Lithium-Ion Hybrid Capacitor with a Scaffold Electrode of Tin Sulfide and Tin Metal and Its Electrolyte Issue
In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-c...
Saved in:
Published in | Journal of physical chemistry. C Vol. 124; no. 40; pp. 21909 - 21918 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
08.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-containing electrode behaves more reversibly and less decaying in an ether-based electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and LiNO3 than the general-purpose electrolyte of LiPF6. On the positive electrode, a nitrogen-doped carbon, KPN900, is prepared in-house with a high Brunauer–Emmett–Teller (BET) surface area of 3280 m2 g–1 to increase the capacitance of microporous carbon. Intriguingly, the rate performance of the KPN900 electrode is slowed down by the LiTFSI electrolyte, compared with the LiPF6 electrolyte, since a part of its capacitive component is switched to the diffusive component, while its total double-layer capacitance remains the same. Soaked in the LiTFSI electrolyte, a hybrid capacitor of KPN900//SnS–Sn/CNT, with a capacity of 97.5 mAh g–1, is capable of storing an energy of 143 Wh kg–1 with a retrieving power of 148 W kg–1, when the charging voltage is 3.8 V. The stability test of this cell, in a 4:1 mass ratio, shows a capacity retention of 78.8% after 2400 cycles of charging and discharging at 1.0 A g–1. |
---|---|
AbstractList | In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-containing electrode behaves more reversibly and less decaying in an ether-based electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and LiNO3 than the general-purpose electrolyte of LiPF6. On the positive electrode, a nitrogen-doped carbon, KPN900, is prepared in-house with a high Brunauer–Emmett–Teller (BET) surface area of 3280 m2 g–1 to increase the capacitance of microporous carbon. Intriguingly, the rate performance of the KPN900 electrode is slowed down by the LiTFSI electrolyte, compared with the LiPF6 electrolyte, since a part of its capacitive component is switched to the diffusive component, while its total double-layer capacitance remains the same. Soaked in the LiTFSI electrolyte, a hybrid capacitor of KPN900//SnS–Sn/CNT, with a capacity of 97.5 mAh g–1, is capable of storing an energy of 143 Wh kg–1 with a retrieving power of 148 W kg–1, when the charging voltage is 3.8 V. The stability test of this cell, in a 4:1 mass ratio, shows a capacity retention of 78.8% after 2400 cycles of charging and discharging at 1.0 A g–1. In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-containing electrode behaves more reversibly and less decaying in an ether-based electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and LiNO₃ than the general-purpose electrolyte of LiPF₆. On the positive electrode, a nitrogen-doped carbon, KPN900, is prepared in-house with a high Brunauer–Emmett–Teller (BET) surface area of 3280 m² g–¹ to increase the capacitance of microporous carbon. Intriguingly, the rate performance of the KPN900 electrode is slowed down by the LiTFSI electrolyte, compared with the LiPF₆ electrolyte, since a part of its capacitive component is switched to the diffusive component, while its total double-layer capacitance remains the same. Soaked in the LiTFSI electrolyte, a hybrid capacitor of KPN900//SnS–Sn/CNT, with a capacity of 97.5 mAh g–¹, is capable of storing an energy of 143 Wh kg–¹ with a retrieving power of 148 W kg–¹, when the charging voltage is 3.8 V. The stability test of this cell, in a 4:1 mass ratio, shows a capacity retention of 78.8% after 2400 cycles of charging and discharging at 1.0 A g–¹. |
Author | Tsai, Dah-Shyang Luo, Yu-Shun Chiang, Chun-Wei Wang, Chien-Chen |
AuthorAffiliation | Department of Chemical Engineering |
AuthorAffiliation_xml | – name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yu-Shun surname: Luo fullname: Luo, Yu-Shun – sequence: 2 givenname: Dah-Shyang orcidid: 0000-0001-8067-9540 surname: Tsai fullname: Tsai, Dah-Shyang email: dstsai@mail.ntust.edu.tw – sequence: 3 givenname: Chien-Chen surname: Wang fullname: Wang, Chien-Chen – sequence: 4 givenname: Chun-Wei surname: Chiang fullname: Chiang, Chun-Wei |
BookMark | eNp9kL1PwzAQxS1UJNrCzuiRgRTbiZt4RFWhlYoYWubo4tjClRMX2xHqf0_6AQMSTHdP772T7jdCg9a1CqFbSiaUMPoAMky2OyknRJKMFvwCDalIWZJnnA9-9iy_QqMQtoTwlNB0iJqVie-ma5Kla_FiX3lT4xnsQJroPP7sTQx4LUFrZ2s8t0pG72qFncYb0-J1Z7XpJbT1Ub-oCPaoljF8x-0-KrwMoVPX6FKDDermPMfo7Wm-mS2S1evzcva4SiClaUygqitgwBlolUmd5VQIKATkHDQRrIKCESokMAJFxplQOQHGK6gLValimqZjdHe6u_Puo1Mhlo0JUlkLrXJdKBnnVORpnos-Oj1FpXcheKXL_nWIxrXRg7ElJeWBb9nzLQ98yzPfvkh-FXfeNOD3_1XuT5Wj4zrf9hD-jn8BbdyRpQ |
CitedBy_id | crossref_primary_10_1002_batt_202000312 crossref_primary_10_1051_matecconf_202338201002 crossref_primary_10_1039_D1TA00404B crossref_primary_10_1002_smsc_202100098 crossref_primary_10_1016_j_mtener_2023_101388 crossref_primary_10_1016_j_electacta_2022_141456 crossref_primary_10_1016_j_jallcom_2021_163608 |
Cites_doi | 10.1021/acsnano.8b02861 10.1016/j.jallcom.2017.12.210 10.1016/j.jpowsour.2018.08.013 10.1002/adma.201700449 10.1021/acsami.9b10579 10.1016/j.jpowsour.2015.02.079 10.1021/acsami.6b06565 10.1016/j.electacta.2018.12.172 10.1039/C8TA07563H 10.1016/j.carbon.2005.01.001 10.1021/acsami.6b09164 10.1016/j.electacta.2011.03.005 10.1016/j.carbon.2018.08.044 10.1016/j.electacta.2012.02.038 10.1002/smll.201301483 10.1016/j.jpowsour.2018.12.089 10.1021/acsnano.6b04214 10.1039/C6RA26371B 10.1021/acsomega.9b01862 10.1016/j.electacta.2014.05.080 10.1016/j.jallcom.2018.07.094 10.1021/jp207893d 10.1039/a709054d 10.1039/c2ra00002d 10.1016/j.carbon.2018.04.003 10.1016/j.electacta.2018.05.147 10.1021/acsami.7b04483 10.1016/j.matlet.2017.08.054 10.1149/2.096308jes 10.1016/j.ensm.2017.09.001 10.1016/j.electacta.2019.05.001 10.1039/C9TA01246J 10.1021/cm3011474 10.1039/C7NR05307J 10.1016/j.carbon.2015.03.032 10.1021/acs.chemrev.8b00116 10.1149/2.0431501jes 10.1016/j.electacta.2016.05.090 10.1007/s11581-018-2495-5 10.1016/j.cej.2018.09.131 10.1021/am200933m 10.1016/j.jpowsour.2018.12.086 10.1039/C9QM00062C 10.1016/j.ensm.2017.12.012 10.1016/j.nanoen.2018.06.037 10.1103/PhysRevB.58.15583 10.1021/acssuschemeng.8b06693 10.1039/C8TA02695E 10.1016/j.jpowsour.2012.04.004 10.1021/cr500062v 10.1016/j.electacta.2018.03.022 10.1002/aenm.201801243 10.1002/advs.201500200 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.jpcc.0c04185 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 21918 |
ExternalDocumentID | 10_1021_acs_jpcc_0c04185 c587994067 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-abdba2a52afe4cf47199a89a75af092ba82019ca20a84529e70a25bad8ebe8633 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri Jul 11 13:30:15 EDT 2025 Tue Jul 01 03:24:41 EDT 2025 Thu Apr 24 22:52:09 EDT 2025 Sat Oct 10 03:13:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-abdba2a52afe4cf47199a89a75af092ba82019ca20a84529e70a25bad8ebe8633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8067-9540 |
PQID | 2551973779 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2551973779 crossref_citationtrail_10_1021_acs_jpcc_0c04185 crossref_primary_10_1021_acs_jpcc_0c04185 acs_journals_10_1021_acs_jpcc_0c04185 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-08 |
PublicationDateYYYYMMDD | 2020-10-08 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1021/acsnano.8b02861 – ident: ref13/cit13 doi: 10.1016/j.jallcom.2017.12.210 – ident: ref32/cit32 doi: 10.1016/j.jpowsour.2018.08.013 – ident: ref48/cit48 doi: 10.1002/adma.201700449 – ident: ref49/cit49 doi: 10.1021/acsami.9b10579 – ident: ref52/cit52 doi: 10.1016/j.jpowsour.2015.02.079 – ident: ref39/cit39 doi: 10.1021/acsami.6b06565 – ident: ref23/cit23 doi: 10.1016/j.electacta.2018.12.172 – ident: ref24/cit24 doi: 10.1039/C8TA07563H – ident: ref30/cit30 doi: 10.1016/j.carbon.2005.01.001 – ident: ref53/cit53 doi: 10.1021/acsami.6b09164 – ident: ref44/cit44 doi: 10.1016/j.electacta.2011.03.005 – ident: ref22/cit22 doi: 10.1016/j.carbon.2018.08.044 – ident: ref51/cit51 doi: 10.1016/j.electacta.2012.02.038 – ident: ref9/cit9 doi: 10.1002/smll.201301483 – ident: ref29/cit29 doi: 10.1016/j.jpowsour.2018.12.089 – ident: ref14/cit14 doi: 10.1021/acsnano.6b04214 – ident: ref42/cit42 doi: 10.1039/C6RA26371B – ident: ref46/cit46 doi: 10.1021/acsomega.9b01862 – ident: ref17/cit17 doi: 10.1016/j.electacta.2014.05.080 – ident: ref8/cit8 doi: 10.1016/j.jallcom.2018.07.094 – ident: ref36/cit36 doi: 10.1021/jp207893d – ident: ref5/cit5 doi: 10.1039/a709054d – ident: ref12/cit12 doi: 10.1039/c2ra00002d – ident: ref7/cit7 doi: 10.1016/j.carbon.2018.04.003 – ident: ref31/cit31 doi: 10.1016/j.electacta.2018.05.147 – ident: ref10/cit10 doi: 10.1021/acsami.7b04483 – ident: ref11/cit11 doi: 10.1016/j.matlet.2017.08.054 – ident: ref37/cit37 doi: 10.1149/2.096308jes – ident: ref47/cit47 doi: 10.1016/j.ensm.2017.09.001 – ident: ref20/cit20 doi: 10.1016/j.electacta.2019.05.001 – ident: ref2/cit2 doi: 10.1039/C9TA01246J – ident: ref50/cit50 doi: 10.1021/cm3011474 – ident: ref34/cit34 doi: 10.1039/C7NR05307J – ident: ref33/cit33 doi: 10.1016/j.carbon.2015.03.032 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.8b00116 – ident: ref35/cit35 doi: 10.1149/2.0431501jes – ident: ref40/cit40 doi: 10.1016/j.electacta.2016.05.090 – ident: ref21/cit21 doi: 10.1007/s11581-018-2495-5 – ident: ref16/cit16 doi: 10.1016/j.cej.2018.09.131 – ident: ref19/cit19 doi: 10.1021/am200933m – ident: ref26/cit26 doi: 10.1016/j.jpowsour.2018.12.086 – ident: ref4/cit4 doi: 10.1039/C9QM00062C – ident: ref28/cit28 doi: 10.1016/j.ensm.2017.12.012 – ident: ref27/cit27 doi: 10.1016/j.nanoen.2018.06.037 – ident: ref41/cit41 doi: 10.1103/PhysRevB.58.15583 – ident: ref25/cit25 doi: 10.1021/acssuschemeng.8b06693 – ident: ref6/cit6 doi: 10.1039/C8TA02695E – ident: ref45/cit45 doi: 10.1016/j.jpowsour.2012.04.004 – ident: ref38/cit38 doi: 10.1021/cr500062v – ident: ref15/cit15 doi: 10.1016/j.electacta.2018.03.022 – ident: ref3/cit3 doi: 10.1002/aenm.201801243 – ident: ref43/cit43 doi: 10.1002/advs.201500200 |
SSID | ssj0053013 |
Score | 2.3775148 |
Snippet | In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21909 |
SubjectTerms | C: Energy Conversion and Storage; Energy and Charge Transport capacitance capacitors carbon carbon nanotubes electric potential difference electrodes electrolytes lithium oxidation physical chemistry porous media slags sulfides sulfur surface area tin |
Title | Lithium-Ion Hybrid Capacitor with a Scaffold Electrode of Tin Sulfide and Tin Metal and Its Electrolyte Issue |
URI | http://dx.doi.org/10.1021/acs.jpcc.0c04185 https://www.proquest.com/docview/2551973779 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa27rBduu6FZu0KDdgOOzi15KeOQ5AgKbZd0gK5GdTDWDbHDmL70P36UrK9IltR5EhDMgSKFD-a8kdCPmEMNDqJmMeCWHsh88ETqTaeUn4sNNNBZNwt3x_x_Ca8WkWre5qcfyv4nF2Cqse_tkqNfeVbppWn5BmP0YctDJosh1M3QkMNugoyIsYwTPqS5ENvsIFI1fuBaP8cdsFl9rLrUlQ7TkJ7p-T3uG3kWP35n7HxgHWfkOMeY9KvnVG8Ik9M-Zo8nwyt3d6Qzbd183PdbrxFVdL5rf1pi04waip07x21n2Yp0KWCPK8KTaddpxxtaJXT63VJl22Rr1GEUjv5u0EE76RFUw_Di9vGUNfb7y25mU2vJ3Ov77vgQcCCxgOpJXCIOOQmVDmGLyEgFZBEkPuCS7CoQSjgPqS2bmsSH3gkQadoEWkcBO_IUVmV5pTQNFQCZKAFE2komMLsCjhiIBlLrvNQjshn1FPW-02duZI4Z5l7iMrLeuWNyOWwWZnqycttD43ikRlf_s7YdsQdj4z9OOx_hjthSyZQmqqtM0y4mEgsKeP7A1d6Rl5wm5K7a4Ln5KjZteYD4pZGXjiDvQOSBOhq |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqCXviugLXWl9tBDlth5-ohWoN124dBdJG7R-BGxdEkQSQ7w6zv2JlRUFaJHW7Y1Go8933jGMwBfSAdakyU84FFqgpiHGMjc2EDrMJWGmyixPsr3JJ2cxt_PkrMN4MNfGCKioZUa78T_k12A77u-iyutR6EOXcKVJ_CUsIhwQn0wng-Xb0LyGq0dyQQc4zjrPZP_WsHpI93c10f3r2OvY45ewM876nxoya9R16qRvv0rceN_kf8SnveIkx2sReQVbNjqNWyNh0Jvb-BytmzPl91lMK0rNrlxX7jYmHSopsN-zdxDLUM211iW9cqww3XdHGNZXbLFsmLzblUuqYmV8e1jS3jet6ZtMwxf3bSW-Up_b-H06HAxngR9FYYAIx61ASqjUGAisLSxLkmZSYm5xCzBMpRCocMQUqMIMXdeXJuFKBKFJif5yNMoegebVV3ZbWB5rCWqyEgu81hyTbYWCkJEKlXClLHaga_Ep6I_RU3hHeSCF76TmFf0zNuB_WHPCt2nMncVNVYPzPh2N-NqncbjgbGfBzEoaCecAwUrW3dNQeYXl5lL0bj7SEo_wdZkcTwrZtOTH-_hmXDGug8g_ACb7XVnPxKiadWel-Hf7Rzwyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSG0vhT4QtJQaqT30kCV2nj6iLavdFlClhYpbNH6JhSVZkeRAf33H3gSJCiE42rItZzz2fM43niHkK9pAo7OEBSxKdRCzEAKRaxMoFaZCMx0lxnv5nqTjs_jneXK-QpL-LQxOosaRak_iu1290LaLMMD2Xf3lQqlBqEIXdOUFWXOsnVPsg-G0P4AT1NloSSYjeIzjrGMnHxrB2SRV37dJ949kb2dG6-TP3Qy9e8nVoG3kQP39L3jjsz9hg7zpkCc9WKrKW7Jiynfk1bBP-PaeXB_NmotZex1MqpKOb91TLjpEW6pw099Q98OWAp0qsLaaa3q4zJ-jDa0sPZ2VdNrO7QyLUGpfPjaI631p0tR98_ltY6jP-PeBnI0OT4fjoMvGEEDEoiYAqSVwSDhYEyuLRk0IyAVkCdhQcAkOSwgFPITcsbkmC4EnEnSOepKnUbRJVsuqNFuE5rESICMtmMhjwRTeuYAjMpKp5NrGcpt8QzkV3W6qC0-Uc1b4ShRe0Qlvm-z361aoLqS5y6wxf6TH97sei2U4j0fa7vWqUOBKOCIFSlO1dYHXMCYyF6rx4xNn-oW8_P1jVBxNTn59Iq-5u7N7P8IdstrctOYzAptG7no1_gfEOvNO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-Ion+Hybrid+Capacitor+with+a+Scaffold+Electrode+of+Tin+Sulfide+and+Tin+Metal+and+Its+Electrolyte+Issue&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Luo%2C+Yu-Shun&rft.au=Tsai%2C+Dah-Shyang&rft.au=Wang%2C+Chien-Chen&rft.au=Chiang%2C+Chun-Wei&rft.date=2020-10-08&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=124&rft.issue=40&rft.spage=21909&rft.epage=21918&rft_id=info:doi/10.1021%2Facs.jpcc.0c04185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_0c04185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |