Lithium-Ion Hybrid Capacitor with a Scaffold Electrode of Tin Sulfide and Tin Metal and Its Electrolyte Issue

In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-c...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 124; no. 40; pp. 21909 - 21918
Main Authors Luo, Yu-Shun, Tsai, Dah-Shyang, Wang, Chien-Chen, Chiang, Chun-Wei
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-containing electrode behaves more reversibly and less decaying in an ether-based electrolyte of lithium bis­(trifluoromethanesulfonyl)­imide (LiTFSI) and LiNO3 than the general-purpose electrolyte of LiPF6. On the positive electrode, a nitrogen-doped carbon, KPN900, is prepared in-house with a high Brunauer–Emmett–Teller (BET) surface area of 3280 m2 g–1 to increase the capacitance of microporous carbon. Intriguingly, the rate performance of the KPN900 electrode is slowed down by the LiTFSI electrolyte, compared with the LiPF6 electrolyte, since a part of its capacitive component is switched to the diffusive component, while its total double-layer capacitance remains the same. Soaked in the LiTFSI electrolyte, a hybrid capacitor of KPN900//SnS–Sn/CNT, with a capacity of 97.5 mAh g–1, is capable of storing an energy of 143 Wh kg–1 with a retrieving power of 148 W kg–1, when the charging voltage is 3.8 V. The stability test of this cell, in a 4:1 mass ratio, shows a capacity retention of 78.8% after 2400 cycles of charging and discharging at 1.0 A g–1.
AbstractList In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-containing electrode behaves more reversibly and less decaying in an ether-based electrolyte of lithium bis­(trifluoromethanesulfonyl)­imide (LiTFSI) and LiNO3 than the general-purpose electrolyte of LiPF6. On the positive electrode, a nitrogen-doped carbon, KPN900, is prepared in-house with a high Brunauer–Emmett–Teller (BET) surface area of 3280 m2 g–1 to increase the capacitance of microporous carbon. Intriguingly, the rate performance of the KPN900 electrode is slowed down by the LiTFSI electrolyte, compared with the LiPF6 electrolyte, since a part of its capacitive component is switched to the diffusive component, while its total double-layer capacitance remains the same. Soaked in the LiTFSI electrolyte, a hybrid capacitor of KPN900//SnS–Sn/CNT, with a capacity of 97.5 mAh g–1, is capable of storing an energy of 143 Wh kg–1 with a retrieving power of 148 W kg–1, when the charging voltage is 3.8 V. The stability test of this cell, in a 4:1 mass ratio, shows a capacity retention of 78.8% after 2400 cycles of charging and discharging at 1.0 A g–1.
In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative electrode through molten slag coating of acidified carbon nanotubes (CNTs) with a minimum level of surface oxidation. The capacity of this sulfur-containing electrode behaves more reversibly and less decaying in an ether-based electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and LiNO₃ than the general-purpose electrolyte of LiPF₆. On the positive electrode, a nitrogen-doped carbon, KPN900, is prepared in-house with a high Brunauer–Emmett–Teller (BET) surface area of 3280 m² g–¹ to increase the capacitance of microporous carbon. Intriguingly, the rate performance of the KPN900 electrode is slowed down by the LiTFSI electrolyte, compared with the LiPF₆ electrolyte, since a part of its capacitive component is switched to the diffusive component, while its total double-layer capacitance remains the same. Soaked in the LiTFSI electrolyte, a hybrid capacitor of KPN900//SnS–Sn/CNT, with a capacity of 97.5 mAh g–¹, is capable of storing an energy of 143 Wh kg–¹ with a retrieving power of 148 W kg–¹, when the charging voltage is 3.8 V. The stability test of this cell, in a 4:1 mass ratio, shows a capacity retention of 78.8% after 2400 cycles of charging and discharging at 1.0 A g–¹.
Author Tsai, Dah-Shyang
Luo, Yu-Shun
Chiang, Chun-Wei
Wang, Chien-Chen
AuthorAffiliation Department of Chemical Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Yu-Shun
  surname: Luo
  fullname: Luo, Yu-Shun
– sequence: 2
  givenname: Dah-Shyang
  orcidid: 0000-0001-8067-9540
  surname: Tsai
  fullname: Tsai, Dah-Shyang
  email: dstsai@mail.ntust.edu.tw
– sequence: 3
  givenname: Chien-Chen
  surname: Wang
  fullname: Wang, Chien-Chen
– sequence: 4
  givenname: Chun-Wei
  surname: Chiang
  fullname: Chiang, Chun-Wei
BookMark eNp9kL1PwzAQxS1UJNrCzuiRgRTbiZt4RFWhlYoYWubo4tjClRMX2xHqf0_6AQMSTHdP772T7jdCg9a1CqFbSiaUMPoAMky2OyknRJKMFvwCDalIWZJnnA9-9iy_QqMQtoTwlNB0iJqVie-ma5Kla_FiX3lT4xnsQJroPP7sTQx4LUFrZ2s8t0pG72qFncYb0-J1Z7XpJbT1Ub-oCPaoljF8x-0-KrwMoVPX6FKDDermPMfo7Wm-mS2S1evzcva4SiClaUygqitgwBlolUmd5VQIKATkHDQRrIKCESokMAJFxplQOQHGK6gLValimqZjdHe6u_Puo1Mhlo0JUlkLrXJdKBnnVORpnos-Oj1FpXcheKXL_nWIxrXRg7ElJeWBb9nzLQ98yzPfvkh-FXfeNOD3_1XuT5Wj4zrf9hD-jn8BbdyRpQ
CitedBy_id crossref_primary_10_1002_batt_202000312
crossref_primary_10_1051_matecconf_202338201002
crossref_primary_10_1039_D1TA00404B
crossref_primary_10_1002_smsc_202100098
crossref_primary_10_1016_j_mtener_2023_101388
crossref_primary_10_1016_j_electacta_2022_141456
crossref_primary_10_1016_j_jallcom_2021_163608
Cites_doi 10.1021/acsnano.8b02861
10.1016/j.jallcom.2017.12.210
10.1016/j.jpowsour.2018.08.013
10.1002/adma.201700449
10.1021/acsami.9b10579
10.1016/j.jpowsour.2015.02.079
10.1021/acsami.6b06565
10.1016/j.electacta.2018.12.172
10.1039/C8TA07563H
10.1016/j.carbon.2005.01.001
10.1021/acsami.6b09164
10.1016/j.electacta.2011.03.005
10.1016/j.carbon.2018.08.044
10.1016/j.electacta.2012.02.038
10.1002/smll.201301483
10.1016/j.jpowsour.2018.12.089
10.1021/acsnano.6b04214
10.1039/C6RA26371B
10.1021/acsomega.9b01862
10.1016/j.electacta.2014.05.080
10.1016/j.jallcom.2018.07.094
10.1021/jp207893d
10.1039/a709054d
10.1039/c2ra00002d
10.1016/j.carbon.2018.04.003
10.1016/j.electacta.2018.05.147
10.1021/acsami.7b04483
10.1016/j.matlet.2017.08.054
10.1149/2.096308jes
10.1016/j.ensm.2017.09.001
10.1016/j.electacta.2019.05.001
10.1039/C9TA01246J
10.1021/cm3011474
10.1039/C7NR05307J
10.1016/j.carbon.2015.03.032
10.1021/acs.chemrev.8b00116
10.1149/2.0431501jes
10.1016/j.electacta.2016.05.090
10.1007/s11581-018-2495-5
10.1016/j.cej.2018.09.131
10.1021/am200933m
10.1016/j.jpowsour.2018.12.086
10.1039/C9QM00062C
10.1016/j.ensm.2017.12.012
10.1016/j.nanoen.2018.06.037
10.1103/PhysRevB.58.15583
10.1021/acssuschemeng.8b06693
10.1039/C8TA02695E
10.1016/j.jpowsour.2012.04.004
10.1021/cr500062v
10.1016/j.electacta.2018.03.022
10.1002/aenm.201801243
10.1002/advs.201500200
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.0c04185
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 21918
ExternalDocumentID 10_1021_acs_jpcc_0c04185
c587994067
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a313t-abdba2a52afe4cf47199a89a75af092ba82019ca20a84529e70a25bad8ebe8633
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 13:30:15 EDT 2025
Tue Jul 01 03:24:41 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Sat Oct 10 03:13:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-abdba2a52afe4cf47199a89a75af092ba82019ca20a84529e70a25bad8ebe8633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8067-9540
PQID 2551973779
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2551973779
crossref_citationtrail_10_1021_acs_jpcc_0c04185
crossref_primary_10_1021_acs_jpcc_0c04185
acs_journals_10_1021_acs_jpcc_0c04185
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-08
PublicationDateYYYYMMDD 2020-10-08
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-08
  day: 08
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1021/acsnano.8b02861
– ident: ref13/cit13
  doi: 10.1016/j.jallcom.2017.12.210
– ident: ref32/cit32
  doi: 10.1016/j.jpowsour.2018.08.013
– ident: ref48/cit48
  doi: 10.1002/adma.201700449
– ident: ref49/cit49
  doi: 10.1021/acsami.9b10579
– ident: ref52/cit52
  doi: 10.1016/j.jpowsour.2015.02.079
– ident: ref39/cit39
  doi: 10.1021/acsami.6b06565
– ident: ref23/cit23
  doi: 10.1016/j.electacta.2018.12.172
– ident: ref24/cit24
  doi: 10.1039/C8TA07563H
– ident: ref30/cit30
  doi: 10.1016/j.carbon.2005.01.001
– ident: ref53/cit53
  doi: 10.1021/acsami.6b09164
– ident: ref44/cit44
  doi: 10.1016/j.electacta.2011.03.005
– ident: ref22/cit22
  doi: 10.1016/j.carbon.2018.08.044
– ident: ref51/cit51
  doi: 10.1016/j.electacta.2012.02.038
– ident: ref9/cit9
  doi: 10.1002/smll.201301483
– ident: ref29/cit29
  doi: 10.1016/j.jpowsour.2018.12.089
– ident: ref14/cit14
  doi: 10.1021/acsnano.6b04214
– ident: ref42/cit42
  doi: 10.1039/C6RA26371B
– ident: ref46/cit46
  doi: 10.1021/acsomega.9b01862
– ident: ref17/cit17
  doi: 10.1016/j.electacta.2014.05.080
– ident: ref8/cit8
  doi: 10.1016/j.jallcom.2018.07.094
– ident: ref36/cit36
  doi: 10.1021/jp207893d
– ident: ref5/cit5
  doi: 10.1039/a709054d
– ident: ref12/cit12
  doi: 10.1039/c2ra00002d
– ident: ref7/cit7
  doi: 10.1016/j.carbon.2018.04.003
– ident: ref31/cit31
  doi: 10.1016/j.electacta.2018.05.147
– ident: ref10/cit10
  doi: 10.1021/acsami.7b04483
– ident: ref11/cit11
  doi: 10.1016/j.matlet.2017.08.054
– ident: ref37/cit37
  doi: 10.1149/2.096308jes
– ident: ref47/cit47
  doi: 10.1016/j.ensm.2017.09.001
– ident: ref20/cit20
  doi: 10.1016/j.electacta.2019.05.001
– ident: ref2/cit2
  doi: 10.1039/C9TA01246J
– ident: ref50/cit50
  doi: 10.1021/cm3011474
– ident: ref34/cit34
  doi: 10.1039/C7NR05307J
– ident: ref33/cit33
  doi: 10.1016/j.carbon.2015.03.032
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.8b00116
– ident: ref35/cit35
  doi: 10.1149/2.0431501jes
– ident: ref40/cit40
  doi: 10.1016/j.electacta.2016.05.090
– ident: ref21/cit21
  doi: 10.1007/s11581-018-2495-5
– ident: ref16/cit16
  doi: 10.1016/j.cej.2018.09.131
– ident: ref19/cit19
  doi: 10.1021/am200933m
– ident: ref26/cit26
  doi: 10.1016/j.jpowsour.2018.12.086
– ident: ref4/cit4
  doi: 10.1039/C9QM00062C
– ident: ref28/cit28
  doi: 10.1016/j.ensm.2017.12.012
– ident: ref27/cit27
  doi: 10.1016/j.nanoen.2018.06.037
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.58.15583
– ident: ref25/cit25
  doi: 10.1021/acssuschemeng.8b06693
– ident: ref6/cit6
  doi: 10.1039/C8TA02695E
– ident: ref45/cit45
  doi: 10.1016/j.jpowsour.2012.04.004
– ident: ref38/cit38
  doi: 10.1021/cr500062v
– ident: ref15/cit15
  doi: 10.1016/j.electacta.2018.03.022
– ident: ref3/cit3
  doi: 10.1002/aenm.201801243
– ident: ref43/cit43
  doi: 10.1002/advs.201500200
SSID ssj0053013
Score 2.3775148
Snippet In an effort to exploit low-cost tin and sulfur as active materials in lithium-ion hybrid capacitors, we prepare a SnS–Sn/carbon nanotube (CNT) negative...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21909
SubjectTerms C: Energy Conversion and Storage; Energy and Charge Transport
capacitance
capacitors
carbon
carbon nanotubes
electric potential difference
electrodes
electrolytes
lithium
oxidation
physical chemistry
porous media
slags
sulfides
sulfur
surface area
tin
Title Lithium-Ion Hybrid Capacitor with a Scaffold Electrode of Tin Sulfide and Tin Metal and Its Electrolyte Issue
URI http://dx.doi.org/10.1021/acs.jpcc.0c04185
https://www.proquest.com/docview/2551973779
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDBa27rBduu6FZu0KDdgOOzi15KeOQ5AgKbZd0gK5GdTDWDbHDmL70P36UrK9IltR5EhDMgSKFD-a8kdCPmEMNDqJmMeCWHsh88ETqTaeUn4sNNNBZNwt3x_x_Ca8WkWre5qcfyv4nF2Cqse_tkqNfeVbppWn5BmP0YctDJosh1M3QkMNugoyIsYwTPqS5ENvsIFI1fuBaP8cdsFl9rLrUlQ7TkJ7p-T3uG3kWP35n7HxgHWfkOMeY9KvnVG8Ik9M-Zo8nwyt3d6Qzbd183PdbrxFVdL5rf1pi04waip07x21n2Yp0KWCPK8KTaddpxxtaJXT63VJl22Rr1GEUjv5u0EE76RFUw_Di9vGUNfb7y25mU2vJ3Ov77vgQcCCxgOpJXCIOOQmVDmGLyEgFZBEkPuCS7CoQSjgPqS2bmsSH3gkQadoEWkcBO_IUVmV5pTQNFQCZKAFE2komMLsCjhiIBlLrvNQjshn1FPW-02duZI4Z5l7iMrLeuWNyOWwWZnqycttD43ikRlf_s7YdsQdj4z9OOx_hjthSyZQmqqtM0y4mEgsKeP7A1d6Rl5wm5K7a4Ln5KjZteYD4pZGXjiDvQOSBOhq
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ReqCXviugLXWl9tBDlth5-ohWoN124dBdJG7R-BGxdEkQSQ7w6zv2JlRUFaJHW7Y1Go8933jGMwBfSAdakyU84FFqgpiHGMjc2EDrMJWGmyixPsr3JJ2cxt_PkrMN4MNfGCKioZUa78T_k12A77u-iyutR6EOXcKVJ_CUsIhwQn0wng-Xb0LyGq0dyQQc4zjrPZP_WsHpI93c10f3r2OvY45ewM876nxoya9R16qRvv0rceN_kf8SnveIkx2sReQVbNjqNWyNh0Jvb-BytmzPl91lMK0rNrlxX7jYmHSopsN-zdxDLUM211iW9cqww3XdHGNZXbLFsmLzblUuqYmV8e1jS3jet6ZtMwxf3bSW-Up_b-H06HAxngR9FYYAIx61ASqjUGAisLSxLkmZSYm5xCzBMpRCocMQUqMIMXdeXJuFKBKFJif5yNMoegebVV3ZbWB5rCWqyEgu81hyTbYWCkJEKlXClLHaga_Ep6I_RU3hHeSCF76TmFf0zNuB_WHPCt2nMncVNVYPzPh2N-NqncbjgbGfBzEoaCecAwUrW3dNQeYXl5lL0bj7SEo_wdZkcTwrZtOTH-_hmXDGug8g_ACb7XVnPxKiadWel-Hf7Rzwyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSG0vhT4QtJQaqT30kCV2nj6iLavdFlClhYpbNH6JhSVZkeRAf33H3gSJCiE42rItZzz2fM43niHkK9pAo7OEBSxKdRCzEAKRaxMoFaZCMx0lxnv5nqTjs_jneXK-QpL-LQxOosaRak_iu1290LaLMMD2Xf3lQqlBqEIXdOUFWXOsnVPsg-G0P4AT1NloSSYjeIzjrGMnHxrB2SRV37dJ949kb2dG6-TP3Qy9e8nVoG3kQP39L3jjsz9hg7zpkCc9WKrKW7Jiynfk1bBP-PaeXB_NmotZex1MqpKOb91TLjpEW6pw099Q98OWAp0qsLaaa3q4zJ-jDa0sPZ2VdNrO7QyLUGpfPjaI631p0tR98_ltY6jP-PeBnI0OT4fjoMvGEEDEoiYAqSVwSDhYEyuLRk0IyAVkCdhQcAkOSwgFPITcsbkmC4EnEnSOepKnUbRJVsuqNFuE5rESICMtmMhjwRTeuYAjMpKp5NrGcpt8QzkV3W6qC0-Uc1b4ShRe0Qlvm-z361aoLqS5y6wxf6TH97sei2U4j0fa7vWqUOBKOCIFSlO1dYHXMCYyF6rx4xNn-oW8_P1jVBxNTn59Iq-5u7N7P8IdstrctOYzAptG7no1_gfEOvNO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium-Ion+Hybrid+Capacitor+with+a+Scaffold+Electrode+of+Tin+Sulfide+and+Tin+Metal+and+Its+Electrolyte+Issue&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Luo%2C+Yu-Shun&rft.au=Tsai%2C+Dah-Shyang&rft.au=Wang%2C+Chien-Chen&rft.au=Chiang%2C+Chun-Wei&rft.date=2020-10-08&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=124&rft.issue=40&rft.spage=21909&rft.epage=21918&rft_id=info:doi/10.1021%2Facs.jpcc.0c04185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_0c04185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon