Effect of Defects and Solvents on Silicene Cathode of Nonaqueous Lithium–Oxygen Batteries: A Theoretical Investigation
Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various s...
Saved in:
Published in | Journal of physical chemistry. C Vol. 123; no. 1; pp. 205 - 213 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
10.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various solvents on the discharging and charging processes occurring in the batteries. Here, ab initio density functional theory is employed to explore the mechanisms of oxygen reduction to Li2O(s) (ORR) on discharge and the reverse reactions on pristine and defective silicenes including single vacancy (SV), double vacancies (DV), and Stone–Thrower–Wales (STW) defects. The influence of the permittivity of solvents on the adsorption energy of the ORR intermediates as well as the stability of the cathode materials in dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME) is evaluated. The analysis of the calculated results suggests that the defects show higher overpotentials when compared with pristine silicene due to their stronger attraction with the ORR intermediates, especially for LiO2(s) and lithium atoms. Pristine and three defective silicenes exhibit similar electrochemical performance in different solvents and their stabilities are related to the solvents used. Our investigation identifies the role of defective structures in silicene surfaces and the stability toward DMSO and DME. High performance of silicene cathode materials for lithium–oxygen batteries can be achieved by tuning the interaction between the ORR intermediates and silicene surfaces with attached hydrophobic functional groups. |
---|---|
AbstractList | Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various solvents on the discharging and charging processes occurring in the batteries. Here, ab initio density functional theory is employed to explore the mechanisms of oxygen reduction to Li2O(s) (ORR) on discharge and the reverse reactions on pristine and defective silicenes including single vacancy (SV), double vacancies (DV), and Stone–Thrower–Wales (STW) defects. The influence of the permittivity of solvents on the adsorption energy of the ORR intermediates as well as the stability of the cathode materials in dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME) is evaluated. The analysis of the calculated results suggests that the defects show higher overpotentials when compared with pristine silicene due to their stronger attraction with the ORR intermediates, especially for LiO2(s) and lithium atoms. Pristine and three defective silicenes exhibit similar electrochemical performance in different solvents and their stabilities are related to the solvents used. Our investigation identifies the role of defective structures in silicene surfaces and the stability toward DMSO and DME. High performance of silicene cathode materials for lithium–oxygen batteries can be achieved by tuning the interaction between the ORR intermediates and silicene surfaces with attached hydrophobic functional groups. Silicene has recently shown high electrochemical performance with discharging product Li₂O(s) and high stability, avoiding discharging byproducts for nonaqueous lithium–oxygen batteries. At the fundamental level, little was known about the effect of defects existing in silicene surface and various solvents on the discharging and charging processes occurring in the batteries. Here, ab initio density functional theory is employed to explore the mechanisms of oxygen reduction to Li₂O(s) (ORR) on discharge and the reverse reactions on pristine and defective silicenes including single vacancy (SV), double vacancies (DV), and Stone–Thrower–Wales (STW) defects. The influence of the permittivity of solvents on the adsorption energy of the ORR intermediates as well as the stability of the cathode materials in dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME) is evaluated. The analysis of the calculated results suggests that the defects show higher overpotentials when compared with pristine silicene due to their stronger attraction with the ORR intermediates, especially for LiO₂(s) and lithium atoms. Pristine and three defective silicenes exhibit similar electrochemical performance in different solvents and their stabilities are related to the solvents used. Our investigation identifies the role of defective structures in silicene surfaces and the stability toward DMSO and DME. High performance of silicene cathode materials for lithium–oxygen batteries can be achieved by tuning the interaction between the ORR intermediates and silicene surfaces with attached hydrophobic functional groups. |
Author | Yu, Yang-Xin |
AuthorAffiliation | Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering |
AuthorAffiliation_xml | – name: Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yang-Xin orcidid: 0000-0002-7677-3427 surname: Yu fullname: Yu, Yang-Xin email: yangxyu@mail.tsinghua.edu.cn |
BookMark | eNp9kL1OAzEQhC0UJEigp3RJQcL6fD85uhD-IkWkAOqTz94jRhc72E4UOt6BN-RJuEsQBRJUO6udWY2-LukYa5CQEwYDBhE7F9IPXpZSDoYlA55me-SQ5TzqZ3GSdH50nB2QrvcvAAkHxg_J5rqqUAZqK3qFrfJUGEUfbL1G0yzW0Adda4kG6ViEuVXYeu-tEa8rtCtPpzrM9Wrx-f4x27w9o6GXIgR0Gv0FHdHHOVqHQUtR04lZow_6WQRtzRHZr0Tt8fh79sjTzfXj-K4_nd1OxqNpX3DGQ1_GmJcqLfO0YgAV5KAylpaMxzEkuYAyY5gOG6WgVHka80wI5KC4VCzPlOI9crr7u3S2aexDsdBeYl0L09YvoihiECd8GDXWdGeVznrvsCqkDtuywQldFwyKFnXRoC5a1MU36iYIv4JLpxfCvf0XOdtFthe7cqaB8Lf9C7bflxc |
CitedBy_id | crossref_primary_10_1021_acsami_0c21429 crossref_primary_10_1039_C9CP04530A crossref_primary_10_1021_acs_jpcc_1c06464 crossref_primary_10_1039_D2CP00705C crossref_primary_10_1016_j_jmgm_2020_107647 crossref_primary_10_1039_D0CP00507J crossref_primary_10_1016_j_mcat_2021_111843 crossref_primary_10_1016_j_ssc_2019_113770 crossref_primary_10_1002_cphc_202000766 crossref_primary_10_1016_j_apsusc_2021_150567 crossref_primary_10_1142_S0217984924501069 crossref_primary_10_1016_j_apsusc_2021_149104 crossref_primary_10_1016_j_physe_2022_115599 crossref_primary_10_1039_D0CP00224K crossref_primary_10_1016_j_apsusc_2024_160380 crossref_primary_10_1016_j_jpcs_2020_109373 crossref_primary_10_1142_S0217984924500416 crossref_primary_10_1016_j_flatc_2023_100533 crossref_primary_10_1088_1361_648X_ac630a crossref_primary_10_1039_D1CP01194D crossref_primary_10_1016_j_mtsust_2024_101045 crossref_primary_10_1088_1361_6528_ac3616 crossref_primary_10_1039_D3RA04525K crossref_primary_10_1016_j_apsusc_2022_156025 crossref_primary_10_1016_j_cplett_2021_138714 crossref_primary_10_1039_D0CP01285H crossref_primary_10_3390_physics5010005 crossref_primary_10_1016_j_cej_2023_141854 crossref_primary_10_1016_j_jmgm_2020_107537 crossref_primary_10_1016_j_ensm_2021_03_001 crossref_primary_10_1016_j_ensm_2020_07_006 crossref_primary_10_1039_D1NJ04096K crossref_primary_10_1002_jccs_202200442 crossref_primary_10_1016_j_cplett_2023_141050 crossref_primary_10_1039_D0CY02192J crossref_primary_10_1039_D2CP04299A crossref_primary_10_1016_j_jcis_2022_05_034 crossref_primary_10_1016_j_cej_2022_139162 crossref_primary_10_1016_j_cplett_2021_138568 crossref_primary_10_1039_D3CP00103B crossref_primary_10_1039_D3SU00445G crossref_primary_10_1016_j_physe_2020_114237 crossref_primary_10_1016_j_matchemphys_2022_125994 crossref_primary_10_1016_j_mssp_2025_109302 crossref_primary_10_1039_D3RA04019D crossref_primary_10_1039_D1CP00094B crossref_primary_10_1002_smll_202405251 crossref_primary_10_1016_j_jpowsour_2024_234512 crossref_primary_10_1039_D1TA00699A crossref_primary_10_1016_j_comptc_2021_113470 crossref_primary_10_1039_D4TC02819H crossref_primary_10_1002_cssc_202101691 crossref_primary_10_1002_celc_202100878 crossref_primary_10_1016_j_chphma_2022_06_002 crossref_primary_10_1016_j_cej_2024_157462 crossref_primary_10_1039_D1TA00646K crossref_primary_10_1016_j_jallcom_2024_175913 crossref_primary_10_1016_j_ijhydene_2024_04_265 crossref_primary_10_1021_acsami_1c24801 crossref_primary_10_1039_D3RA08641K crossref_primary_10_1016_j_cej_2022_140288 crossref_primary_10_1016_j_ijleo_2019_164164 crossref_primary_10_1038_s41598_024_63676_7 crossref_primary_10_1039_D2CP04184G crossref_primary_10_1016_j_apsusc_2021_152272 crossref_primary_10_1039_D3CP04963A crossref_primary_10_1021_acsami_2c01400 crossref_primary_10_1149_2_1051914jes crossref_primary_10_1063_5_0234420 crossref_primary_10_1007_s12633_024_02915_y crossref_primary_10_1016_j_ijhydene_2022_11_180 crossref_primary_10_1039_D0CP03540H crossref_primary_10_1080_00268976_2025_2482678 crossref_primary_10_1039_D3CP00106G crossref_primary_10_1039_C9CP04587B crossref_primary_10_1021_acs_jpclett_3c00617 crossref_primary_10_1016_j_est_2025_115521 crossref_primary_10_1002_chem_202304106 crossref_primary_10_1002_smll_202406651 crossref_primary_10_1080_00268976_2024_2448170 crossref_primary_10_1016_j_vacuum_2019_04_065 crossref_primary_10_1021_acs_jpcc_0c10211 crossref_primary_10_1021_acs_jpcc_9b09665 crossref_primary_10_1016_j_cplett_2020_138241 crossref_primary_10_1016_j_apsusc_2022_154673 crossref_primary_10_1016_j_colsurfa_2023_131379 crossref_primary_10_1016_j_apsusc_2020_148868 crossref_primary_10_1002_smll_202405734 crossref_primary_10_1002_cphc_202100828 crossref_primary_10_1016_j_jmgm_2022_108366 crossref_primary_10_1016_j_jcat_2020_02_009 crossref_primary_10_1016_j_apsusc_2021_149447 crossref_primary_10_1016_j_commatsci_2022_111637 crossref_primary_10_1021_acs_jpclett_1c00855 crossref_primary_10_1039_D3NA01050C crossref_primary_10_1039_D1CP05311F crossref_primary_10_1016_j_cattod_2024_114700 crossref_primary_10_1007_s13204_024_03062_x crossref_primary_10_1016_j_physe_2022_115170 crossref_primary_10_1007_s12633_024_03101_w crossref_primary_10_1016_j_comptc_2021_113557 crossref_primary_10_1016_j_physe_2024_116060 crossref_primary_10_1016_j_vacuum_2020_109927 crossref_primary_10_1039_D1NR07407E crossref_primary_10_1039_D3EN00473B crossref_primary_10_1080_00268976_2024_2396055 crossref_primary_10_1088_1361_648X_acd50d crossref_primary_10_1039_D2CP01554D |
Cites_doi | 10.1002/advs.201600453 10.1063/1.1316015 10.1038/nenergy.2016.128 10.1016/j.matdes.2017.05.052 10.1021/jp952713n 10.1103/PhysRevLett.77.3865 10.1039/C5CP03886C 10.1038/s41598-017-09219-9 10.1016/j.jpowsour.2016.04.054 10.1021/acs.jpcc.6b04241 10.1002/adma.201705523 10.1088/1367-2630/16/9/095004 10.1002/jcc.20495 10.1149/2.086202jes 10.1021/jz501387m 10.1039/C8NR04026E 10.1021/jp408647t 10.1016/j.fluid.2011.02.002 10.1021/j100892a011 10.1038/nature16542 10.1016/j.nanoen.2016.08.066 10.1016/j.ensm.2017.05.004 10.1016/j.jpowsour.2014.11.016 10.1016/j.jallcom.2018.02.045 10.1021/acscatal.5b00332 10.1002/aenm.201800348 10.1039/c3cp51689j 10.1021/acs.jpclett.6b01071 10.1021/am402828k 10.1021/acsami.6b08222 10.1021/ja310258x 10.1021/j100892a013 10.1021/acscatal.7b03566 10.1038/nature11475 10.1016/j.ijhydene.2016.03.164 10.1016/j.pmatsci.2016.04.001 10.1149/1.1836378 10.1016/j.nanoen.2018.01.045 10.1039/c3ta12639k 10.1021/acs.jpcc.5b10366 10.1021/acscatal.7b02313 10.3891/acta.chem.scand.24-2037 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.jpcc.8b10367 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 213 |
ExternalDocumentID | 10_1021_acs_jpcc_8b10367 g34637874 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-c4e9bd6b96f100f090d716b1344059a0b71e6859ad0bd96437aae30d3cd197dd3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri Jul 11 11:48:26 EDT 2025 Tue Jul 01 02:17:25 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Thu Aug 27 13:43:47 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-c4e9bd6b96f100f090d716b1344059a0b71e6859ad0bd96437aae30d3cd197dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7677-3427 |
PQID | 2221045382 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2221045382 crossref_citationtrail_10_1021_acs_jpcc_8b10367 crossref_primary_10_1021_acs_jpcc_8b10367 acs_journals_10_1021_acs_jpcc_8b10367 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-10 |
PublicationDateYYYYMMDD | 2019-01-10 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-10 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 Chase M. W. (ref38/cit38) 1998 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref37/cit37 doi: 10.1002/advs.201600453 – ident: ref30/cit30 doi: 10.1063/1.1316015 – ident: ref15/cit15 doi: 10.1038/nenergy.2016.128 – ident: ref20/cit20 doi: 10.1016/j.matdes.2017.05.052 – ident: ref29/cit29 doi: 10.1021/jp952713n – ident: ref31/cit31 doi: 10.1103/PhysRevLett.77.3865 – ident: ref36/cit36 doi: 10.1039/C5CP03886C – ident: ref10/cit10 doi: 10.1038/s41598-017-09219-9 – ident: ref19/cit19 doi: 10.1016/j.jpowsour.2016.04.054 – ident: ref16/cit16 doi: 10.1021/acs.jpcc.6b04241 – ident: ref24/cit24 doi: 10.1002/adma.201705523 – ident: ref27/cit27 doi: 10.1088/1367-2630/16/9/095004 – ident: ref32/cit32 doi: 10.1002/jcc.20495 – ident: ref7/cit7 doi: 10.1149/2.086202jes – volume-title: NIST-JANAF Thermochemical Tables year: 1998 ident: ref38/cit38 – ident: ref3/cit3 doi: 10.1021/jz501387m – ident: ref9/cit9 doi: 10.1039/C8NR04026E – ident: ref28/cit28 doi: 10.1021/jp408647t – ident: ref42/cit42 doi: 10.1016/j.fluid.2011.02.002 – ident: ref39/cit39 doi: 10.1021/j100892a011 – ident: ref1/cit1 doi: 10.1038/nature16542 – ident: ref12/cit12 doi: 10.1016/j.nanoen.2016.08.066 – ident: ref11/cit11 doi: 10.1016/j.ensm.2017.05.004 – ident: ref25/cit25 doi: 10.1016/j.jpowsour.2014.11.016 – ident: ref14/cit14 doi: 10.1016/j.jallcom.2018.02.045 – ident: ref8/cit8 doi: 10.1021/acscatal.5b00332 – ident: ref21/cit21 doi: 10.1002/aenm.201800348 – ident: ref33/cit33 doi: 10.1039/c3cp51689j – ident: ref5/cit5 doi: 10.1021/acs.jpclett.6b01071 – ident: ref41/cit41 doi: 10.1021/am402828k – ident: ref13/cit13 doi: 10.1021/acsami.6b08222 – ident: ref17/cit17 doi: 10.1021/ja310258x – ident: ref40/cit40 doi: 10.1021/j100892a013 – ident: ref23/cit23 doi: 10.1021/acscatal.7b03566 – ident: ref2/cit2 doi: 10.1038/nature11475 – ident: ref4/cit4 doi: 10.1016/j.ijhydene.2016.03.164 – ident: ref26/cit26 doi: 10.1016/j.pmatsci.2016.04.001 – ident: ref6/cit6 doi: 10.1149/1.1836378 – ident: ref18/cit18 doi: 10.1016/j.nanoen.2018.01.045 – ident: ref34/cit34 doi: 10.1039/c3ta12639k – ident: ref35/cit35 doi: 10.1021/acs.jpcc.5b10366 – ident: ref22/cit22 doi: 10.1021/acscatal.7b02313 – ident: ref43/cit43 doi: 10.3891/acta.chem.scand.24-2037 |
SSID | ssj0053013 |
Score | 2.584119 |
Snippet | Silicene has recently shown high electrochemical performance with discharging product Li2O(s) and high stability, avoiding discharging byproducts for... Silicene has recently shown high electrochemical performance with discharging product Li₂O(s) and high stability, avoiding discharging byproducts for... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 205 |
SubjectTerms | adsorption batteries byproducts cathodes density functional theory dimethyl sulfoxide electrochemistry energy hydrophobicity lithium moieties oxygen solvents |
Title | Effect of Defects and Solvents on Silicene Cathode of Nonaqueous Lithium–Oxygen Batteries: A Theoretical Investigation |
URI | http://dx.doi.org/10.1021/acs.jpcc.8b10367 https://www.proquest.com/docview/2221045382 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF7R9tBegEIrAqVaJDhwcOL12l5vb1EgihCEQxIpN2t_JiIQ7ArbUuHEO_CGPAmztkP6pyhXa9cazY5nvvHMfkPIa8siwaPYeJCE1kP8D14SSeOZIFFacKUi7f5DfhrHo1n4YR7NNzQ5tyv4AespU3S_XhrTTTRDdyv2yEEQJ8IlWv3BZO11IzRU3lSQETGGoWhLkve9wQUiU9wMRDf9cB1cho-aKUVFzUnoekq-datSd82vu4yNO8j9mDxsMSbtN0ZxTB5A9oQcDtaj3Z6Sq4azmOYL-g7qfg6qMksn-cp1PxY0z-hkuUIXkgF1VwRzC27tGFE7ip9XBf24LL8sq-9_f__5fPUTbZA2PJ2Ydl_QPp1ubkfSa0QeeXZCZsP308HIa0cweIozXnomBKltrGW8YL6_8KVvMcHSjIcI9KTytWAQ4-Eq62vrqL2EUsB9y41lUljLT8l-lmfwjFBtAAMjB5EAemeQcuGDtLFFJ2AgCsIOeYMqS9tPqEjr6njA0voh6jFt9dghvfW5pablMXfjNFZbdrz9v-Oy4fDYsvbV2hRSPBRXPVGZU2yKQApTV4wPwfMdJX1BjhBeuXY0DHZnZL_8UcFLhDClPq9t9x9Qle5a |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxQxDLZKOZQLb9TyDBI9cJjtZDKvIHFYbam2dLscdiv1NuThFQvLTMXMipYT_4FfwF_hp_BLcObRUoQqLpW4RknksWP789hxAJ5ZHiUiio2HaWg9wv_opZE0nglSpROhVKTdf8j9cTw8CF8fRocr8L27C0NElLRTWSfxz7oL8C039v7ImF6qOVndpK2j3MOTzxSllS93t0mkm0Gw82o6GHrtQwKeElxUnglRahtrGc-478986VsKEzQXIcEVqXydcIyJRGV9bV2DqkQpFL4VxnKZWCto3ytwlbBP4OK7_mDSGfuI9EM0iWsCqmGYtJnQv1Hs_J8pz_u_8-a_9mk7N-DHKTfqUpYPvWWle-bLH40i_2t23YTrLaJm_UYFbsEK5rdhbdA9ZHcHjpsOzayYsW2sq1eYyi2bFAtX61myImeT-YIMZo7MXYgsLLq5Y4pRiGvFsmSjefVuvvz48-u3N8cnpHGs6Uo6x_IF67Pp2V1Q9lvbkiK_CweX8uH3YDUvclwHpg0SDBCYpEi-CKWc-ShtbMnkGYyCcAM2SURZazDKrK4FCHhWD5LcslZuG7DVHZfMtF3b3eMhiwtWPD9dcdR0LLlg7tPuBGYkFJcrUrljbEawkQJ18obB_X-k9AmsDaf7o2y0O957ANcIWLpCPHLzD2G1-rTERwTeKv24Vh8Gby_7AP4CHxVQeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FIEEuYVcStkYiBw6euN1ekTiMZhglJAxIk0i5mV7KyoTBHmGPSDjxD3wDv8KH8CVUewkEoYhLJK6t7la5qmtzVb8GeGp4EIkg1A7GvnEo_kcnDhLtaC-WKhJSBsr-h3w9DrcP_FeHweESfOvuwhARJe1U1kV8q9Vzk7UIA3zLjh_Pte7FipPljdpeyl08_USZWvliZ0hi3fS80cv9wbbTPibgSMFF5WgfE2VClYQZd93MTVxDqYLiwqeQJZGuijiGRKY0rjIWpCqSEoVrhDY8iYwRtO8VuGqrhDbH6w8mncEPSEdEU7ymYNX3o7Ya-jeKrQ_U5XkfeN4F1H5tdAO-n3Gkbmd531tUqqc__wEW-d-z7CastpE16zeqcAuWML8N1wfdg3Z34KRBamZFxoZYd7EwmRs2KWa257NkRc4m0xkZzhyZvRhZGLRzx5SrEOeKRcn2ptXRdPHhx5evb05OSfNYg046xfI567P9X3dC2W_wJUV-Fw4u5cPvwXJe5LgGTGmkcEBgFCP5JEySzMXEhIZMn8bA89dhk0SUtoajTOueAI-n9SDJLW3ltg5b3ZFJdYvebh8RmV2w4tnZinmDXHLB3CfdKUxJKLZmJHPL2JTCR0rYySt6G_9I6WO49nY4Svd2xrv3YYXiS9uPR97-ASxXHxf4kGK4Sj2qNYjBu8s-fz8BLzNS-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Defects+and+Solvents+on+Silicene+Cathode+of+Nonaqueous+Lithium%E2%80%93Oxygen+Batteries%3A+A+Theoretical+Investigation&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Yu%2C+Yang-Xin&rft.date=2019-01-10&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=123&rft.issue=1&rft.spage=205&rft.epage=213&rft_id=info:doi/10.1021%2Facs.jpcc.8b10367&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_8b10367 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |