Effect of Defects and Solvents on Silicene Cathode of Nonaqueous Lithium–Oxygen Batteries: A Theoretical Investigation

Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various s...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 123; no. 1; pp. 205 - 213
Main Author Yu, Yang-Xin
Format Journal Article
LanguageEnglish
Published American Chemical Society 10.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various solvents on the discharging and charging processes occurring in the batteries. Here, ab initio density functional theory is employed to explore the mechanisms of oxygen reduction to Li2O(s) (ORR) on discharge and the reverse reactions on pristine and defective silicenes including single vacancy (SV), double vacancies (DV), and Stone–Thrower–Wales (STW) defects. The influence of the permittivity of solvents on the adsorption energy of the ORR intermediates as well as the stability of the cathode materials in dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME) is evaluated. The analysis of the calculated results suggests that the defects show higher overpotentials when compared with pristine silicene due to their stronger attraction with the ORR intermediates, especially for LiO2(s) and lithium atoms. Pristine and three defective silicenes exhibit similar electrochemical performance in different solvents and their stabilities are related to the solvents used. Our investigation identifies the role of defective structures in silicene surfaces and the stability toward DMSO and DME. High performance of silicene cathode materials for lithium–oxygen batteries can be achieved by tuning the interaction between the ORR intermediates and silicene surfaces with attached hydrophobic functional groups.
AbstractList Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various solvents on the discharging and charging processes occurring in the batteries. Here, ab initio density functional theory is employed to explore the mechanisms of oxygen reduction to Li2O(s) (ORR) on discharge and the reverse reactions on pristine and defective silicenes including single vacancy (SV), double vacancies (DV), and Stone–Thrower–Wales (STW) defects. The influence of the permittivity of solvents on the adsorption energy of the ORR intermediates as well as the stability of the cathode materials in dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME) is evaluated. The analysis of the calculated results suggests that the defects show higher overpotentials when compared with pristine silicene due to their stronger attraction with the ORR intermediates, especially for LiO2(s) and lithium atoms. Pristine and three defective silicenes exhibit similar electrochemical performance in different solvents and their stabilities are related to the solvents used. Our investigation identifies the role of defective structures in silicene surfaces and the stability toward DMSO and DME. High performance of silicene cathode materials for lithium–oxygen batteries can be achieved by tuning the interaction between the ORR intermediates and silicene surfaces with attached hydrophobic functional groups.
Silicene has recently shown high electrochemical performance with discharging product Li₂O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various solvents on the discharging and charging processes occurring in the batteries. Here, ab initio density functional theory is employed to explore the mechanisms of oxygen reduction to Li₂O(s) (ORR) on discharge and the reverse reactions on pristine and defective silicenes including single vacancy (SV), double vacancies (DV), and Stone–Thrower–Wales (STW) defects. The influence of the permittivity of solvents on the adsorption energy of the ORR intermediates as well as the stability of the cathode materials in dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME) is evaluated. The analysis of the calculated results suggests that the defects show higher overpotentials when compared with pristine silicene due to their stronger attraction with the ORR intermediates, especially for LiO₂(s) and lithium atoms. Pristine and three defective silicenes exhibit similar electrochemical performance in different solvents and their stabilities are related to the solvents used. Our investigation identifies the role of defective structures in silicene surfaces and the stability toward DMSO and DME. High performance of silicene cathode materials for lithium–oxygen batteries can be achieved by tuning the interaction between the ORR intermediates and silicene surfaces with attached hydrophobic functional groups.
Author Yu, Yang-Xin
AuthorAffiliation Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering
AuthorAffiliation_xml – name: Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Yang-Xin
  orcidid: 0000-0002-7677-3427
  surname: Yu
  fullname: Yu, Yang-Xin
  email: yangxyu@mail.tsinghua.edu.cn
BookMark eNp9kL1OAzEQhC0UJEigp3RJQcL6fD85uhD-IkWkAOqTz94jRhc72E4UOt6BN-RJuEsQBRJUO6udWY2-LukYa5CQEwYDBhE7F9IPXpZSDoYlA55me-SQ5TzqZ3GSdH50nB2QrvcvAAkHxg_J5rqqUAZqK3qFrfJUGEUfbL1G0yzW0Adda4kG6ViEuVXYeu-tEa8rtCtPpzrM9Wrx-f4x27w9o6GXIgR0Gv0FHdHHOVqHQUtR04lZow_6WQRtzRHZr0Tt8fh79sjTzfXj-K4_nd1OxqNpX3DGQ1_GmJcqLfO0YgAV5KAylpaMxzEkuYAyY5gOG6WgVHka80wI5KC4VCzPlOI9crr7u3S2aexDsdBeYl0L09YvoihiECd8GDXWdGeVznrvsCqkDtuywQldFwyKFnXRoC5a1MU36iYIv4JLpxfCvf0XOdtFthe7cqaB8Lf9C7bflxc
CitedBy_id crossref_primary_10_1021_acsami_0c21429
crossref_primary_10_1039_C9CP04530A
crossref_primary_10_1021_acs_jpcc_1c06464
crossref_primary_10_1039_D2CP00705C
crossref_primary_10_1016_j_jmgm_2020_107647
crossref_primary_10_1039_D0CP00507J
crossref_primary_10_1016_j_mcat_2021_111843
crossref_primary_10_1016_j_ssc_2019_113770
crossref_primary_10_1002_cphc_202000766
crossref_primary_10_1016_j_apsusc_2021_150567
crossref_primary_10_1142_S0217984924501069
crossref_primary_10_1016_j_apsusc_2021_149104
crossref_primary_10_1016_j_physe_2022_115599
crossref_primary_10_1039_D0CP00224K
crossref_primary_10_1016_j_apsusc_2024_160380
crossref_primary_10_1016_j_jpcs_2020_109373
crossref_primary_10_1142_S0217984924500416
crossref_primary_10_1016_j_flatc_2023_100533
crossref_primary_10_1088_1361_648X_ac630a
crossref_primary_10_1039_D1CP01194D
crossref_primary_10_1016_j_mtsust_2024_101045
crossref_primary_10_1088_1361_6528_ac3616
crossref_primary_10_1039_D3RA04525K
crossref_primary_10_1016_j_apsusc_2022_156025
crossref_primary_10_1016_j_cplett_2021_138714
crossref_primary_10_1039_D0CP01285H
crossref_primary_10_3390_physics5010005
crossref_primary_10_1016_j_cej_2023_141854
crossref_primary_10_1016_j_jmgm_2020_107537
crossref_primary_10_1016_j_ensm_2021_03_001
crossref_primary_10_1016_j_ensm_2020_07_006
crossref_primary_10_1039_D1NJ04096K
crossref_primary_10_1002_jccs_202200442
crossref_primary_10_1016_j_cplett_2023_141050
crossref_primary_10_1039_D0CY02192J
crossref_primary_10_1039_D2CP04299A
crossref_primary_10_1016_j_jcis_2022_05_034
crossref_primary_10_1016_j_cej_2022_139162
crossref_primary_10_1016_j_cplett_2021_138568
crossref_primary_10_1039_D3CP00103B
crossref_primary_10_1039_D3SU00445G
crossref_primary_10_1016_j_physe_2020_114237
crossref_primary_10_1016_j_matchemphys_2022_125994
crossref_primary_10_1016_j_mssp_2025_109302
crossref_primary_10_1039_D3RA04019D
crossref_primary_10_1039_D1CP00094B
crossref_primary_10_1002_smll_202405251
crossref_primary_10_1016_j_jpowsour_2024_234512
crossref_primary_10_1039_D1TA00699A
crossref_primary_10_1016_j_comptc_2021_113470
crossref_primary_10_1039_D4TC02819H
crossref_primary_10_1002_cssc_202101691
crossref_primary_10_1002_celc_202100878
crossref_primary_10_1016_j_chphma_2022_06_002
crossref_primary_10_1016_j_cej_2024_157462
crossref_primary_10_1039_D1TA00646K
crossref_primary_10_1016_j_jallcom_2024_175913
crossref_primary_10_1016_j_ijhydene_2024_04_265
crossref_primary_10_1021_acsami_1c24801
crossref_primary_10_1039_D3RA08641K
crossref_primary_10_1016_j_cej_2022_140288
crossref_primary_10_1016_j_ijleo_2019_164164
crossref_primary_10_1038_s41598_024_63676_7
crossref_primary_10_1039_D2CP04184G
crossref_primary_10_1016_j_apsusc_2021_152272
crossref_primary_10_1039_D3CP04963A
crossref_primary_10_1021_acsami_2c01400
crossref_primary_10_1149_2_1051914jes
crossref_primary_10_1063_5_0234420
crossref_primary_10_1007_s12633_024_02915_y
crossref_primary_10_1016_j_ijhydene_2022_11_180
crossref_primary_10_1039_D0CP03540H
crossref_primary_10_1080_00268976_2025_2482678
crossref_primary_10_1039_D3CP00106G
crossref_primary_10_1039_C9CP04587B
crossref_primary_10_1021_acs_jpclett_3c00617
crossref_primary_10_1016_j_est_2025_115521
crossref_primary_10_1002_chem_202304106
crossref_primary_10_1002_smll_202406651
crossref_primary_10_1080_00268976_2024_2448170
crossref_primary_10_1016_j_vacuum_2019_04_065
crossref_primary_10_1021_acs_jpcc_0c10211
crossref_primary_10_1021_acs_jpcc_9b09665
crossref_primary_10_1016_j_cplett_2020_138241
crossref_primary_10_1016_j_apsusc_2022_154673
crossref_primary_10_1016_j_colsurfa_2023_131379
crossref_primary_10_1016_j_apsusc_2020_148868
crossref_primary_10_1002_smll_202405734
crossref_primary_10_1002_cphc_202100828
crossref_primary_10_1016_j_jmgm_2022_108366
crossref_primary_10_1016_j_jcat_2020_02_009
crossref_primary_10_1016_j_apsusc_2021_149447
crossref_primary_10_1016_j_commatsci_2022_111637
crossref_primary_10_1021_acs_jpclett_1c00855
crossref_primary_10_1039_D3NA01050C
crossref_primary_10_1039_D1CP05311F
crossref_primary_10_1016_j_cattod_2024_114700
crossref_primary_10_1007_s13204_024_03062_x
crossref_primary_10_1016_j_physe_2022_115170
crossref_primary_10_1007_s12633_024_03101_w
crossref_primary_10_1016_j_comptc_2021_113557
crossref_primary_10_1016_j_physe_2024_116060
crossref_primary_10_1016_j_vacuum_2020_109927
crossref_primary_10_1039_D1NR07407E
crossref_primary_10_1039_D3EN00473B
crossref_primary_10_1080_00268976_2024_2396055
crossref_primary_10_1088_1361_648X_acd50d
crossref_primary_10_1039_D2CP01554D
Cites_doi 10.1002/advs.201600453
10.1063/1.1316015
10.1038/nenergy.2016.128
10.1016/j.matdes.2017.05.052
10.1021/jp952713n
10.1103/PhysRevLett.77.3865
10.1039/C5CP03886C
10.1038/s41598-017-09219-9
10.1016/j.jpowsour.2016.04.054
10.1021/acs.jpcc.6b04241
10.1002/adma.201705523
10.1088/1367-2630/16/9/095004
10.1002/jcc.20495
10.1149/2.086202jes
10.1021/jz501387m
10.1039/C8NR04026E
10.1021/jp408647t
10.1016/j.fluid.2011.02.002
10.1021/j100892a011
10.1038/nature16542
10.1016/j.nanoen.2016.08.066
10.1016/j.ensm.2017.05.004
10.1016/j.jpowsour.2014.11.016
10.1016/j.jallcom.2018.02.045
10.1021/acscatal.5b00332
10.1002/aenm.201800348
10.1039/c3cp51689j
10.1021/acs.jpclett.6b01071
10.1021/am402828k
10.1021/acsami.6b08222
10.1021/ja310258x
10.1021/j100892a013
10.1021/acscatal.7b03566
10.1038/nature11475
10.1016/j.ijhydene.2016.03.164
10.1016/j.pmatsci.2016.04.001
10.1149/1.1836378
10.1016/j.nanoen.2018.01.045
10.1039/c3ta12639k
10.1021/acs.jpcc.5b10366
10.1021/acscatal.7b02313
10.3891/acta.chem.scand.24-2037
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.8b10367
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 213
ExternalDocumentID 10_1021_acs_jpcc_8b10367
g34637874
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a313t-c4e9bd6b96f100f090d716b1344059a0b71e6859ad0bd96437aae30d3cd197dd3
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 11:48:26 EDT 2025
Tue Jul 01 02:17:25 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Thu Aug 27 13:43:47 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-c4e9bd6b96f100f090d716b1344059a0b71e6859ad0bd96437aae30d3cd197dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7677-3427
PQID 2221045382
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2221045382
crossref_citationtrail_10_1021_acs_jpcc_8b10367
crossref_primary_10_1021_acs_jpcc_8b10367
acs_journals_10_1021_acs_jpcc_8b10367
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-10
PublicationDateYYYYMMDD 2019-01-10
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-10
  day: 10
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
Chase M. W. (ref38/cit38) 1998
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref37/cit37
  doi: 10.1002/advs.201600453
– ident: ref30/cit30
  doi: 10.1063/1.1316015
– ident: ref15/cit15
  doi: 10.1038/nenergy.2016.128
– ident: ref20/cit20
  doi: 10.1016/j.matdes.2017.05.052
– ident: ref29/cit29
  doi: 10.1021/jp952713n
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref36/cit36
  doi: 10.1039/C5CP03886C
– ident: ref10/cit10
  doi: 10.1038/s41598-017-09219-9
– ident: ref19/cit19
  doi: 10.1016/j.jpowsour.2016.04.054
– ident: ref16/cit16
  doi: 10.1021/acs.jpcc.6b04241
– ident: ref24/cit24
  doi: 10.1002/adma.201705523
– ident: ref27/cit27
  doi: 10.1088/1367-2630/16/9/095004
– ident: ref32/cit32
  doi: 10.1002/jcc.20495
– ident: ref7/cit7
  doi: 10.1149/2.086202jes
– volume-title: NIST-JANAF Thermochemical Tables
  year: 1998
  ident: ref38/cit38
– ident: ref3/cit3
  doi: 10.1021/jz501387m
– ident: ref9/cit9
  doi: 10.1039/C8NR04026E
– ident: ref28/cit28
  doi: 10.1021/jp408647t
– ident: ref42/cit42
  doi: 10.1016/j.fluid.2011.02.002
– ident: ref39/cit39
  doi: 10.1021/j100892a011
– ident: ref1/cit1
  doi: 10.1038/nature16542
– ident: ref12/cit12
  doi: 10.1016/j.nanoen.2016.08.066
– ident: ref11/cit11
  doi: 10.1016/j.ensm.2017.05.004
– ident: ref25/cit25
  doi: 10.1016/j.jpowsour.2014.11.016
– ident: ref14/cit14
  doi: 10.1016/j.jallcom.2018.02.045
– ident: ref8/cit8
  doi: 10.1021/acscatal.5b00332
– ident: ref21/cit21
  doi: 10.1002/aenm.201800348
– ident: ref33/cit33
  doi: 10.1039/c3cp51689j
– ident: ref5/cit5
  doi: 10.1021/acs.jpclett.6b01071
– ident: ref41/cit41
  doi: 10.1021/am402828k
– ident: ref13/cit13
  doi: 10.1021/acsami.6b08222
– ident: ref17/cit17
  doi: 10.1021/ja310258x
– ident: ref40/cit40
  doi: 10.1021/j100892a013
– ident: ref23/cit23
  doi: 10.1021/acscatal.7b03566
– ident: ref2/cit2
  doi: 10.1038/nature11475
– ident: ref4/cit4
  doi: 10.1016/j.ijhydene.2016.03.164
– ident: ref26/cit26
  doi: 10.1016/j.pmatsci.2016.04.001
– ident: ref6/cit6
  doi: 10.1149/1.1836378
– ident: ref18/cit18
  doi: 10.1016/j.nanoen.2018.01.045
– ident: ref34/cit34
  doi: 10.1039/c3ta12639k
– ident: ref35/cit35
  doi: 10.1021/acs.jpcc.5b10366
– ident: ref22/cit22
  doi: 10.1021/acscatal.7b02313
– ident: ref43/cit43
  doi: 10.3891/acta.chem.scand.24-2037
SSID ssj0053013
Score 2.584119
Snippet Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for...
Silicene has recently shown high electrochemical performance with discharging product Li₂O(s) and high stability, avoiding discharging byproducts for...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms adsorption
batteries
byproducts
cathodes
density functional theory
dimethyl sulfoxide
electrochemistry
energy
hydrophobicity
lithium
moieties
oxygen
solvents
Title Effect of Defects and Solvents on Silicene Cathode of Nonaqueous Lithium–Oxygen Batteries: A Theoretical Investigation
URI http://dx.doi.org/10.1021/acs.jpcc.8b10367
https://www.proquest.com/docview/2221045382
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF7R9tBegEIrAqVaJDhwcOL12l5vb1EgihCEQxIpN2t_JiIQ7ArbUuHEO_CGPAmztkP6pyhXa9cazY5nvvHMfkPIa8siwaPYeJCE1kP8D14SSeOZIFFacKUi7f5DfhrHo1n4YR7NNzQ5tyv4AespU3S_XhrTTTRDdyv2yEEQJ8IlWv3BZO11IzRU3lSQETGGoWhLkve9wQUiU9wMRDf9cB1cho-aKUVFzUnoekq-datSd82vu4yNO8j9mDxsMSbtN0ZxTB5A9oQcDtaj3Z6Sq4azmOYL-g7qfg6qMksn-cp1PxY0z-hkuUIXkgF1VwRzC27tGFE7ip9XBf24LL8sq-9_f__5fPUTbZA2PJ2Ydl_QPp1ubkfSa0QeeXZCZsP308HIa0cweIozXnomBKltrGW8YL6_8KVvMcHSjIcI9KTytWAQ4-Eq62vrqL2EUsB9y41lUljLT8l-lmfwjFBtAAMjB5EAemeQcuGDtLFFJ2AgCsIOeYMqS9tPqEjr6njA0voh6jFt9dghvfW5pablMXfjNFZbdrz9v-Oy4fDYsvbV2hRSPBRXPVGZU2yKQApTV4wPwfMdJX1BjhBeuXY0DHZnZL_8UcFLhDClPq9t9x9Qle5a
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxQxDLZKOZQLb9TyDBI9cJjtZDKvIHFYbam2dLscdiv1NuThFQvLTMXMipYT_4FfwF_hp_BLcObRUoQqLpW4RknksWP789hxAJ5ZHiUiio2HaWg9wv_opZE0nglSpROhVKTdf8j9cTw8CF8fRocr8L27C0NElLRTWSfxz7oL8C039v7ImF6qOVndpK2j3MOTzxSllS93t0mkm0Gw82o6GHrtQwKeElxUnglRahtrGc-478986VsKEzQXIcEVqXydcIyJRGV9bV2DqkQpFL4VxnKZWCto3ytwlbBP4OK7_mDSGfuI9EM0iWsCqmGYtJnQv1Hs_J8pz_u_8-a_9mk7N-DHKTfqUpYPvWWle-bLH40i_2t23YTrLaJm_UYFbsEK5rdhbdA9ZHcHjpsOzayYsW2sq1eYyi2bFAtX61myImeT-YIMZo7MXYgsLLq5Y4pRiGvFsmSjefVuvvz48-u3N8cnpHGs6Uo6x_IF67Pp2V1Q9lvbkiK_CweX8uH3YDUvclwHpg0SDBCYpEi-CKWc-ShtbMnkGYyCcAM2SURZazDKrK4FCHhWD5LcslZuG7DVHZfMtF3b3eMhiwtWPD9dcdR0LLlg7tPuBGYkFJcrUrljbEawkQJ18obB_X-k9AmsDaf7o2y0O957ANcIWLpCPHLzD2G1-rTERwTeKv24Vh8Gby_7AP4CHxVQeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FIEEuYVcStkYiBw6euN1ekTiMZhglJAxIk0i5mV7KyoTBHmGPSDjxD3wDv8KH8CVUewkEoYhLJK6t7la5qmtzVb8GeGp4EIkg1A7GvnEo_kcnDhLtaC-WKhJSBsr-h3w9DrcP_FeHweESfOvuwhARJe1U1kV8q9Vzk7UIA3zLjh_Pte7FipPljdpeyl08_USZWvliZ0hi3fS80cv9wbbTPibgSMFF5WgfE2VClYQZd93MTVxDqYLiwqeQJZGuijiGRKY0rjIWpCqSEoVrhDY8iYwRtO8VuGqrhDbH6w8mncEPSEdEU7ymYNX3o7Ya-jeKrQ_U5XkfeN4F1H5tdAO-n3Gkbmd531tUqqc__wEW-d-z7CastpE16zeqcAuWML8N1wfdg3Z34KRBamZFxoZYd7EwmRs2KWa257NkRc4m0xkZzhyZvRhZGLRzx5SrEOeKRcn2ptXRdPHhx5evb05OSfNYg046xfI567P9X3dC2W_wJUV-Fw4u5cPvwXJe5LgGTGmkcEBgFCP5JEySzMXEhIZMn8bA89dhk0SUtoajTOueAI-n9SDJLW3ltg5b3ZFJdYvebh8RmV2w4tnZinmDXHLB3CfdKUxJKLZmJHPL2JTCR0rYySt6G_9I6WO49nY4Svd2xrv3YYXiS9uPR97-ASxXHxf4kGK4Sj2qNYjBu8s-fz8BLzNS-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Defects+and+Solvents+on+Silicene+Cathode+of+Nonaqueous+Lithium%E2%80%93Oxygen+Batteries%3A+A+Theoretical+Investigation&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Yu%2C+Yang-Xin&rft.date=2019-01-10&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=123&rft.issue=1&rft.spage=205&rft.epage=213&rft_id=info:doi/10.1021%2Facs.jpcc.8b10367&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_8b10367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon