Effect of a Heteroatom on Bonding Patterns and Triradical Stabilization Energies of 2,4,6-Tridehydropyridine versus 1,3,5-Tridehydrobenzene

Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster calculations with single and double substitutions and including perturbative triple corrections. Equilibrium geometries of the three lowest...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 113; no. 11; pp. 2591 - 2599
Main Authors Manohar, Prashant U, Koziol, Lucas, Krylov, Anna I
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.03.2009
Subjects
Online AccessGet full text
ISSN1089-5639
1520-5215
1520-5215
DOI10.1021/jp810522e

Cover

Loading…
Abstract Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster calculations with single and double substitutions and including perturbative triple corrections. Equilibrium geometries of the three lowest electronic states, vertical and adiabatic states ordering, and triradical stabilization energies are reported for both triradicals. In 1,3,5-tridehydrobenzene, the ground 2 A 1 state is 0.016 eV below the 2 B 2 state, whereas in 2,4,6-tridehydropyridine the heteroatom reverses adiabatic state ordering bringing 2 B 2 below 2 A 1 by 0.613 eV. The doublet−quartet gap is also larger in 2,4,6-tridehydropyridine as compared to 1,3,5-tridehydrobenzene; the respective adiabatic values are 1.223 and 0.277 eV. Moreover, the heteroatom reduces bonding interactions between the C2 and C6 radical centers, which results in the increased stabilizing interactions between C4 and C2/C6. Triradical stabilization energies corresponding to the separation of C4 and C2 are 19.7 and −0.2 kcal/mol, respectively, in contrast to 2.8 kcal/mol in 1,3,5-tridehydrobenzene. Similarly weak interactions between C2 and C6 are also observed in 2,6-didehydropyridine resulting in a nearly zero singlet−triplet energy gap, in contrast to m-benzyne and 2,4-didehydropyridine. The total interaction energy of the three radical centers is very similar in 1,3,5-tridehydrobenzene and 2,4,6-tridehydropyridine and is 19.5 and 20.1 kcal/mol, respectively.
AbstractList Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster calculations with single and double substitutions and including perturbative triple corrections. Equilibrium geometries of the three lowest electronic states, vertical and adiabatic states ordering, and triradical stabilization energies are reported for both triradicals. In 1,3,5-tridehydrobenzene, the ground (2)A(1) state is 0.016 eV below the (2)B(2) state, whereas in 2,4,6-tridehydropyridine the heteroatom reverses adiabatic state ordering bringing (2)B(2) below (2)A(1) by 0.613 eV. The adiabatic doublet-quartet gap of 2,4,6-tridehydropyridine is smaller than that of 1,3,5-tridehydrobenzene by 0.08 eV; the respective values are 1.223 and 1.302 [corrected] eV. Moreover, the heteroatom reduces bonding interactions between the C(2) and C(6) radical centers, which results in the increased stabilizing interactions between C(4) and C(2)/C(6). Triradical stabilization energies corresponding to the separation of C(4) and C(2) are 19.7 and -0.2 kcal/mol, respectively, in contrast to 2.8 kcal/mol in 1,3,5-tridehydrobenzene. Similarly weak interactions between C(2) and C(6) are also observed in 2,6-didehydropyridine resulting in a nearly zero singlet-triplet energy gap, in contrast to m-benzyne and 2,4-didehydropyridine. The total interaction energy of the three radical centers is very similar in 1,3,5-tridehydrobenzene and 2,4,6-tridehydropyridine and is 19.5 and 20.1 kcal/mol, respectively.
Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster calculations with single and double substitutions and including perturbative triple corrections. Equilibrium geometries of the three lowest electronic states, vertical and adiabatic states ordering, and triradical stabilization energies are reported for both triradicals. In 1,3,5-tridehydrobenzene, the ground (2)A(1) state is 0.016 eV below the (2)B(2) state, whereas in 2,4,6-tridehydropyridine the heteroatom reverses adiabatic state ordering bringing (2)B(2) below (2)A(1) by 0.613 eV. The adiabatic doublet-quartet gap of 2,4,6-tridehydropyridine is smaller than that of 1,3,5-tridehydrobenzene by 0.08 eV; the respective values are 1.223 and 1.302 [corrected] eV. Moreover, the heteroatom reduces bonding interactions between the C(2) and C(6) radical centers, which results in the increased stabilizing interactions between C(4) and C(2)/C(6). Triradical stabilization energies corresponding to the separation of C(4) and C(2) are 19.7 and -0.2 kcal/mol, respectively, in contrast to 2.8 kcal/mol in 1,3,5-tridehydrobenzene. Similarly weak interactions between C(2) and C(6) are also observed in 2,6-didehydropyridine resulting in a nearly zero singlet-triplet energy gap, in contrast to m-benzyne and 2,4-didehydropyridine. The total interaction energy of the three radical centers is very similar in 1,3,5-tridehydrobenzene and 2,4,6-tridehydropyridine and is 19.5 and 20.1 kcal/mol, respectively.Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster calculations with single and double substitutions and including perturbative triple corrections. Equilibrium geometries of the three lowest electronic states, vertical and adiabatic states ordering, and triradical stabilization energies are reported for both triradicals. In 1,3,5-tridehydrobenzene, the ground (2)A(1) state is 0.016 eV below the (2)B(2) state, whereas in 2,4,6-tridehydropyridine the heteroatom reverses adiabatic state ordering bringing (2)B(2) below (2)A(1) by 0.613 eV. The adiabatic doublet-quartet gap of 2,4,6-tridehydropyridine is smaller than that of 1,3,5-tridehydrobenzene by 0.08 eV; the respective values are 1.223 and 1.302 [corrected] eV. Moreover, the heteroatom reduces bonding interactions between the C(2) and C(6) radical centers, which results in the increased stabilizing interactions between C(4) and C(2)/C(6). Triradical stabilization energies corresponding to the separation of C(4) and C(2) are 19.7 and -0.2 kcal/mol, respectively, in contrast to 2.8 kcal/mol in 1,3,5-tridehydrobenzene. Similarly weak interactions between C(2) and C(6) are also observed in 2,6-didehydropyridine resulting in a nearly zero singlet-triplet energy gap, in contrast to m-benzyne and 2,4-didehydropyridine. The total interaction energy of the three radical centers is very similar in 1,3,5-tridehydrobenzene and 2,4,6-tridehydropyridine and is 19.5 and 20.1 kcal/mol, respectively.
Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster calculations with single and double substitutions and including perturbative triple corrections. Equilibrium geometries of the three lowest electronic states, vertical and adiabatic states ordering, and triradical stabilization energies are reported for both triradicals. In 1,3,5-tridehydrobenzene, the ground 2 A 1 state is 0.016 eV below the 2 B 2 state, whereas in 2,4,6-tridehydropyridine the heteroatom reverses adiabatic state ordering bringing 2 B 2 below 2 A 1 by 0.613 eV. The doublet−quartet gap is also larger in 2,4,6-tridehydropyridine as compared to 1,3,5-tridehydrobenzene; the respective adiabatic values are 1.223 and 0.277 eV. Moreover, the heteroatom reduces bonding interactions between the C2 and C6 radical centers, which results in the increased stabilizing interactions between C4 and C2/C6. Triradical stabilization energies corresponding to the separation of C4 and C2 are 19.7 and −0.2 kcal/mol, respectively, in contrast to 2.8 kcal/mol in 1,3,5-tridehydrobenzene. Similarly weak interactions between C2 and C6 are also observed in 2,6-didehydropyridine resulting in a nearly zero singlet−triplet energy gap, in contrast to m-benzyne and 2,4-didehydropyridine. The total interaction energy of the three radical centers is very similar in 1,3,5-tridehydrobenzene and 2,4,6-tridehydropyridine and is 19.5 and 20.1 kcal/mol, respectively.
Author Manohar, Prashant U
Koziol, Lucas
Krylov, Anna I
Author_xml – sequence: 1
  givenname: Prashant U
  surname: Manohar
  fullname: Manohar, Prashant U
– sequence: 2
  givenname: Lucas
  surname: Koziol
  fullname: Koziol, Lucas
– sequence: 3
  givenname: Anna I
  surname: Krylov
  fullname: Krylov, Anna I
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19236028$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v1DAQxS1URP_AgS-AfAGp0oZ67DhNjqVaKFIlkChna-JMildZe7EdpO1X4EvXy5YKoZ7m6c1v3uHNMTvwwRNjr0G8ByHhbLVpQWgp6Rk7Ai1FpSXog6JF21W6Ud0hO05pJYQAJesX7BA6qRoh2yP2ezmOZDMPI0d-RZliwBzWPHj-IfjB-Vv-FXOxfeLoB34TXcTBWZz4t4y9m9wdZlfopad46yjtkuSiXjRVQQf6sR1i2GyLdJ74L4ppThwWaqH_2ffk78jTS_Z8xCnRq4d5wr5_XN5cXlXXXz59vry4rlCBytW5tXqQDfYdICloazu23dj0sgatlZC6s80AoxItkrA1aVUXF9pi1l3TkTph7_a5mxh-zpSyWbtkaZrQU5iTac7FLgsK-OYBnPs1DWYT3Rrj1vytrwBne8DGkFKk0ViX__SRI7rJgDC7B5nHB5WL0_8uHkOfYN_uWbTJrMIcfWnlCe4ev9ub4g
CitedBy_id crossref_primary_10_1002_chem_201502502
crossref_primary_10_1021_acs_jpca_7b01501
crossref_primary_10_1021_cr400121w
crossref_primary_10_1039_C6CP05677F
crossref_primary_10_1039_C9CP06507E
crossref_primary_10_1039_C7CP07579K
crossref_primary_10_1016_j_cplett_2010_08_085
crossref_primary_10_1063_1_4734309
crossref_primary_10_1063_1_4734308
crossref_primary_10_1021_ct1002016
crossref_primary_10_1071_CH10113
crossref_primary_10_1016_j_tetlet_2009_07_086
crossref_primary_10_1021_acs_jpclett_4c00623
crossref_primary_10_1063_1_4880275
crossref_primary_10_1021_acs_jpca_8b10514
crossref_primary_10_1002_cphc_201100311
crossref_primary_10_1002_ejoc_201801249
crossref_primary_10_1016_j_comptc_2020_113025
crossref_primary_10_1039_D4CP02265C
crossref_primary_10_1063_1_5138643
crossref_primary_10_1002_chem_201102641
crossref_primary_10_1016_j_chemphys_2011_10_016
Cites_doi 10.1021/jp801582y
10.1063/1.1630018
10.1063/1.1877072
10.1007/BF00533485
10.1021/ja0276570
10.1002/anie.200701732
10.1021/ja9527941
10.1002/anie.200352990
10.1063/1.456153
10.1021/ar0402006
10.1021/jp0528212
10.1016/j.cplett.2006.05.035
10.1021/cr00028a002
10.1016/0166-1280(92)87050-A
10.1063/1.1569845
10.1016/S0009-2614(98)00192-4
10.1063/1.1498819
10.1063/1.3013087
10.1021/ja015711r
10.1080/0026897021000034512
10.1021/om980778h
10.1021/jp9632908
10.1063/1.1445116
10.1063/1.2006091
10.1021/ja00078a038
10.1021/ja981681p
10.1063/1.1545679
10.1021/ja974159w
10.1021/ol9912736
10.1021/jp0714522
10.1021/jp049007j
10.1002/anie.200501912
10.1002/anie.197200921
10.1016/j.chemphys.2005.05.006
10.1021/ja020154+
10.1063/1.2965131
10.1021/jp0155967
10.1021/jo026824b
10.1021/jo005655x
10.1021/ja049534g
10.1063/1.1568735
10.1021/ja963372+
10.1021/ja9806579
10.1016/S0009-2614(01)01316-1
10.1021/ja963113k
10.1063/1.2975205
10.1002/anie.200700536
10.1016/S0009-2614(01)00287-1
10.1063/1.2018645
10.1002/anie.198701701
10.1021/jp047768g
ContentType Journal Article
Copyright Copyright © 2009 American Chemical Society
Copyright_xml – notice: Copyright © 2009 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/jp810522e
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Electronic Structure of Triradicals
EISSN 1520-5215
EndPage 2599
ExternalDocumentID 19236028
10_1021_jp810522e
b380519076
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
UQL
VF5
VG9
VQA
VQP
W1F
WH7
X
YZZ
ZCG
ZHY
---
-~X
.DC
6TJ
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
ID FETCH-LOGICAL-a313t-7cc5d26ab91ae3184cf89f6b2415530259c6d1f308ae0c4e534302186d14969e3
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Thu Jul 10 22:36:06 EDT 2025
Mon Jul 21 06:03:53 EDT 2025
Tue Jul 01 00:36:49 EDT 2025
Thu Apr 24 22:50:20 EDT 2025
Thu Aug 27 13:42:09 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-7cc5d26ab91ae3184cf89f6b2415530259c6d1f308ae0c4e534302186d14969e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19236028
PQID 67024151
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_67024151
pubmed_primary_19236028
crossref_citationtrail_10_1021_jp810522e
crossref_primary_10_1021_jp810522e
acs_journals_10_1021_jp810522e
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090319
2009-03-19
2009-Mar-19
PublicationDateYYYYMMDD 2009-03-19
PublicationDate_xml – month: 03
  year: 2009
  text: 20090319
  day: 19
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2009
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Lardin H. A. (ref22/cit22) 2002; 124
Borden W. T. (ref39/cit39) 1982
Cramer C. J. (ref28/cit28) 2000; 201
ref56/cit56
Manohar P. U. (ref21/cit21) 2008; 129
Venkataramani S. (ref44/cit44) 2007; 46
Nguyen H. M. T. (ref51/cit51) 2005; 316
Rajca A. (ref3/cit3) 1994; 94
Hosokoshi Y. (ref8/cit8) 2001; 123
Slipchenko L. V. (ref17/cit17) 2002; 117
Krylov A. I. (ref1/cit1) 2005; 109
Shultz D. A. (ref34/cit34) 2002; 124
Prasad B. L. V. (ref4/cit4) 1997; 101
Sato K. (ref6/cit6) 1997; 119
Clark A. E. (ref29/cit29) 2003; 68
Nash J. J. (ref52/cit52) 2008; 112
Slipchenko L. V. (ref42/cit42) 2004; 43
Salem L. (ref38/cit38) 1972; 11
Levchenko S. V. (ref19/cit19) 2005; 122
Wierschke S. G. (ref23/cit23) 1993; 115
West A.P. Jr. (ref25/cit25) 1996; 118
Cioslowski J. (ref55/cit55) 2003; 101
Cristian A. M. C. (ref24/cit24) 2004; 108
Nguyen H. M. T. (ref50/cit50) 2004; 108
Hariharan P. C. (ref53/cit53) 1973; 28
Cramer C. J. (ref26/cit26) 1998; 287
Geise C. M. (ref33/cit33) 2000; 65
Shao Y. (ref16/cit16) 2003; 118
Wang T. (ref48/cit48) 2006; 426
Nelson E. D. (ref35/cit35) 1998; 120
Koziol L. (ref49/cit49) 2007; 111
Kus T. (ref18/cit18) 2008; 129
Slipchenko L. V. (ref20/cit20) 2005; 123
Wang T. (ref37/cit37) 2005; 123
Tichy S. E. (ref36/cit36) 2004; 126
Sears J. S. (ref14/cit14) 2003; 118
Lahti P. M. (ref2/cit2) 1999
Bush L. C. (ref31/cit31) 1997; 119
Krylov A. I. (ref13/cit13) 2001; 350
Dunning T. H. (ref54/cit54) 1989; 90
Ito A. (ref32/cit32) 2002; 106
Weyland T. (ref7/cit7) 1998; 17
Venkataramani S. (ref43/cit43) 2005; 44
Bonačić-Koutecký V. (ref40/cit40) 1987; 26
Slipchenko L. V. (ref47/cit47) 2003; 118
Michl J. (ref41/cit41) 1992; 260
Jankiewicz B. J. (ref45/cit45) 2007; 46
Krylov A. I. (ref9/cit9) 2001; 338
Cramer C. J. (ref27/cit27) 1998; 120
Casanova D. (ref15/cit15) 2008; 129
ref30/cit30
Levchenko S. V. (ref10/cit10) 2004; 120
Krylov A. I. (ref12/cit12) 2002; 116
Krylov A. I. (ref11/cit11) 2006; 39
Selby T. D. (ref5/cit5) 2000; 2
Bettinger H. F. (ref46/cit46) 1999; 121
J Phys Chem A. 2010 Jun 17;114(23):6558
References_xml – volume: 112
  start-page: 5542
  year: 2008
  ident: ref52/cit52
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp801582y
– volume: 120
  start-page: 175
  year: 2004
  ident: ref10/cit10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1630018
– volume: 122
  start-page: 224106
  year: 2005
  ident: ref19/cit19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1877072
– volume: 28
  start-page: 213
  year: 1973
  ident: ref53/cit53
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00533485
– volume: 124
  start-page: 12612
  year: 2002
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0276570
– volume: 46
  start-page: 9198
  year: 2007
  ident: ref45/cit45
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701732
– volume: 118
  start-page: 1452
  year: 1996
  ident: ref25/cit25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9527941
– volume: 43
  start-page: 742
  year: 2004
  ident: ref42/cit42
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200352990
– volume: 90
  start-page: 1007
  year: 1989
  ident: ref54/cit54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 39
  start-page: 83
  year: 2006
  ident: ref11/cit11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0402006
– volume: 109
  start-page: 10638
  year: 2005
  ident: ref1/cit1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0528212
– volume: 426
  start-page: 196
  year: 2006
  ident: ref48/cit48
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.05.035
– volume: 94
  start-page: 871
  year: 1994
  ident: ref3/cit3
  publication-title: Chem. Rev.
  doi: 10.1021/cr00028a002
– volume: 260
  start-page: 299
  year: 1992
  ident: ref41/cit41
  publication-title: J. Mol. Struct. THEOCHEM
  doi: 10.1016/0166-1280(92)87050-A
– volume: 118
  start-page: 9614
  year: 2003
  ident: ref47/cit47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1569845
– volume: 201
  start-page: 1
  year: 2000
  ident: ref28/cit28
  publication-title: ijmspect
– volume: 287
  start-page: 320
  year: 1998
  ident: ref26/cit26
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00192-4
– volume: 117
  start-page: 4694
  year: 2002
  ident: ref17/cit17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1498819
– volume: 129
  start-page: 194105
  year: 2008
  ident: ref21/cit21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3013087
– volume: 123
  start-page: 7921
  year: 2001
  ident: ref8/cit8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja015711r
– volume: 101
  start-page: 839
  year: 2003
  ident: ref55/cit55
  publication-title: Mol. Phys.
  doi: 10.1080/0026897021000034512
– volume: 17
  start-page: 5569
  year: 1998
  ident: ref7/cit7
  publication-title: Organometallics
  doi: 10.1021/om980778h
– volume: 101
  start-page: 2973
  year: 1997
  ident: ref4/cit4
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9632908
– volume: 116
  start-page: 3194
  year: 2002
  ident: ref12/cit12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1445116
– volume: 123
  start-page: 084107
  year: 2005
  ident: ref20/cit20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2006091
– volume: 115
  start-page: 11958
  year: 1993
  ident: ref23/cit23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00078a038
– volume-title: Magnetic properties of organic materials
  year: 1999
  ident: ref2/cit2
– volume: 121
  start-page: 2829
  year: 1999
  ident: ref46/cit46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981681p
– volume: 118
  start-page: 4807
  year: 2003
  ident: ref16/cit16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1545679
– volume: 120
  start-page: 3792
  year: 1998
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja974159w
– volume: 2
  start-page: 171
  year: 2000
  ident: ref5/cit5
  publication-title: Org. Lett.
  doi: 10.1021/ol9912736
– volume-title: Diradicals
  year: 1982
  ident: ref39/cit39
– volume: 111
  start-page: 5071
  year: 2007
  ident: ref49/cit49
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0714522
– volume: 108
  start-page: 6581
  year: 2004
  ident: ref24/cit24
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp049007j
– volume: 44
  start-page: 6306
  year: 2005
  ident: ref43/cit43
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200501912
– volume: 11
  start-page: 92
  year: 1972
  ident: ref38/cit38
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.197200921
– volume: 316
  start-page: 125
  year: 2005
  ident: ref51/cit51
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.05.006
– volume: 124
  start-page: 10054
  year: 2002
  ident: ref34/cit34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020154+
– volume: 129
  start-page: 064104
  year: 2008
  ident: ref15/cit15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2965131
– ident: ref56/cit56
– volume: 106
  start-page: 8716
  year: 2002
  ident: ref32/cit32
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0155967
– volume: 68
  start-page: 3387
  year: 2003
  ident: ref29/cit29
  publication-title: J. Org. Chem.
  doi: 10.1021/jo026824b
– volume: 65
  start-page: 8348
  year: 2000
  ident: ref33/cit33
  publication-title: J. Org. Chem.
  doi: 10.1021/jo005655x
– volume: 126
  start-page: 12957
  year: 2004
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja049534g
– volume: 118
  start-page: 9084
  year: 2003
  ident: ref14/cit14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1568735
– volume: 119
  start-page: 6607
  year: 1997
  ident: ref6/cit6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja963372+
– volume: 120
  start-page: 6261
  year: 1998
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9806579
– volume: 350
  start-page: 522
  year: 2001
  ident: ref13/cit13
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)01316-1
– volume: 119
  start-page: 1406
  year: 1997
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja963113k
– volume: 129
  start-page: 104301
  year: 2008
  ident: ref18/cit18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2975205
– volume: 46
  start-page: 4888
  year: 2007
  ident: ref44/cit44
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200700536
– volume: 338
  start-page: 375
  year: 2001
  ident: ref9/cit9
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)00287-1
– ident: ref30/cit30
– volume: 123
  start-page: 104304
  year: 2005
  ident: ref37/cit37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2018645
– volume: 26
  start-page: 170
  year: 1987
  ident: ref40/cit40
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.198701701
– volume: 108
  start-page: 8411
  year: 2004
  ident: ref50/cit50
  publication-title: J. Chem. Phys.
  doi: 10.1021/jp047768g
– reference: - J Phys Chem A. 2010 Jun 17;114(23):6558
SSID ssj0001324
Score 2.0506246
Snippet Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2591
SubjectTerms A: Molecular Structure, Quantum Chemistry, General Theory
Title Effect of a Heteroatom on Bonding Patterns and Triradical Stabilization Energies of 2,4,6-Tridehydropyridine versus 1,3,5-Tridehydrobenzene
URI http://dx.doi.org/10.1021/jp810522e
https://www.ncbi.nlm.nih.gov/pubmed/19236028
https://www.proquest.com/docview/67024151
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB6lcGgvFGhL0_JYQQ89ZKnXu97YRxSIIg4VUhOJm7UvCyi1ozg5wF_gT3fWjtNUJHCz5PFq7R3vfLMz8w3ANy246MrI0m5sBRVGcBonQUa11TaTnoDTVWyfP-VgJC6vo-sWnKyJ4Ifsx904RgwQhu4NbIYS4bXHP71fi-0W3SlRZ9EnNEJ729AHLT_qTY8p_zc9a_BkZVf67-G8qc6p00l-n86m-tQ8PidrfGnK27A1x5XkrFaEHWi5fBfe9pp2bh_gqeYpJkVGFBn4JJgC_e0_pMiJby2MFoxcVVybeUlUbslwcjtRVRCHICD1KbR1wSa58NWC6F_7kcKO6EiKotbdPNhJMX7AS8StxCd7zErCOrwTLd3XLn_EzfUjjPoXw96AzjsxUMUZn9KuMZENpdIJU_7QVJgsTjKpvfn3bYeixEjLMh7EygVGuIgLXnW7suiAycTxT7CRF7n7DCQSRicIS5kNlDCGaSUCo0MduyywzARtOMSlSud_UplWQfIQnZTmm7bhe7OKqZnzmPt2GverRI8XouOavGOV0FGjCikuiY-XqNwVszKV3cC_IGvDXq0h_wZBWCwRmX15bbJf4V0dfuKUJfuwMZ3M3AGimKk-rLT4L3Iq6vU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELba7QEuPEoLy2utqgcOa4hjx5sc0Qq0bSlC6iJxi_yKWh7JarN72P0L_GnGTgILAtFbpEysiT3xfJMZf4PQd8UZ74nIkF5sOOGaMxInQUaUUSYTjoDTerbPczG45D-voquaJsedhQElShip9En8J3YBenQ9igEKhKH9iD4BCAld-d5x_8_jrgtRFa-K6RMSgdttWIQWH3UeSJfPPdAbsNK7l9PVqk-RV8xXldwcTifqUM9fcDb-n-ZraKVGmfi4Mot19MHmn9FSv2nutoHuK9ZiXGRY4oEriSkg-r7DRY5do2HwZ_jCM2_mJZa5wcPxv7H0KR0M8NQV1FbHN_GJOzsI0bYbKezyriAgauzfmRkXoxlcAorFrvRjWmLaZd1o4b6y-Ry22i_o8vRk2B-Qui8DkYyyCelpHZlQSJVQ6X6hcp3FSSaUAwOuCVGUaGFoxoJY2kBzGzHOfO8rA-GYSCz7ilp5kdsthCOuVQIglZpAcq2pkjzQKlSxzQJDddBG-zClaf1dlalPmYcQsjRz2kYHzWKmumY1d801bl8T_fYoOqqoPF4T6jQWkcKSuOyJzG0xLVPRC9wL0jbarAzlaRAAyQJw2vZ7ynbQ0mD4-yw9-3H-awctV4kpRmiyi1qT8dTuAb6ZqH1v2A82AfNW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkYAL78fyaC3EgcO6jWPHmxyrpavloVKJVuot8ivimaw2u4f2L_CnmXGSpaAiuEXKxJrY48w3mfE3AC-tkmqiM88nuVdcOSV5XiQVt976ShMBZ4hsn4d6fqLenmanfaBIZ2FQiRZHamMSn3b1wlc9w4DY-7LIEQ6kabgK1yhdRyV8-9OPmy8vRlaqK6gveIaud2ASuvgoeSHX_u6F_gIto4uZ3YYPG-ViZcnX3fXK7rrzP3gb_1_7O3CrR5tsvzOPu3Al1PfgxnRo8nYffnTsxaypmGFzKo1pMAr_zpqaUcNh9GvsKDJw1i0ztWfHy89LE1M7DGEqFdZ2xzjZAZ0hxKibRkrHaqw5ivrw6cwvm8UZXiKaZVQCsm6ZGMtxduG-DfU5fnIfwMns4Hg6531_Bm6kkCs-cS7zqTa2EIZ-pSpX5UWlLYECakaUFU57UckkNyFxKmRSydgDy2NYposgH8JW3dThMbBMOVsgWBU-Mco5YY1KnE1tHqrEC5eMYBuntez3V1vG1HmKocswpyN4NSxo6Xp2c2qy8e0y0Rcb0UVH6XGZ0M5gFSUuCWVRTB2adVvqSUIvKEbwqDOWX4MgWNaI1578S9kduH70ela-f3P47inc7PJTkoviGWytluvwHGHOym5H2_4JMUn12Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+a+heteroatom+on+bonding+patterns+and+triradical+stabilization+energies+of+2%2C4%2C6-tridehydropyridine+versus+1%2C3%2C5-tridehydrobenzene&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Manohar%2C+Prashant+U&rft.au=Koziol%2C+Lucas&rft.au=Krylov%2C+Anna+I&rft.date=2009-03-19&rft.eissn=1520-5215&rft.volume=113&rft.issue=11&rft.spage=2591&rft_id=info:doi/10.1021%2Fjp810522e&rft_id=info%3Apmid%2F19236028&rft.externalDocID=19236028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon