: 0000-0001-5519-7611
  surname: Zeng
  fullname: Zeng, Guixiang
  email: gxzeng@nju.edu.cn
BookMark eNp9kc1uEzEUhS1UJNrCnqWXRcqktifzxwa1A2UqlR8hWI9unOuMK8ee2s5iuuIVeJS-Up-kTtIVEixsX8nfObo654QcWWeRkLeczTkT_BxkmN-OEuZcsrIW9QtyzAvBskLw4ijNrG6yosybV-QkhFvGGM_F4pg8fEE5gNUhakmvbdDrIVJto6NxQMpn-UxkHzXcwzi4kI5Bi1kLEcx0jyv6A1dbGcFGetZdjtqef-3yyy5_9_j7T-ts9M6YPQUyamepU_TCmMlQkYDvA9rJgPTpivietgZ0QLujvQe7xg0mX-dpN628W6OFnceH1-SlAhPwzfN7Sn5dffrZdtnNt8_X7cVNBjnPY4ZsyTiKpZS8aMpGQcEVk0pw0SjF6oViUJVcllUppWLLRVOvuKyaBpkoUnwsPyVnB9_Ru7sththvdJBoDFh029CLoqoq0ZR1ndDygErvQvCoeqnjftvoQZues37XUZ866ncd9c8dJSH7Szh6vQE__U8yO0j2P27rbQrh3_gTjaGrrQ
CitedBy_id crossref_primary_10_1039_D2ME00007E
Cites_doi 10.1002/chem.201504870
10.1002/qua.26162
10.1002/anie.201904411
10.1039/b810189b
10.1016/j.tet.2011.06.104
10.1103/PhysRev.136.B864
10.1021/jacs.8b00614
10.1039/c2gc00006g
10.1039/c2nj40227k
10.1039/c0cc03163a
10.1021/jo970944f
10.1063/1.1674902
10.1021/ja057827j
10.1039/C4CC05886K
10.1021/jp810292n
10.1016/S0040-4020(02)00164-3
10.1002/ange.201801300
10.1002/anie.201307426
10.1002/chem.201201301
10.3390/molecules171214249
10.1039/b901177n
10.1002/chem.201304384
10.1021/acs.macromol.7b02750
10.1002/cctc.202000662
10.1080/00268976.2013.766366
10.1021/ja00010a074
10.1002/anie.200906302
10.1002/jcc.540040303
10.1063/1.447079
10.1021/cs401101m
10.1021/cr020703u
10.1002/chem.201805208
10.1007/BF00533485
10.1021/ja00771a062
10.1021/ol026273b
10.1021/ja00426a033
10.1103/PhysRev.140.A1133
10.1021/j100717a029
10.1039/D0OB01351J
10.1021/ic200749w
10.1039/C1OB06381B
10.1016/S0040-4020(01)81208-4
10.1021/ic202499u
10.1002/anie.201611570
10.1021/acscatal.7b01338
10.1021/ja00072a051
10.1002/anie.202010835
10.1021/ar00072a001
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.jpca.1c06828
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 8667
ExternalDocumentID 10_1021_acs_jpca_1c06828
c211494653
GroupedDBID -
02
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACOHZ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
---
-~X
.DC
.K2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
ED~
JG~
XSW
YQT
~02
7X8
ID FETCH-LOGICAL-a313t-e0b01e2bcc15969fa51f0cf2129ff084f0a761c676ccf0b498d1c799e02582803
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Fri Jul 11 02:29:46 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 01:51:30 EDT 2025
Sat Oct 09 10:10:06 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-e0b01e2bcc15969fa51f0cf2129ff084f0a761c676ccf0b498d1c799e02582803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5519-7611
PQID 2577729688
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2577729688
crossref_citationtrail_10_1021_acs_jpca_1c06828
crossref_primary_10_1021_acs_jpca_1c06828
acs_journals_10_1021_acs_jpca_1c06828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211007
2021-10-07
PublicationDateYYYYMMDD 2021-10-07
PublicationDate_xml – month: 10
  year: 2021
  text: 20211007
  day: 07
PublicationDecade 2020
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
McFarland C. M. (ref3/cit3) 2007
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1002/chem.201504870
– ident: ref23/cit23
  doi: 10.1002/qua.26162
– ident: ref16/cit16
  doi: 10.1002/anie.201904411
– ident: ref31/cit31
  doi: 10.1039/b810189b
– ident: ref19/cit19
  doi: 10.1016/j.tet.2011.06.104
– ident: ref29/cit29
  doi: 10.1103/PhysRev.136.B864
– ident: ref48/cit48
  doi: 10.1021/jacs.8b00614
– ident: ref20/cit20
  doi: 10.1039/c2gc00006g
– ident: ref21/cit21
  doi: 10.1039/c2nj40227k
– ident: ref24/cit24
  doi: 10.1039/c0cc03163a
– ident: ref39/cit39
  doi: 10.1021/jo970944f
– ident: ref33/cit33
  doi: 10.1063/1.1674902
– ident: ref45/cit45
  doi: 10.1021/ja057827j
– ident: ref26/cit26
  doi: 10.1039/C4CC05886K
– ident: ref32/cit32
  doi: 10.1021/jp810292n
– ident: ref1/cit1
  doi: 10.1016/S0040-4020(02)00164-3
– ident: ref44/cit44
  doi: 10.1002/ange.201801300
– ident: ref5/cit5
  doi: 10.1002/anie.201307426
– ident: ref22/cit22
  doi: 10.1002/chem.201201301
– ident: ref8/cit8
  doi: 10.3390/molecules171214249
– ident: ref4/cit4
  doi: 10.1039/b901177n
– ident: ref11/cit11
  doi: 10.1002/chem.201304384
– ident: ref47/cit47
  doi: 10.1021/acs.macromol.7b02750
– ident: ref50/cit50
  doi: 10.1002/cctc.202000662
– ident: ref18/cit18
  doi: 10.1080/00268976.2013.766366
– ident: ref10/cit10
  doi: 10.1021/ja00010a074
– ident: ref43/cit43
– ident: ref17/cit17
  doi: 10.1002/anie.200906302
– ident: ref34/cit34
  doi: 10.1002/jcc.540040303
– ident: ref36/cit36
  doi: 10.1063/1.447079
– ident: ref42/cit42
  doi: 10.1021/cs401101m
– ident: ref2/cit2
  doi: 10.1021/cr020703u
– ident: ref15/cit15
  doi: 10.1002/chem.201805208
– ident: ref35/cit35
  doi: 10.1007/BF00533485
– ident: ref6/cit6
  doi: 10.1021/ja00771a062
– ident: ref13/cit13
  doi: 10.1021/ol026273b
– ident: ref7/cit7
  doi: 10.1021/ja00426a033
– ident: ref30/cit30
  doi: 10.1103/PhysRev.140.A1133
– ident: ref37/cit37
  doi: 10.1021/j100717a029
– ident: ref27/cit27
  doi: 10.1039/D0OB01351J
– ident: ref40/cit40
  doi: 10.1021/ic200749w
– ident: ref25/cit25
  doi: 10.1039/C1OB06381B
– ident: ref12/cit12
  doi: 10.1016/S0040-4020(01)81208-4
– volume-title: The Claisen Rearrangement: Methods and Applications
  year: 2007
  ident: ref3/cit3
– ident: ref41/cit41
  doi: 10.1021/ic202499u
– ident: ref46/cit46
  doi: 10.1002/anie.201611570
– ident: ref49/cit49
  doi: 10.1021/acscatal.7b01338
– ident: ref9/cit9
  doi: 10.1021/ja00072a051
– ident: ref28/cit28
  doi: 10.1002/anie.202010835
– ident: ref38/cit38
  doi: 10.1021/ar00072a001
SSID ssj0001324
Score 2.3849723
Snippet Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8658
SubjectTerms A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
Title Mechanistic Insight into the 1,3,2-Diazaphospholene-Catalyzed Reductant (HBpin/NH3BH3)‑Controlled Reaction of Allyl 2‑Phenylacrylate: Claisen Rearrangement or Hydrogenation?
URI http://dx.doi.org/10.1021/acs.jpca.1c06828
https://www.proquest.com/docview/2577729688
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3datVAEF60XuhN6y_WP1ZQsNA9TTbJJvFG2miJQouohd6FzWSX1oYkJDkX51z1FXwUX8kncSbJqVSl9CYXYTYsmdn52Zn5hrFXRR46EAAI8CUIPy-M0EHgCWK2VkqCCqhR-OBQpUf-p-Pg-A9Mzt8ZfOnuaOhm3xsM711wFMYHN9ktqfAMkxuUfL3QuhhV-WMxfSwCNLtTSvJ_XyBDBN1lQ3RZDw_GZX9jnFLUDZiEVFNyNpv3-QyW_yI2XmPfd9n65GPy3VEo7rEbprrPbier0W4P2M8DQw2_A0Yz_1h1FKDz06qvObqD3N32tqV4f6qXujmpu4Ym6FZGJHTRs1iagn8huFeaPszfpHsNRtaHqbeXelu_zn8kY-V7OVCNPRO8tny3LBcll0jw-cRUi1JDi4_evOVJSbmriqjblhod6LaS1y1PF0Vbo3QPkvPuITva__AtScU0u0Foz_V6YeiC1cgcAP0lFVsduNYBi4YyttaJfOvoULmgQgVgndyPo8KFMI4N-mARTcx6xNaqujKPGTe2MKEGx2oMHQspteeFxobo-IC2cQCb7DX-62w6e102pNWlmw0vkQHZxIBNtrNieAYTADrN4SivWLF1saIZwT-uoH25kqEMuUlpF12Zet5lqBQphFFR9OSaO33K7kgqnaE6hfAZW-vbuXmOvk-fvxiE_jfBfwP0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0CrlUC68EW15GAkkKtVtnk7CBW0DVQrdFSqt1FvkTGy1ECVRkj3snvgFPoVf4kuYyWYXFaEKLjlYY2uUGc_D82LsZZ4FFvgAAjwHhJflWijfdwURW0npgPSpUHg8kcmZ9-HcP19j9rIWBpFo8aS2D-L_7i5g79Palxq9fBssiW7CDXYTbRGHmHoUf14JX3SuvEVOfSR81L5DZPJvJ5A-gvaqProqjnsdc3iHnayw61NLvu5Nu2wP5n80bvwv9O-y24PFyUcLFrnH1nR5n23Ey0FvD9iPsaby375jMz8qW3LX-WXZVRyNQ27vuruOeHep5qq-qNqa5umWWsT07DOb65yfUPNXmkXMXycHNfrZk8Q9SNydn9--x4s8-KKHWlRQ8MrwUVHMCu4gwKcLXc4KBQ1-Ov2GxwVFskqCbhoqe6C3S141PJnlTYW83vPR24fs7PD9aZyIYZKDUK7tdkLTc6t2MgC0nmRklG8bCwyqzcgYK_SMpQJpgwwkgLEyLwpzG4Io0miRhTQ_6xFbL6tSP2Zcm1wHCiyj0JHMHUe5bqBNgGYQKBP5sMle4b9Oh5vYpn2Q3bHTfhEJkA4E2GT7S7qnMLRDp6kcxTU7dlY76kUrkGtgXyxZKUVqUhBGlbqatimKSHJoZBhu_SOmz9lGcjo-To-PJh-32S2HkmoogyF4wta7ZqqfolXUZc_6e_AL4YYMVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYALb0TLy0ggUalu83QSLmibskqBriqgVW-RM7HV0iiJkuxh98Rf4Kfwl_glzGSzKxWhCi45WOPIyYw983lejL3Ks8ACH0CA54DwslwL5fuuIGYrKR2QPiUKH05kcux9OPVP15i_zIXBRbT4prZ34tOurnMzVBiwd2n8W41I3wZLIlS4xq6T144EexR_WR3ACLC8RVx9JHzUwIN38m9vIJ0E7WWddPlI7vXM-A47Wa2wDy-52Jl22Q7M_yje-N-fcJfdHixPPlqIyj22psv77Ga8bPj2gP081JQG3Fdu5gdlS7Cdn5ddxdFI5Pa2u-2I_XM1V_VZ1dbUV7fUIqbrn9lc5_wzFYGlnsT8TbJXI96eJO5e4m79-v4jXsTDFz3VIpOCV4aPimJWcAcJjs50OSsUNPjo9FseF-TRKom6aSj9ge4wedXwZJY3Fcp8L0_vHrLj8fuvcSKGjg5CubbbCU3XrtrJANCKkpFRvm0sMKg-I2Os0DOWCqQNMpAAxsq8KMxtCKJIo2UWUh-tR2y9rEr9mHFtch0osIxCQJk7jnLdQJsAzSFQJvJhg73Gf50OO7JNe2e7Y6f9IDIgHRiwwXaXvE9hKItO3TmKK2ZsrWbUi5IgV9C-XIpTitwkZ4wqdTVtUzwqCdjIMNz8x5W-YDeO9sfpp4PJxyfslkOxNRTIEDxl610z1c_QOOqy5_1W-A1krA7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insight+into+the+1%2C3%2C2-Diazaphospholene-Catalyzed+Reductant+%28HBpin%2FNH3BH3%29-Controlled+Reaction+of+Allyl+2-Phenylacrylate%3A+Claisen+Rearrangement+or+Hydrogenation%3F&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Yang%2C+Linlin&rft.au=Zhang%2C+Shuoqi&rft.au=Zeng%2C+Guixiang&rft.date=2021-10-07&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=125&rft.issue=39&rft.spage=8658&rft_id=info:doi/10.1021%2Facs.jpca.1c06828&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon