Combining FDTD and Curing Kinetic Equations to Model the Degree of Conversion Evolution of UV-Curable Systems
The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evol...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 60; no. 19; pp. 7174 - 7186 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evolves within UV-curable composites or systems in which multidirectional ray propagation and interference are in play. This paper describes a simulation framework for predicting the spatial and temporal eand the propagation is alovolution of DoC within a UV-curable composite. The framework uses Maxwell’s laws of electromagnetic theory and a series of finite-difference time-domain (FDTD) simulations to predict light intensity distribution at different reaction time steps. It also uses curing kinetic models and optical property models to predict DoC and optical properties within a volume. The framework was applied to simulate the photoinduced, free-radical polymerization of poly(ethylene glycol) diacrylate/2,2-dimethoxy-2-phenyl acetophenone (PEGDA/DMPA)-based composites. It was used to study the influence of the resin refractive index, the filler refractive index, and the filler particle size on the spatial and temporal evolution of DoC. The predictions of DoC evolution were in agreement with both theoretical and experimental results published in the research literature. The simulations also revealed that (1) the change of the resin refractive index during polymerization has a significant impact on both light propagation and DoC within a UV-curable composite, (2) smaller fillers scatter more light than larger fillers, and (3) larger refractive index mismatch between the resin and filler leads to more light scattering and greater light attenuation. In turn, this increases the polymerization rate at shallow depths but decreases it at greater depths. |
---|---|
AbstractList | The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evolves within UV-curable composites or systems in which multidirectional ray propagation and interference are in play. This paper describes a simulation framework for predicting the spatial and temporal eand the propagation is alovolution of DoC within a UV-curable composite. The framework uses Maxwell’s laws of electromagnetic theory and a series of finite-difference time-domain (FDTD) simulations to predict light intensity distribution at different reaction time steps. It also uses curing kinetic models and optical property models to predict DoC and optical properties within a volume. The framework was applied to simulate the photoinduced, free-radical polymerization of poly(ethylene glycol) diacrylate/2,2-dimethoxy-2-phenyl acetophenone (PEGDA/DMPA)-based composites. It was used to study the influence of the resin refractive index, the filler refractive index, and the filler particle size on the spatial and temporal evolution of DoC. The predictions of DoC evolution were in agreement with both theoretical and experimental results published in the research literature. The simulations also revealed that (1) the change of the resin refractive index during polymerization has a significant impact on both light propagation and DoC within a UV-curable composite, (2) smaller fillers scatter more light than larger fillers, and (3) larger refractive index mismatch between the resin and filler leads to more light scattering and greater light attenuation. In turn, this increases the polymerization rate at shallow depths but decreases it at greater depths. The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evolves within UV-curable composites or systems in which multidirectional ray propagation and interference are in play. This paper describes a simulation framework for predicting the spatial and temporal eand the propagation is alovolution of DoC within a UV-curable composite. The framework uses Maxwell’s laws of electromagnetic theory and a series of finite-difference time-domain (FDTD) simulations to predict light intensity distribution at different reaction time steps. It also uses curing kinetic models and optical property models to predict DoC and optical properties within a volume. The framework was applied to simulate the photoinduced, free-radical polymerization of poly(ethylene glycol) diacrylate/2,2-dimethoxy-2-phenyl acetophenone (PEGDA/DMPA)-based composites. It was used to study the influence of the resin refractive index, the filler refractive index, and the filler particle size on the spatial and temporal evolution of DoC. The predictions of DoC evolution were in agreement with both theoretical and experimental results published in the research literature. The simulations also revealed that (1) the change of the resin refractive index during polymerization has a significant impact on both light propagation and DoC within a UV-curable composite, (2) smaller fillers scatter more light than larger fillers, and (3) larger refractive index mismatch between the resin and filler leads to more light scattering and greater light attenuation. In turn, this increases the polymerization rate at shallow depths but decreases it at greater depths. |
Author | DeMeter, Edward C Basu, Saurabh Xie, Haochen |
AuthorAffiliation | Department of Manufacturing and Industrial Engineering |
AuthorAffiliation_xml | – name: Department of Manufacturing and Industrial Engineering |
Author_xml | – sequence: 1 givenname: Haochen orcidid: 0000-0003-0730-8852 surname: Xie fullname: Xie, Haochen email: hzx5057@psu.edu – sequence: 2 givenname: Saurabh surname: Basu fullname: Basu, Saurabh – sequence: 3 givenname: Edward C surname: DeMeter fullname: DeMeter, Edward C |
BookMark | eNp9kLtPwzAQhy0EEuWxM3pkIMWPuDEjSltAgBh4rJHjnIurxAbbqdT_noQyIcF0urvvd9J9R2jfeQcInVEypYTRS6Xj1IIOU6oJZZTvoQkVjGSC5GIfTYiUMhNSikN0FOOaECJEnk9QV_quts66FV7OX-ZYuQaXfRj7e-sgWY0Xn71K1ruIk8ePvoEWp3fAc1gFAOwNLr3bQIgDghcb3_YjPM5f37LhlKpbwM_bmKCLJ-jAqDbC6U89Rq_LxUt5mz083dyV1w-Z4pSnrKC51Kwgks64UVAYelU3DTA-40D5leG8YLSBnORaMqMN0yIvSFMrkKaRNfBjdL67-xH8Zw8xVZ2NGtpWOfB9rJiYUcFJTuWAznaoDj7GAKbSNn3_m4KybUVJNfqtBr_V6Lf68TsEya_gR7CdCtv_Ihe7yLhZ-z64QcLf-Bf9u5FS |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2022_11_193 crossref_primary_10_3390_polym13152573 crossref_primary_10_1016_j_oceram_2023_100531 |
Cites_doi | 10.1016/S0969-806X(99)00257-1 10.1007/s10853-005-5689-y 10.1016/j.jmps.2014.05.008 10.1002/mats.200500056 10.1021/acs.macromol.7b01274 10.1016/B978-008044288-4/50028-5 10.1002/polb.1987.090250914 10.1147/rd.112.0215 10.1007/s40496-014-0029-4 10.1016/j.dental.2005.11.009 10.1016/S0022-4073(03)00114-6 10.1021/ma5021215 10.1109/TAP.1966.1138693 10.1109/TMAG.2007.915299 10.1016/j.dental.2008.01.014 10.1002/app.34473 10.1081/MC-120015988 10.1080/09500340.2019.1674934 10.1016/j.jmps.2017.11.018 10.1021/la049501e 10.24423/AOM.234 10.1023/A:1016102210277 10.1117/1.JMM.12.2.023005 10.4317/jced.53356 10.1016/j.dental.2013.10.011 10.1002/(SICI)1097-0126(199702)42:2<179::AID-PI701>3.0.CO;2-2 10.1016/j.jmps.2009.03.003 10.1016/S0079-6700(01)00004-1 10.1515/chem-2018-0090 10.4012/dmj.24.403 10.1080/15583726908545897 10.1109/8.558653 10.1021/ie800887v 10.1002/aic.10666 10.1002/macp.1994.021950212 10.1016/j.actbio.2009.11.006 10.1016/j.polymer.2008.08.051 10.35848/1882-0786/ab9ba3 10.1364/JOSAA.13.002072 10.1016/0032-3861(95)96832-S 10.1179/1433075X12Y.0000000072 10.1016/S0014-3057(99)00287-6 10.1016/j.dental.2005.03.014 10.1016/j.dental.2011.07.010 10.1021/acs.chemrev.5b00671 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.1c01213 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 7186 |
ExternalDocumentID | 10_1021_acs_iecr_1c01213 d276670179 |
GroupedDBID | .K2 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 JG JG~ K2 LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC 53G 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV BAANH CITATION CUPRZ ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-7148c2708163fae7f19bdde2363e139f33721de404c82fcf2c5470dbae8fd8be3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Fri Jul 11 01:09:49 EDT 2025 Tue Jul 01 04:23:47 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Fri May 21 13:58:51 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-7148c2708163fae7f19bdde2363e139f33721de404c82fcf2c5470dbae8fd8be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0730-8852 |
PQID | 2561530418 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2561530418 crossref_citationtrail_10_1021_acs_iecr_1c01213 crossref_primary_10_1021_acs_iecr_1c01213 acs_journals_10_1021_acs_iecr_1c01213 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-19 |
PublicationDateYYYYMMDD | 2021-05-19 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1016/S0969-806X(99)00257-1 – ident: ref7/cit7 doi: 10.1007/s10853-005-5689-y – ident: ref18/cit18 doi: 10.1016/j.jmps.2014.05.008 – ident: ref14/cit14 doi: 10.1002/mats.200500056 – ident: ref29/cit29 doi: 10.1021/acs.macromol.7b01274 – ident: ref28/cit28 doi: 10.1016/B978-008044288-4/50028-5 – ident: ref8/cit8 doi: 10.1002/polb.1987.090250914 – ident: ref39/cit39 doi: 10.1147/rd.112.0215 – ident: ref20/cit20 doi: 10.1007/s40496-014-0029-4 – ident: ref46/cit46 doi: 10.1016/j.dental.2005.11.009 – ident: ref17/cit17 doi: 10.1016/S0022-4073(03)00114-6 – ident: ref31/cit31 doi: 10.1021/ma5021215 – ident: ref23/cit23 doi: 10.1109/TAP.1966.1138693 – ident: ref26/cit26 doi: 10.1109/TMAG.2007.915299 – ident: ref47/cit47 doi: 10.1016/j.dental.2008.01.014 – ident: ref43/cit43 doi: 10.1002/app.34473 – ident: ref40/cit40 – ident: ref1/cit1 doi: 10.1081/MC-120015988 – ident: ref27/cit27 doi: 10.1080/09500340.2019.1674934 – ident: ref19/cit19 doi: 10.1016/j.jmps.2017.11.018 – ident: ref13/cit13 doi: 10.1021/la049501e – ident: ref11/cit11 doi: 10.24423/AOM.234 – ident: ref49/cit49 doi: 10.1023/A:1016102210277 – ident: ref33/cit33 doi: 10.1117/1.JMM.12.2.023005 – ident: ref38/cit38 – ident: ref48/cit48 doi: 10.4317/jced.53356 – ident: ref45/cit45 doi: 10.1016/j.dental.2013.10.011 – ident: ref36/cit36 doi: 10.1002/(SICI)1097-0126(199702)42:2<179::AID-PI701>3.0.CO;2-2 – ident: ref32/cit32 doi: 10.1016/j.jmps.2009.03.003 – ident: ref2/cit2 doi: 10.1016/S0079-6700(01)00004-1 – ident: ref44/cit44 doi: 10.1515/chem-2018-0090 – ident: ref22/cit22 doi: 10.4012/dmj.24.403 – ident: ref9/cit9 doi: 10.1080/15583726908545897 – ident: ref25/cit25 doi: 10.1109/8.558653 – ident: ref30/cit30 doi: 10.1002/mats.200500056 – ident: ref37/cit37 doi: 10.1021/ie800887v – ident: ref34/cit34 doi: 10.1002/aic.10666 – ident: ref35/cit35 doi: 10.1002/macp.1994.021950212 – ident: ref21/cit21 doi: 10.1016/j.actbio.2009.11.006 – ident: ref15/cit15 doi: 10.1016/j.polymer.2008.08.051 – ident: ref41/cit41 doi: 10.35848/1882-0786/ab9ba3 – ident: ref24/cit24 doi: 10.1364/JOSAA.13.002072 – ident: ref4/cit4 doi: 10.1016/0032-3861(95)96832-S – ident: ref6/cit6 doi: 10.1179/1433075X12Y.0000000072 – ident: ref5/cit5 doi: 10.1016/S0014-3057(99)00287-6 – ident: ref16/cit16 doi: 10.1021/ma5021215 – ident: ref10/cit10 doi: 10.1016/j.dental.2005.03.014 – ident: ref42/cit42 doi: 10.1016/j.dental.2011.07.010 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.5b00671 |
SSID | ssj0005544 |
Score | 2.3709276 |
Snippet | The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7174 |
SubjectTerms | acetophenones evolution light intensity Materials and Interfaces particle size polymerization process design refractive index |
Title | Combining FDTD and Curing Kinetic Equations to Model the Degree of Conversion Evolution of UV-Curable Systems |
URI | http://dx.doi.org/10.1021/acs.iecr.1c01213 https://www.proquest.com/docview/2561530418 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDI54LDDwRrwVJBgYerRJ2qYjuodOIFjgEFuVpImEgB7QHgO_HjvX4y3EGiVRlNqxXdvfR8iBU9olhqnAKm0DIeIsyIywQRbLUIeJEZHDbuTzi6Q_EKc38c0HTM73DD6LjpWpWrfgQrUi4_HHpsksS2SKgdZJ-_KjnCP2xK2gNNhJJOMmJfnbDmiITPXVEH19h71x6S2OWYoqj0mINSV3rVGtW-b1J2LjP869RBYaH5OejIVimUzZcoXMf0IeXCUP8A5ozw1Be52rDlVlQdu-Y5GewSxYSLtPYxTwitZDipRp9xScRdqxEKFbOnS0jQXr_m8b7b40Eozjg2tEfcKWLNrgoa-RQa971e4HDfNCoHjE6yCFIMmwFEk5uFM2dVGm4R1kPOEWXEbHOQSOhRWhMJI545iJRRoWWlnpCqktXycz5bC0G4SmEDIxFupMcScUlxrEIUu5KjLOtZbJJjmEm8obzalynxRnUY6DeH15c32b5HjyuXLTwJcji8b9HyuO3lc8jqE7_pi7P5GAHPQLkyaqtMNRlYNLCEYhFJHc-udJt8kcw8IXhHjNdshM_Tyyu-C51HrPi-wbf2_pTg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcWlqo6AuMVA4csk1s53Vc7UNLXwfYRb1FtmNLiJKlTbaH_vrOeLPbFqGKXi3bGjljzzeZmW8ADp3SLjFcBVZpG0gZ50FupA3yOAt1mBgZOapGPjtPRhN5fBFfrEC0qIVBIWrcqfZB_Ht2geiIxn4ikupExtOQvYA1xCKc_K1u7_t9Vkfs-7fi3aGCoixuI5P_2oHskakf26PHz7G3McMN-LaUzqeW_OrMGt0xt38RNz5L_Dew3iJO1p2ryCas2GoLXj_gIXwLv_FV0L5TBBv2x32mqpL1fP0iO8FZuJANruac4DVrpowaqF0yhI6sb9Fft2zqWI_S1_2_Nza4afWZxic_iAOKCrRYy47-DibDwbg3Cto-DIESkWiCFF0mw1Nq0SGcsqmLco2vIheJsAggnRDoRpZWhtJk3BnHTSzTsNTKZq7MtBXbsFpNK_seWIoOFOehzpVwUolMo3LkqVBlLoTWWbIDn_GkivYe1YUPkfOooEE6vqI9vh04Wny1wrRk5tRT4_KJFV-WK_7MiTyemPtpoQgF3jYKoajKTmd1gQARTUQoo2z3PyX9CC9H47PT4vTr-ckevOKUEkPkr_k-rDbXM3uAmKbRH7wW3wH8ufGv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlSo4lD5A0EJxJTj0kCWxndcR7UNQWoQEi7hFtmNLqDQLJNtDf31nvF4KVYXo1bItx55nZuYbgF2ntMsMV5FV2kZSpmVUGmmjMi1iHWdGJo6qkb-dZIdj-eUyvVyAdF4Lg4docafWB_GJq29qFxAGkn0av0JrqpcYD0W2CC8oakc-10H_7E9mR-p7uCL_UFFRkYbo5L92IJ1k2sc66bFI9npmtAoX9yf06SXfe9NO98yvv8Ab__sTXsOrYHmygxmpvIEF27yFlQd4hO_gB0oH7TtGsNHgfMBUU7O-r2NkxzgLF7Lh7QwbvGXdhFEjtWuGJiQbWPTbLZs41qc0dv8Pjg1_Brqm8fEFYUFRoRYLKOlrMB4Nz_uHUejHECmRiC7K0XUyPKdWHcIpm7uk1CgduciERUPSCYHuZG1lLE3BnXHcpDKPa61s4epCW7EOS82ksRvAcnSkOI91qYSTShQaiaTMhapLIbQusk3Yw5uqAj-1lQ-V86SiQbq-KlzfJuzPX64yAdScemtcP7Hi8_2KmxmgxxNzP82JoUKuo1CKauxk2lZoKKKqiGVSvH_mSXfg5elgVH09Ojn-AMucMmMIA7bcgqXubmq30bTp9EdPyL8B4Bj0Mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+FDTD+and+Curing+Kinetic+Equations+to+Model+the+Degree+of+Conversion+Evolution+of+UV-Curable+Systems&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Xie%2C+Haochen&rft.au=Basu%2C+Saurabh&rft.au=De+Meter%2C+Edward+C&rft.date=2021-05-19&rft.issn=1520-5045&rft.volume=60&rft.issue=19+p.7174-7186&rft.spage=7174&rft.epage=7186&rft_id=info:doi/10.1021%2Facs.iecr.1c01213&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |