Regulation of the Molecular Architectures on Second-Order Nonlinear Optical Response and Thermally Activated Delayed Fluorescence Property: Homoconjugation and Twisted Donor–Acceptor

The nonlinear optical (NLO) and thermally activated delayed fluorescence (TADF) properties of organic push–pull materials consisting of π-conjugated electron-donating (D) and electron-accepting (A) subunits are dominated by the interaction of D and A moieties via intramolecular charge transfer (ICT)...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 124; no. 1; pp. 921 - 931
Main Authors Ye, Jin-Ting, Wang, Hong-Qiang, Zhang, Yuan, Qiu, Yong-Qing
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.01.2020
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
1932-7455
DOI10.1021/acs.jpcc.9b10067

Cover

Loading…
Abstract The nonlinear optical (NLO) and thermally activated delayed fluorescence (TADF) properties of organic push–pull materials consisting of π-conjugated electron-donating (D) and electron-accepting (A) subunits are dominated by the interaction of D and A moieties via intramolecular charge transfer (ICT). Understanding the structure–property relationship, at the microscopic level, is the prerequisite for further performance optimization or improvement. In this work, we theoretically investigated the geometric and electronic structures, CT properties, polarizabilities (α), first hyperpolarizabilities (βtot), and singlet–triplet energy gap (ΔE ST) of the homoconjugation (as type I) and the conventional conjugation D–A (as type II) compounds. A noteworthy finding was that the type II molecule was suggested to promote the performance in NLO due to the lower excited energy and larger dipole moment variations for the crucial excited state, as well as the larger separate distributions of first hyperpolarizability density. In addition, the electron transition properties, second-order NLO responses, and ΔE ST values strongly depend on the nature of different electron acceptors (pyrazine → dicyanopyrazine → dicyanoquinoxaline). Further, based on the polarizable continuum model analysis, the increment in the βtot of all studied compounds is preferable for NLO applications. Moreover, the ΔE ST values of the molecules in which the acceptor are replaced by dicyanopyrazine/dicyanoquinoxaline (2, 3, and 6) in vacuum are reduced by an order of magnitude when embedded in a polarizable environment, indicating they are potentially efficient TADF materials. Overall, we envision that the various architectures and the polarization effect introduced in the present work will offer a route toward the rational design of such kind of D–A system for novel functional second-order NLO and TADF materials.
AbstractList The nonlinear optical (NLO) and thermally activated delayed fluorescence (TADF) properties of organic push–pull materials consisting of π-conjugated electron-donating (D) and electron-accepting (A) subunits are dominated by the interaction of D and A moieties via intramolecular charge transfer (ICT). Understanding the structure–property relationship, at the microscopic level, is the prerequisite for further performance optimization or improvement. In this work, we theoretically investigated the geometric and electronic structures, CT properties, polarizabilities (α), first hyperpolarizabilities (βtot), and singlet–triplet energy gap (ΔE ST) of the homoconjugation (as type I) and the conventional conjugation D–A (as type II) compounds. A noteworthy finding was that the type II molecule was suggested to promote the performance in NLO due to the lower excited energy and larger dipole moment variations for the crucial excited state, as well as the larger separate distributions of first hyperpolarizability density. In addition, the electron transition properties, second-order NLO responses, and ΔE ST values strongly depend on the nature of different electron acceptors (pyrazine → dicyanopyrazine → dicyanoquinoxaline). Further, based on the polarizable continuum model analysis, the increment in the βtot of all studied compounds is preferable for NLO applications. Moreover, the ΔE ST values of the molecules in which the acceptor are replaced by dicyanopyrazine/dicyanoquinoxaline (2, 3, and 6) in vacuum are reduced by an order of magnitude when embedded in a polarizable environment, indicating they are potentially efficient TADF materials. Overall, we envision that the various architectures and the polarization effect introduced in the present work will offer a route toward the rational design of such kind of D–A system for novel functional second-order NLO and TADF materials.
The nonlinear optical (NLO) and thermally activated delayed fluorescence (TADF) properties of organic push–pull materials consisting of π-conjugated electron-donating (D) and electron-accepting (A) subunits are dominated by the interaction of D and A moieties via intramolecular charge transfer (ICT). Understanding the structure–property relationship, at the microscopic level, is the prerequisite for further performance optimization or improvement. In this work, we theoretically investigated the geometric and electronic structures, CT properties, polarizabilities (α), first hyperpolarizabilities (βₜₒₜ), and singlet–triplet energy gap (ΔEST) of the homoconjugation (as type I) and the conventional conjugation D–A (as type II) compounds. A noteworthy finding was that the type II molecule was suggested to promote the performance in NLO due to the lower excited energy and larger dipole moment variations for the crucial excited state, as well as the larger separate distributions of first hyperpolarizability density. In addition, the electron transition properties, second-order NLO responses, and ΔEST values strongly depend on the nature of different electron acceptors (pyrazine → dicyanopyrazine → dicyanoquinoxaline). Further, based on the polarizable continuum model analysis, the increment in the βₜₒₜ of all studied compounds is preferable for NLO applications. Moreover, the ΔEST values of the molecules in which the acceptor are replaced by dicyanopyrazine/dicyanoquinoxaline (2, 3, and 6) in vacuum are reduced by an order of magnitude when embedded in a polarizable environment, indicating they are potentially efficient TADF materials. Overall, we envision that the various architectures and the polarization effect introduced in the present work will offer a route toward the rational design of such kind of D–A system for novel functional second-order NLO and TADF materials.
Author Qiu, Yong-Qing
Zhang, Yuan
Ye, Jin-Ting
Wang, Hong-Qiang
AuthorAffiliation Institute of Functional Material Chemistry, Faculty of Chemistry
Inner Mongolia University for the Nationalities
College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Inner Mongolia University for the Nationalities
– name: College of Chemistry and Chemical Engineering
– name: Institute of Functional Material Chemistry, Faculty of Chemistry
Author_xml – sequence: 1
  givenname: Jin-Ting
  surname: Ye
  fullname: Ye, Jin-Ting
  organization: Inner Mongolia University for the Nationalities
– sequence: 2
  givenname: Hong-Qiang
  surname: Wang
  fullname: Wang, Hong-Qiang
  organization: Institute of Functional Material Chemistry, Faculty of Chemistry
– sequence: 3
  givenname: Yuan
  surname: Zhang
  fullname: Zhang, Yuan
  organization: Institute of Functional Material Chemistry, Faculty of Chemistry
– sequence: 4
  givenname: Yong-Qing
  orcidid: 0000-0003-1027-8869
  surname: Qiu
  fullname: Qiu, Yong-Qing
  email: qiuyq466@nenu.edu.cn
  organization: Institute of Functional Material Chemistry, Faculty of Chemistry
BookMark eNp9kcFu1DAQhi1UJNrCnaOPHMjWjpPYy21VWorUdlEp58iZTLpeee1gO6C98Q59GZ6HJ8HdrThUoqexZv7v99j_ETlw3iEhbzmbcVbyEw1xth4BZvOOM9bIF-SQz0VZyKquD_6dK_mKHMW4ZqwWjItD8vsG7yark_GO-oGmFdIrbxFyL9BFgJVJCGkKGGlWfEXwri-WocdAr72zxmHWLcdkQFt6g3H0LiLVrqe3Kwwbbe2WLiCZHzphTz-i1dtcz-3ksyWgA6Rfgh8xpO0HeuE3Pl-wnu72C-1sfpq4Q73z4c-v-wUAjsmH1-TloG3EN4_1mHw7P7s9vSgul58-ny4uCy24SMVcQTU0yGquQDQMpJ53wDo9lFDXyGTHc2dQSnWguM6DDmqhJIAsZTk0vTgm7_a-Y_DfJ4yp3Zi8uLXaoZ9iWwqlZMV51WRps5dC8DEGHFowafeSFLSxLWftQ1Rtjqp9iKp9jCqD7Ak4BrPRYfsc8n6P7CZ-Ci5_wv_lfwHsYbCU
CitedBy_id crossref_primary_10_1021_acs_jpcc_0c05980
crossref_primary_10_1021_acs_jpca_3c05506
crossref_primary_10_1039_D4TC02333A
crossref_primary_10_1002_qua_26965
crossref_primary_10_1021_acs_jpca_3c02538
crossref_primary_10_1039_D2CP00941B
crossref_primary_10_1002_qua_26974
crossref_primary_10_1038_s41467_022_35591_w
crossref_primary_10_1002_qua_27104
crossref_primary_10_1039_D1CP02565A
crossref_primary_10_1016_j_saa_2021_120463
crossref_primary_10_1039_D0RA01323D
crossref_primary_10_1007_s00894_023_05668_4
crossref_primary_10_1039_D2CP05084F
crossref_primary_10_1002_cptc_202300147
crossref_primary_10_1039_D2CP01323A
crossref_primary_10_1007_s11224_022_01983_3
crossref_primary_10_1039_D5RA00157A
crossref_primary_10_1016_j_jphotochem_2021_113687
crossref_primary_10_1016_j_molliq_2020_114882
crossref_primary_10_1021_acs_jpca_4c06140
crossref_primary_10_1016_j_dyepig_2020_108739
Cites_doi 10.1021/ja074365w
10.1021/acs.joc.6b02214
10.1016/j.optmat.2008.12.003
10.1021/acs.jpcc.6b01975
10.1021/acs.chemmater.7b01512
10.1021/cr60255a003
10.1038/srep10923
10.1021/acs.jpcc.6b11082
10.1063/1.1558471
10.1021/ja800341v
10.1021/acs.jpcc.9b01458
10.1021/acs.jpcc.7b01767
10.1021/acs.jctc.5b00431
10.1021/acs.jpcc.7b01360
10.1021/acs.jpcc.8b04167
10.1021/acs.jctc.6b00225
10.1002/qua.24685
10.1021/acs.jpcc.6b04849
10.1021/acs.jpca.7b09186
10.1039/C4DT03608E
10.1016/j.cclet.2016.07.017
10.1021/acs.jpcc.9b01896
10.1002/jcc.22885
10.1063/1.1926275
10.1021/jz200140c
10.1039/C5RA22615E
10.1063/1.434213
10.1063/1.3675848
10.1002/cphc.201300256
10.1063/1.1728092
10.1002/adma.201301091
10.1021/acs.jpcc.5b03530
10.1039/C8CP01592A
10.1039/C5RA09864E
10.1021/acs.jpcc.8b05411
10.1002/jcc.24736
10.1063/1.1630309
10.1021/acs.jpcc.6b01567
10.1021/ja993226e
10.1021/jz200099p
10.1021/jp511061t
10.1021/ja9082655
10.1039/c2jm32848h
10.1016/j.orgel.2019.04.021
10.1016/B978-0-12-170611-1.50006-1
10.1021/jacs.5b13243
10.1039/a703434b
10.1021/acsami.7b00742
10.1021/acs.jpclett.7b00688
10.1021/jp993839d
10.1021/j100357a020
10.1039/C4RA13250E
10.1016/j.orgel.2011.03.010
10.1063/1.470657
10.1063/1.434888
10.1021/cg701143n
10.1039/c0cc00947d
10.1039/C8DT01255E
10.1021/nl303612z
10.1021/jacs.6b12124
10.1039/C9TC01750J
10.1021/jacs.5b07932
10.1021/cr00025a003
10.1063/1.365684
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.9b10067
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 931
ExternalDocumentID 10_1021_acs_jpcc_9b10067
a583248844
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a313t-98c4f6e0518c360c7a9bc0baf2c55e07b17a9f888bc81a0babc5387cc7272f6d3
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 02:08:57 EDT 2025
Tue Jul 01 02:17:49 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Thu Aug 27 22:07:45 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-98c4f6e0518c360c7a9bc0baf2c55e07b17a9f888bc81a0babc5387cc7272f6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1027-8869
PQID 2388741146
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2388741146
crossref_citationtrail_10_1021_acs_jpcc_9b10067
crossref_primary_10_1021_acs_jpcc_9b10067
acs_journals_10_1021_acs_jpcc_9b10067
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-09
PublicationDateYYYYMMDD 2020-01-09
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-09
  day: 09
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Frisch M. (ref38/cit38) 2009
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1021/ja074365w
– ident: ref5/cit5
  doi: 10.1021/acs.joc.6b02214
– ident: ref14/cit14
  doi: 10.1016/j.optmat.2008.12.003
– ident: ref41/cit41
  doi: 10.1021/acs.jpcc.6b01975
– ident: ref20/cit20
  doi: 10.1021/acs.chemmater.7b01512
– ident: ref1/cit1
  doi: 10.1021/cr60255a003
– ident: ref27/cit27
  doi: 10.1038/srep10923
– ident: ref44/cit44
  doi: 10.1021/acs.jpcc.6b11082
– ident: ref67/cit67
  doi: 10.1063/1.1558471
– ident: ref65/cit65
  doi: 10.1021/ja800341v
– ident: ref32/cit32
  doi: 10.1021/acs.jpcc.9b01458
– ident: ref21/cit21
  doi: 10.1021/acs.jpcc.7b01767
– ident: ref9/cit9
  doi: 10.1021/acs.jctc.5b00431
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.7b01360
– ident: ref51/cit51
  doi: 10.1021/acs.jpcc.8b04167
– ident: ref37/cit37
  doi: 10.1021/acs.jctc.6b00225
– ident: ref57/cit57
  doi: 10.1002/qua.24685
– ident: ref58/cit58
  doi: 10.1021/acs.jpcc.6b04849
– ident: ref22/cit22
  doi: 10.1021/acs.jpca.7b09186
– ident: ref29/cit29
  doi: 10.1039/C4DT03608E
– ident: ref26/cit26
  doi: 10.1016/j.cclet.2016.07.017
– ident: ref28/cit28
  doi: 10.1021/acs.jpcc.9b01896
– ident: ref48/cit48
  doi: 10.1002/jcc.22885
– ident: ref18/cit18
  doi: 10.1063/1.1926275
– ident: ref8/cit8
  doi: 10.1021/jz200140c
– ident: ref25/cit25
  doi: 10.1039/C5RA22615E
– ident: ref62/cit62
  doi: 10.1063/1.434213
– ident: ref46/cit46
  doi: 10.1063/1.3675848
– ident: ref55/cit55
  doi: 10.1002/cphc.201300256
– ident: ref56/cit56
  doi: 10.1063/1.1728092
– ident: ref7/cit7
  doi: 10.1002/adma.201301091
– ident: ref31/cit31
  doi: 10.1021/acs.jpcc.5b03530
– ident: ref63/cit63
  doi: 10.1039/C8CP01592A
– ident: ref54/cit54
  doi: 10.1039/C5RA09864E
– ident: ref52/cit52
  doi: 10.1021/acs.jpcc.8b05411
– ident: ref66/cit66
  doi: 10.1002/jcc.24736
– ident: ref10/cit10
  doi: 10.1063/1.1630309
– ident: ref64/cit64
  doi: 10.1021/acs.jpcc.6b01567
– ident: ref19/cit19
  doi: 10.1021/ja993226e
– ident: ref35/cit35
  doi: 10.1021/jz200099p
– ident: ref34/cit34
  doi: 10.1021/jp511061t
– ident: ref2/cit2
  doi: 10.1021/ja9082655
– ident: ref23/cit23
  doi: 10.1039/c2jm32848h
– ident: ref43/cit43
– ident: ref40/cit40
  doi: 10.1016/j.orgel.2019.04.021
– ident: ref42/cit42
  doi: 10.1021/acs.jpcc.6b01975
– ident: ref11/cit11
  doi: 10.1016/B978-0-12-170611-1.50006-1
– ident: ref45/cit45
  doi: 10.1021/jacs.5b13243
– ident: ref12/cit12
  doi: 10.1039/a703434b
– ident: ref16/cit16
  doi: 10.1021/acsami.7b00742
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.7b00688
– ident: ref17/cit17
  doi: 10.1021/jp993839d
– ident: ref59/cit59
  doi: 10.1021/j100357a020
– ident: ref13/cit13
  doi: 10.1039/C4RA13250E
– ident: ref24/cit24
  doi: 10.1016/j.orgel.2011.03.010
– ident: ref60/cit60
  doi: 10.1063/1.470657
– ident: ref61/cit61
  doi: 10.1063/1.434888
– ident: ref15/cit15
  doi: 10.1021/cg701143n
– ident: ref4/cit4
  doi: 10.1039/c0cc00947d
– ident: ref30/cit30
  doi: 10.1039/C8DT01255E
– volume-title: Gaussian 09
  year: 2009
  ident: ref38/cit38
– ident: ref3/cit3
  doi: 10.1021/nl303612z
– ident: ref49/cit49
  doi: 10.1021/jacs.6b12124
– ident: ref50/cit50
  doi: 10.1039/C9TC01750J
– ident: ref33/cit33
  doi: 10.1021/jacs.5b07932
– ident: ref47/cit47
  doi: 10.1021/cr00025a003
– ident: ref53/cit53
  doi: 10.1063/1.365684
SSID ssj0053013
Score 2.444003
Snippet The nonlinear optical (NLO) and thermally activated delayed fluorescence (TADF) properties of organic push–pull materials consisting of π-conjugated...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 921
SubjectTerms energy
fluorescence
geometry
moieties
pyrazines
Title Regulation of the Molecular Architectures on Second-Order Nonlinear Optical Response and Thermally Activated Delayed Fluorescence Property: Homoconjugation and Twisted Donor–Acceptor
URI http://dx.doi.org/10.1021/acs.jpcc.9b10067
https://www.proquest.com/docview/2388741146
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaemgvQAuIt1ypHHrIsnlu0ttqYbWqxENQJG6RPbaRIMSrPISWE_-BP8Pv6S9h7CQtlApxiuLYjpV5feNxZgj5JhIRcIHynYQQOEEEnsN9BY4XKMTHSkUgzf_OB4fR5Cz4eR6e_02T828E33N3GZS9yylAL-Gu0a3vyQcvQhk2MGh02mndEBnVbyLIiBiDYNCGJP83gzFEUD43RM_1sDUu44WmSlFpcxKaMyVXvbriPbh9mbHxDeteJPMtxqTDhik-k3cy_0I-jrrSbkvk4aSpQI80oVpRxID0oCuTS4dPQgslxR6nxmcWzpFJ0kkPm9Qa2O9oarfB6UlzylZSlguKXIeaPstmdAi2cJoUdE9mbIbXcVbrwmaPAkmPTRCgqGY_6ERfa3zBZX3RLMhOc2O4D4fqXBe_7-6HYE7f6GKZnI33f40mTlvCwWG-61dOEkOgIomSH4Mf9WHAEg59zpQHYSj7A-5ii0IvnEPsMnzAATXwAMDEh1Uk_BUyl-tcrhKKjmAIiGd4JNBnSkIWKlM-TeC9Yl7srpEd_ORpK4JlaqPrnpvaRqRD2tJhjex2dE-hzYNuynFkr4z4_mfEtMkB8krfrx0rpUhUE31hudR1mSI2ihG-oWVaf-NKN8gnz3j3ZsMn2SRzVVHLLYRAFd-2vP8I6wcH8w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOZQLb9TyNFJ74JDt5rkJt2hhtbTdLdq2Um-RPbaRSohXeQgtJ_4Df4bfwy9h7CQLi1AFpyiO7Ywy45lvPM4MIfsiEQEXuL6TEAIniMBzuK_A8QKF-FipCKT533k2j6YXwdFleLlF3P5fGCSiwpkqG8T_lV3APTRtV0uAQcJdo2JvkJuIRTwj1On4rFe-Icqr3waSETgGwaiLTP5tBmOPoNq0R5vq2NqYyR2yWFNnj5Z8HDQ1H8CXPxI3_hf5d8ntDnHStBWRe2RLFvfJzrgv9PaAfF-09eiRQ1QrioiQzvqiuTT9LdBQUexxZjxo4ZyalJ103ibawH6nS7spThftmVtJWSEoyiDq_Txf0RRsGTUp6BuZsxVeJ3mjS5tLCiR9b0ICZb16Taf6k8YXXDUfWoLsNJ-NLOJQXejyx9dvKZizOLp8SC4mb8_HU6cr6OAw3_VrJ4khUJFEPRCDHw1hxBIOQ86UB2EohyPuYotCn5xD7DJ8wAH18QjARItVJPxHZLvQhdwlFN3CEBDd8EigB5WELFSmmJrAe8W82N0jB_jJs25BVpmNtXtuZhuRD1nHhz1y2LM_gy4ruinOkV8z4tV6xLLNCHJN35e9RGXIVBOLYYXUTZUhUooRzKGdevyPlL4gO9Pz2Ul28m5-_ITc8ozfb7aCkqdkuy4b-QzBUc2f2-XwE2SqEFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYAL5VVRKGAkOHDIdvNwNukt2rJaHt1WLUW9RfbYRiohXuUhtJz4D_yZ_h5-CWMnqShCFZyiOLbjZB6e8WfPEPJCpjISEuU7ZRB5UQyBJ0INXhBptI-1jkHZ8877i3h-Er09ZadrhA1nYXAQNfZUOxDfSvVS6j7CgL9jy8-WAKNU-FbNXiPXLWpnGTubHg8KmCHPhh2YjMZjFE16dPJvPdg5CerLc9JllezmmdkG-XgxQre95POobcQIvv0RvPG_P-EOud1bnjTrWOUuWVPlPXJzOiR8u0_Oj7q89EgpajRFy5DuD8lzafYb4FBTrHFsPWnpHdjQnXTRBdzAegdLtzhOj7q9t4ryUlLkRdT_RbGiGbh0akrSPVXwFV5nRWsqF1MKFD200EDVrHbp3Hwx-IKz9lM3INfNV8uT2NSUpvr5_UcGdk-OqR6Qk9nrD9O51yd28Hjoh42XJhDpWKE-SCCMxzDhqYCx4DoAxtR4Inws0eibC0h8jg8EoF6eAFjUWMcy3CTrpSnVQ0LRPWSAVo6IJXpSKeNM26RqEu81DxJ_i7zEX573glnnDnMP_NwVIh3yng5bZGdggRz66Og2SUdxRYtXFy2WXWSQK-o-H7gqR6JaTIaXyrR1jhZTgkYdzleP_nGkz8iNw71Z_v7N4t1jciuw7r9dEUq3yXpTteoJ2kiNeOok4hf5zBLX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+the+Molecular+Architectures+on+Second-Order+Nonlinear+Optical+Response+and+Thermally+Activated+Delayed+Fluorescence+Property%3A+Homoconjugation+and+Twisted+Donor%E2%80%93Acceptor&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Ye%2C+Jin-Ting&rft.au=Wang%2C+Hong-Qiang&rft.au=Zhang%2C+Yuan&rft.au=Qiu%2C+Yong-Qing&rft.date=2020-01-09&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=124&rft.issue=1&rft.spage=921&rft.epage=931&rft_id=info:doi/10.1021%2Facs.jpcc.9b10067&rft.externalDocID=a583248844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon