Toward a New Direct Process: Synthesis of Methylmethoxysilanes from Dimethyl Carbonate and Pentacopper Silicide
We disclose the direct synthesis of methylmethoxysilanes from pentacopper silicide, Cu5Si, and dimethyl carbonate, DMC, affording high levels of dimethylsilyl products without the use of halide catalysts. When Cu5Si powder (99.5%) was reacted with DMC at 350 °C, Me2Si(OMe)2 was the major silane pro...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 59; no. 16; pp. 7457 - 7465 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
22.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0888-5885 1520-5045 1520-5045 |
DOI | 10.1021/acs.iecr.0c00505 |
Cover
Loading…
Abstract | We disclose the direct synthesis of methylmethoxysilanes from pentacopper silicide, Cu5Si, and dimethyl carbonate, DMC, affording high levels of dimethylsilyl products without the use of halide catalysts. When Cu5Si powder (99.5%) was reacted with DMC at 350 °C, Me2Si(OMe)2 was the major silane product at >70% selectivity. In contrast, when a high purity Cu5Si (99.99%) was used, the reaction afforded mainly permethoxylated silanes. ICP-OES identified several impurity elements in the low purity Cu5Si. By synthesizing materials that contained the individual impurity elements and reacting them with DMC, tin was revealed as being a crucial promoter. XPS revealed that tin segregates to the surface under reaction conditions, and elevated tin levels have a significant impact on DMC reactivity with the surface. XPS also suggests that tin is in the zero oxidation state at the surface, which provides some insight to its role in the direct synthesis of methylmethoxysilanes. |
---|---|
AbstractList | We disclose the direct synthesis of methylmethoxysilanes from pentacopper silicide, Cu5Si, and dimethyl carbonate, DMC, affording high levels of dimethylsilyl products without the use of halide catalysts. When Cu5Si powder (99.5%) was reacted with DMC at 350 °C, Me2Si(OMe)2 was the major silane product at >70% selectivity. In contrast, when a high purity Cu5Si (99.99%) was used, the reaction afforded mainly permethoxylated silanes. ICP-OES identified several impurity elements in the low purity Cu5Si. By synthesizing materials that contained the individual impurity elements and reacting them with DMC, tin was revealed as being a crucial promoter. XPS revealed that tin segregates to the surface under reaction conditions, and elevated tin levels have a significant impact on DMC reactivity with the surface. XPS also suggests that tin is in the zero oxidation state at the surface, which provides some insight to its role in the direct synthesis of methylmethoxysilanes. We disclose the direct synthesis of methylmethoxysilanes from pentacopper silicide, Cu₅Si, and dimethyl carbonate, DMC, affording high levels of dimethylsilyl products without the use of halide catalysts. When Cu₅Si powder (99.5%) was reacted with DMC at 350 °C, Me₂Si(OMe)₂ was the major silane product at >70% selectivity. In contrast, when a high purity Cu₅Si (99.99%) was used, the reaction afforded mainly permethoxylated silanes. ICP-OES identified several impurity elements in the low purity Cu₅Si. By synthesizing materials that contained the individual impurity elements and reacting them with DMC, tin was revealed as being a crucial promoter. XPS revealed that tin segregates to the surface under reaction conditions, and elevated tin levels have a significant impact on DMC reactivity with the surface. XPS also suggests that tin is in the zero oxidation state at the surface, which provides some insight to its role in the direct synthesis of methylmethoxysilanes. |
Author | Roberts, John M Pushkarev, Vladimir V Katsoulis, Dimitris E Sturm, Jason J |
AuthorAffiliation | Dow Silicones Corporation |
AuthorAffiliation_xml | – name: Dow Silicones Corporation |
Author_xml | – sequence: 1 givenname: John M orcidid: 0000-0001-7733-6301 surname: Roberts fullname: Roberts, John M email: john.roberts@dow.com – sequence: 2 givenname: Vladimir V surname: Pushkarev fullname: Pushkarev, Vladimir V – sequence: 3 givenname: Jason J surname: Sturm fullname: Sturm, Jason J – sequence: 4 givenname: Dimitris E surname: Katsoulis fullname: Katsoulis, Dimitris E organization: Dow Silicones Corporation |
BookMark | eNp9kD1PwzAQhi0EEqWwM3pkIMVO7MRlQ-VT4ktqmSPnchZGiV1sV9B_T0qZkGB5b7j3OZ2eA7LrvENCjjmbcJbzMw1xYhHChAFjkskdMuIyZ5lkQu6SEVNKZVIpuU8OYnxjQ0cKMSJ-4T90aKmmj_hBL21ASPQ5eMAYz-l87dIrRhupN_QB0-u664f0n-toO-0wUhN8P2D9947OdGi80wmpdi19Rpc0-OUSA53bzoJt8ZDsGd1FPPqZY_JyfbWY3Wb3Tzd3s4v7TBe8SFmVV7mpoFWalczkDLGtTC7RCNUA5KUALKYNl0VTqLKtmADOG6FBV1NTiRKKMTnZ3l0G_77CmOreRsBu87VfxToXxbRQshpyTNi2CsHHGNDUy2B7HdY1Z_XGbT24rTdu6x-3A1L-QsAmnax3KWjb_QeebsHN5s2vghsk_F3_AoKNk68 |
CitedBy_id | crossref_primary_10_1039_D4GC00472H crossref_primary_10_1021_jacs_2c11569 crossref_primary_10_1039_D1RE00522G crossref_primary_10_1016_j_jct_2021_106473 crossref_primary_10_1002_ciuz_202000035 crossref_primary_10_59761_RCR5081 crossref_primary_10_1016_j_mencom_2023_02_019 crossref_primary_10_1016_j_jcou_2022_102178 crossref_primary_10_1002_chem_202301863 crossref_primary_10_1021_acscentsci_1c00182 |
Cites_doi | 10.1039/C8RA03125H 10.7498/aps.46.1658 10.1002/aoc.1794 10.1021/cm00028a008 10.1134/S0012500809010042 10.1016/j.jiec.2008.02.012 10.1007/s11172-017-1740-9 10.1006/jcat.1994.1064 10.1021/jo048532b 10.1016/0020-1650(74)80184-4 10.1007/s12633-014-9236-9 10.1021/ja01222a026 10.1021/ic50087a014 10.1103/PhysRevB.58.4156 10.1021/acssuschemeng.6b02226 10.1021/ja020499s 10.1039/C7GC03862C 10.1016/j.jcat.2016.03.012 10.1021/ar010076f 10.1002/(SICI)1099-0518(19980930)36:13<2415::AID-POLA28>3.0.CO;2-C 10.1016/0169-4332(93)90375-L 10.1016/j.jnoncrysol.2007.06.036 10.1021/ja01107a048 10.1021/cr950067i 10.1016/0021-9517(86)90268-X 10.1021/ja01226a046 10.1016/S0925-8388(00)01229-9 10.1021/ic0109546 10.1021/om0109051 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.0c00505 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 7465 |
ExternalDocumentID | 10_1021_acs_iecr_0c00505 b186383363 |
GroupedDBID | 02 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 4.4 5VS 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-7272f7cd8a060f20eed7f25ef48bcc264ce39b153b386d704c11b4aca79f746c3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Thu Jul 10 18:10:08 EDT 2025 Tue Jul 01 00:49:17 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Thu Aug 27 22:10:36 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-7272f7cd8a060f20eed7f25ef48bcc264ce39b153b386d704c11b4aca79f746c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7733-6301 |
PQID | 2439385739 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2439385739 crossref_primary_10_1021_acs_iecr_0c00505 crossref_citationtrail_10_1021_acs_iecr_0c00505 acs_journals_10_1021_acs_iecr_0c00505 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-22 |
PublicationDateYYYYMMDD | 2020-04-22 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 Buysch H.-J. (ref29/cit29) 2000 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 Zuckerman J. J. (ref13/cit13) 1964; 6 Yan H. (ref43/cit43) 1997; 46 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 Simmler W. (ref3/cit3) 2000 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 Yan H. (ref42/cit42) 1998; 13 |
References_xml | – ident: ref6/cit6 doi: 10.1039/C8RA03125H – ident: ref20/cit20 – volume: 46 start-page: 1658 year: 1997 ident: ref43/cit43 publication-title: Acta Phys. Sin. doi: 10.7498/aps.46.1658 – ident: ref5/cit5 doi: 10.1002/aoc.1794 – ident: ref33/cit33 doi: 10.1021/cm00028a008 – ident: ref15/cit15 doi: 10.1134/S0012500809010042 – ident: ref40/cit40 doi: 10.1016/j.jiec.2008.02.012 – ident: ref19/cit19 doi: 10.1007/s11172-017-1740-9 – ident: ref4/cit4 – volume: 13 start-page: 65 year: 1998 ident: ref42/cit42 publication-title: J. Inorg. Mater. – volume-title: Ullmann’s Encyclopedia of Industrial Chemistry year: 2000 ident: ref3/cit3 – ident: ref24/cit24 – ident: ref26/cit26 doi: 10.1006/jcat.1994.1064 – ident: ref31/cit31 doi: 10.1021/jo048532b – ident: ref18/cit18 – ident: ref39/cit39 doi: 10.1016/0020-1650(74)80184-4 – ident: ref22/cit22 – ident: ref10/cit10 doi: 10.1007/s12633-014-9236-9 – ident: ref1/cit1 doi: 10.1021/ja01222a026 – ident: ref25/cit25 doi: 10.1021/ic50087a014 – ident: ref17/cit17 – ident: ref41/cit41 doi: 10.1103/PhysRevB.58.4156 – ident: ref8/cit8 doi: 10.1021/acssuschemeng.6b02226 – ident: ref12/cit12 – ident: ref28/cit28 – ident: ref35/cit35 doi: 10.1021/ja020499s – ident: ref7/cit7 doi: 10.1039/C7GC03862C – ident: ref9/cit9 doi: 10.1016/j.jcat.2016.03.012 – ident: ref32/cit32 doi: 10.1021/ar010076f – ident: ref14/cit14 doi: 10.1002/(SICI)1099-0518(19980930)36:13<2415::AID-POLA28>3.0.CO;2-C – ident: ref37/cit37 doi: 10.1016/0169-4332(93)90375-L – volume: 6 start-page: 383 volume-title: Adv. Inorg. Chem. Radiochem. year: 1964 ident: ref13/cit13 – ident: ref27/cit27 – ident: ref21/cit21 doi: 10.1016/j.jnoncrysol.2007.06.036 – ident: ref23/cit23 doi: 10.1021/ja01107a048 – ident: ref30/cit30 doi: 10.1021/cr950067i – ident: ref16/cit16 – ident: ref36/cit36 doi: 10.1016/0021-9517(86)90268-X – ident: ref11/cit11 doi: 10.1021/ja01226a046 – ident: ref38/cit38 doi: 10.1016/S0925-8388(00)01229-9 – ident: ref34/cit34 doi: 10.1021/ic0109546 – ident: ref2/cit2 doi: 10.1021/om0109051 – volume-title: Ullmann’s Encyclopedia of Industrial Chemistry year: 2000 ident: ref29/cit29 |
SSID | ssj0005544 |
Score | 2.3812373 |
Snippet | We disclose the direct synthesis of methylmethoxysilanes from pentacopper silicide, Cu5Si, and dimethyl carbonate, DMC, affording high levels of dimethylsilyl... We disclose the direct synthesis of methylmethoxysilanes from pentacopper silicide, Cu₅Si, and dimethyl carbonate, DMC, affording high levels of dimethylsilyl... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7457 |
SubjectTerms | carbonates catalysts organosilicon compounds oxidation silane tin X-ray photoelectron spectroscopy |
Title | Toward a New Direct Process: Synthesis of Methylmethoxysilanes from Dimethyl Carbonate and Pentacopper Silicide |
URI | http://dx.doi.org/10.1021/acs.iecr.0c00505 https://www.proquest.com/docview/2439385739 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEA_qveiD3oei3nlEuHu4h-62-WrrmywncqAc7C7sW0mmCRTXdtnugvrX3yRb9fxAfG2bEGaSmV86M78h5Ae6bJE7riOdSx4JkatIG-OiFHKXOqVLJX2B88WlOh-LPxM5eaTJeR7BZ0lfQ9urEEL1Yght19bJB6ay1PPknw6Gj-kcMjRuxUPjK4ky2YUkX5vBOyJonzqip3Y4OJeznVWXojZwEvqckqvecmF6cPeSsfEd6_5ItjuMSU9Xm-ITWbP1Z7L1H_PgF9KMQros1RStHF3ZPdoVDZzQ4W2NuLCtWto4emFRl9PQafoGdeqTY1vqq1Jw2HV4Rwd6bvxfeEt1XdK_Ph0dmtnMzumwmlZQlXaXjM9-jwbnUdd7IdI84YvIx2ddCmWmYxU7FqMrTR2T1onMACCKAstzg-bS8EyVaSwgSYzQoFPUsVDA98hG3dR2n1DphOd4N0bh3QUSjrqDTOPNSQJiE5MfkJ8oq6I7O20RwuIsKfxDL8CiE-AB6d8rrICOwNz30Zi-MeLXw4jZirzjjW-P7_dAgSfMh01Qns2yLRhiNp7JlOeH71zpV7LJ_LU8FhFj38jGYr60R4hdFuZ72LT_AIbA6vc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xcNjlwGMf4o2RlsMeUpLYzoMbqkDlUYRokbhFtmNL0ZakaloJ-PWM3ZTHCqHlkoMTW6MZe-Zz5gXwG002Sw0Vnkg59RhLI09IabxYpSY2kcgjbhOcu5dR54ad3fLbOQhmuTBIRI0r1c6J_1JdIDiwYwUiqZavXPe1L7CAWCS05fKP2r2XqA7u-rfi2bEJRQlvPJPvrWDtkarf2qO36tjZmJNluH6mzoWW_G1NxrKlHv8p3Pgp8ldgqUGc5Gi6RVZhTpffYfFVHcIfUPVd8CwRBHUemWpB0qQQHJLeQ4kosS5qUhnS1SjZges7fY8StqGyNbE5Kjjtzr0jbTGS9p-8JqLMyZUNTlfVcKhHpFcMClXk-ifcnBz32x2v6cTgCRrQsWe9tSZWeSL8yDehj4Y1NiHXhiVSKcRUStNUovKUNIny2GcqCCQTSsQocRYp-gvmy6rUa0C4Ybbiu5QR3mRUQBN8JgLvUVwhUpHpOuwjr7LmJNWZc5KHQWYHLQOzhoHrcDCTW6aacua2q8bggxl_nmcMp6U8Pvh2b7YVMjxv1omC_KwmdRYigqMJj2m68Z-U7sLXTr97kV2cXp5vwrfQXth95oXhFsyPRxO9jahmLHfcPn4CHHbzWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NISF4GAyY2PgyEjzwkDaJ7XzwVhWqfbBpUje0t8h2bClal1RNK23767lz08IQmuAlD04cOXe-D-fufgfwEU22yB1XgcolD4TIk0Bp7YLU5C51iSoTSQXOxyfJ_rk4vJAXGyBXtTC4iBbf1PogPkn1tHQdwkDUp_EKvaleaHwHtgfwkKJ2BJk_GI5_ZXZI38MV5YeKijLZRSf_9gaySaa9a5PuqmRvZ0ZP4cd6hT695LK3mOueuf0DvPG_P-EZbHWeJxsst8o2bNj6OTz5DY_wBTRnPomWKYa6jy21IetKCb6w8U2N3mJbtaxx7Ngihye-__Q1cppSZltGtSo47crfY0M10_Rv3jJVl-yUktRNM53aGRtXk8pUpX0J56NvZ8P9oOvIECge8XlAUVuXmjJTYRK6OEQDm7pYWicybQz6VsbyXKMS1TxLyjQUJoq0UEalyHmRGL4Dm3VT21fApBOE_K51gicaE_EMr5nC85Q06LHofBc-Ia2KTqLawgfL46igQSJg0RFwF_or3hWmgzWn7hqTe2Z8Xs-YLiE97nn2w2o7FCh3FExBejaLtojRk-OZTHm-948rfQ-PTr-Oiu8HJ0ev4XFM5_ZQBHH8Bjbns4V9i87NXL_zW_kn_-f12w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+New+Direct+Process%3A+Synthesis+of+Methylmethoxysilanes+from+Dimethyl+Carbonate+and+Pentacopper+Silicide&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Roberts%2C+John+M.&rft.au=Pushkarev%2C+Vladimir+V.&rft.au=Sturm%2C+Jason+J.&rft.au=Katsoulis%2C+Dimitris+E.&rft.date=2020-04-22&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=59&rft.issue=16&rft.spage=7457&rft.epage=7465&rft_id=info:doi/10.1021%2Facs.iecr.0c00505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_iecr_0c00505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |