Combining FDTD and Curing Kinetic Equations to Model the Degree of Conversion Evolution of UV-Curable Systems

The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evol...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 60; no. 19; pp. 7174 - 7186
Main Authors Xie, Haochen, Basu, Saurabh, DeMeter, Edward C
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evolves within UV-curable composites or systems in which multidirectional ray propagation and interference are in play. This paper describes a simulation framework for predicting the spatial and temporal eand the propagation is alovolution of DoC within a UV-curable composite. The framework uses Maxwell’s laws of electromagnetic theory and a series of finite-difference time-domain (FDTD) simulations to predict light intensity distribution at different reaction time steps. It also uses curing kinetic models and optical property models to predict DoC and optical properties within a volume. The framework was applied to simulate the photoinduced, free-radical polymerization of poly­(ethylene glycol) diacrylate/2,2-dimethoxy-2-phenyl acetophenone (PEGDA/DMPA)-based composites. It was used to study the influence of the resin refractive index, the filler refractive index, and the filler particle size on the spatial and temporal evolution of DoC. The predictions of DoC evolution were in agreement with both theoretical and experimental results published in the research literature. The simulations also revealed that (1) the change of the resin refractive index during polymerization has a significant impact on both light propagation and DoC within a UV-curable composite, (2) smaller fillers scatter more light than larger fillers, and (3) larger refractive index mismatch between the resin and filler leads to more light scattering and greater light attenuation. In turn, this increases the polymerization rate at shallow depths but decreases it at greater depths.
AbstractList The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evolves within UV-curable composites or systems in which multidirectional ray propagation and interference are in play. This paper describes a simulation framework for predicting the spatial and temporal eand the propagation is alovolution of DoC within a UV-curable composite. The framework uses Maxwell’s laws of electromagnetic theory and a series of finite-difference time-domain (FDTD) simulations to predict light intensity distribution at different reaction time steps. It also uses curing kinetic models and optical property models to predict DoC and optical properties within a volume. The framework was applied to simulate the photoinduced, free-radical polymerization of poly­(ethylene glycol) diacrylate/2,2-dimethoxy-2-phenyl acetophenone (PEGDA/DMPA)-based composites. It was used to study the influence of the resin refractive index, the filler refractive index, and the filler particle size on the spatial and temporal evolution of DoC. The predictions of DoC evolution were in agreement with both theoretical and experimental results published in the research literature. The simulations also revealed that (1) the change of the resin refractive index during polymerization has a significant impact on both light propagation and DoC within a UV-curable composite, (2) smaller fillers scatter more light than larger fillers, and (3) larger refractive index mismatch between the resin and filler leads to more light scattering and greater light attenuation. In turn, this increases the polymerization rate at shallow depths but decreases it at greater depths.
The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight into how DoC evolves with depth for a pure resin subject to plane wave, light propagation. However, they do not accurately describe how DoC evolves within UV-curable composites or systems in which multidirectional ray propagation and interference are in play. This paper describes a simulation framework for predicting the spatial and temporal eand the propagation is alovolution of DoC within a UV-curable composite. The framework uses Maxwell’s laws of electromagnetic theory and a series of finite-difference time-domain (FDTD) simulations to predict light intensity distribution at different reaction time steps. It also uses curing kinetic models and optical property models to predict DoC and optical properties within a volume. The framework was applied to simulate the photoinduced, free-radical polymerization of poly(ethylene glycol) diacrylate/2,2-dimethoxy-2-phenyl acetophenone (PEGDA/DMPA)-based composites. It was used to study the influence of the resin refractive index, the filler refractive index, and the filler particle size on the spatial and temporal evolution of DoC. The predictions of DoC evolution were in agreement with both theoretical and experimental results published in the research literature. The simulations also revealed that (1) the change of the resin refractive index during polymerization has a significant impact on both light propagation and DoC within a UV-curable composite, (2) smaller fillers scatter more light than larger fillers, and (3) larger refractive index mismatch between the resin and filler leads to more light scattering and greater light attenuation. In turn, this increases the polymerization rate at shallow depths but decreases it at greater depths.
Author DeMeter, Edward C
Basu, Saurabh
Xie, Haochen
AuthorAffiliation Department of Manufacturing and Industrial Engineering
AuthorAffiliation_xml – name: Department of Manufacturing and Industrial Engineering
Author_xml – sequence: 1
  givenname: Haochen
  orcidid: 0000-0003-0730-8852
  surname: Xie
  fullname: Xie, Haochen
  email: hzx5057@psu.edu
– sequence: 2
  givenname: Saurabh
  surname: Basu
  fullname: Basu, Saurabh
– sequence: 3
  givenname: Edward C
  surname: DeMeter
  fullname: DeMeter, Edward C
BookMark eNp9kLtPwzAQhy0EEuWxM3pkIMWPuDEjSltAgBh4rJHjnIurxAbbqdT_noQyIcF0urvvd9J9R2jfeQcInVEypYTRS6Xj1IIOU6oJZZTvoQkVjGSC5GIfTYiUMhNSikN0FOOaECJEnk9QV_quts66FV7OX-ZYuQaXfRj7e-sgWY0Xn71K1ruIk8ePvoEWp3fAc1gFAOwNLr3bQIgDghcb3_YjPM5f37LhlKpbwM_bmKCLJ-jAqDbC6U89Rq_LxUt5mz083dyV1w-Z4pSnrKC51Kwgks64UVAYelU3DTA-40D5leG8YLSBnORaMqMN0yIvSFMrkKaRNfBjdL67-xH8Zw8xVZ2NGtpWOfB9rJiYUcFJTuWAznaoDj7GAKbSNn3_m4KybUVJNfqtBr_V6Lf68TsEya_gR7CdCtv_Ihe7yLhZ-z64QcLf-Bf9u5FS
CitedBy_id crossref_primary_10_1016_j_ceramint_2022_11_193
crossref_primary_10_3390_polym13152573
crossref_primary_10_1016_j_oceram_2023_100531
Cites_doi 10.1016/S0969-806X(99)00257-1
10.1007/s10853-005-5689-y
10.1016/j.jmps.2014.05.008
10.1002/mats.200500056
10.1021/acs.macromol.7b01274
10.1016/B978-008044288-4/50028-5
10.1002/polb.1987.090250914
10.1147/rd.112.0215
10.1007/s40496-014-0029-4
10.1016/j.dental.2005.11.009
10.1016/S0022-4073(03)00114-6
10.1021/ma5021215
10.1109/TAP.1966.1138693
10.1109/TMAG.2007.915299
10.1016/j.dental.2008.01.014
10.1002/app.34473
10.1081/MC-120015988
10.1080/09500340.2019.1674934
10.1016/j.jmps.2017.11.018
10.1021/la049501e
10.24423/AOM.234
10.1023/A:1016102210277
10.1117/1.JMM.12.2.023005
10.4317/jced.53356
10.1016/j.dental.2013.10.011
10.1002/(SICI)1097-0126(199702)42:2<179::AID-PI701>3.0.CO;2-2
10.1016/j.jmps.2009.03.003
10.1016/S0079-6700(01)00004-1
10.1515/chem-2018-0090
10.4012/dmj.24.403
10.1080/15583726908545897
10.1109/8.558653
10.1021/ie800887v
10.1002/aic.10666
10.1002/macp.1994.021950212
10.1016/j.actbio.2009.11.006
10.1016/j.polymer.2008.08.051
10.35848/1882-0786/ab9ba3
10.1364/JOSAA.13.002072
10.1016/0032-3861(95)96832-S
10.1179/1433075X12Y.0000000072
10.1016/S0014-3057(99)00287-6
10.1016/j.dental.2005.03.014
10.1016/j.dental.2011.07.010
10.1021/acs.chemrev.5b00671
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.1c01213
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 7186
ExternalDocumentID 10_1021_acs_iecr_1c01213
d276670179
GroupedDBID .K2
02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
53G
6TJ
AAYXX
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
~02
7S9
L.6
ID FETCH-LOGICAL-a313t-7148c2708163fae7f19bdde2363e139f33721de404c82fcf2c5470dbae8fd8be3
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Fri Jul 11 01:09:49 EDT 2025
Tue Jul 01 04:23:47 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Fri May 21 13:58:51 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-7148c2708163fae7f19bdde2363e139f33721de404c82fcf2c5470dbae8fd8be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0730-8852
PQID 2561530418
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2561530418
crossref_citationtrail_10_1021_acs_iecr_1c01213
crossref_primary_10_1021_acs_iecr_1c01213
acs_journals_10_1021_acs_iecr_1c01213
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-19
PublicationDateYYYYMMDD 2021-05-19
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-19
  day: 19
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1016/S0969-806X(99)00257-1
– ident: ref7/cit7
  doi: 10.1007/s10853-005-5689-y
– ident: ref18/cit18
  doi: 10.1016/j.jmps.2014.05.008
– ident: ref14/cit14
  doi: 10.1002/mats.200500056
– ident: ref29/cit29
  doi: 10.1021/acs.macromol.7b01274
– ident: ref28/cit28
  doi: 10.1016/B978-008044288-4/50028-5
– ident: ref8/cit8
  doi: 10.1002/polb.1987.090250914
– ident: ref39/cit39
  doi: 10.1147/rd.112.0215
– ident: ref20/cit20
  doi: 10.1007/s40496-014-0029-4
– ident: ref46/cit46
  doi: 10.1016/j.dental.2005.11.009
– ident: ref17/cit17
  doi: 10.1016/S0022-4073(03)00114-6
– ident: ref31/cit31
  doi: 10.1021/ma5021215
– ident: ref23/cit23
  doi: 10.1109/TAP.1966.1138693
– ident: ref26/cit26
  doi: 10.1109/TMAG.2007.915299
– ident: ref47/cit47
  doi: 10.1016/j.dental.2008.01.014
– ident: ref43/cit43
  doi: 10.1002/app.34473
– ident: ref40/cit40
– ident: ref1/cit1
  doi: 10.1081/MC-120015988
– ident: ref27/cit27
  doi: 10.1080/09500340.2019.1674934
– ident: ref19/cit19
  doi: 10.1016/j.jmps.2017.11.018
– ident: ref13/cit13
  doi: 10.1021/la049501e
– ident: ref11/cit11
  doi: 10.24423/AOM.234
– ident: ref49/cit49
  doi: 10.1023/A:1016102210277
– ident: ref33/cit33
  doi: 10.1117/1.JMM.12.2.023005
– ident: ref38/cit38
– ident: ref48/cit48
  doi: 10.4317/jced.53356
– ident: ref45/cit45
  doi: 10.1016/j.dental.2013.10.011
– ident: ref36/cit36
  doi: 10.1002/(SICI)1097-0126(199702)42:2<179::AID-PI701>3.0.CO;2-2
– ident: ref32/cit32
  doi: 10.1016/j.jmps.2009.03.003
– ident: ref2/cit2
  doi: 10.1016/S0079-6700(01)00004-1
– ident: ref44/cit44
  doi: 10.1515/chem-2018-0090
– ident: ref22/cit22
  doi: 10.4012/dmj.24.403
– ident: ref9/cit9
  doi: 10.1080/15583726908545897
– ident: ref25/cit25
  doi: 10.1109/8.558653
– ident: ref30/cit30
  doi: 10.1002/mats.200500056
– ident: ref37/cit37
  doi: 10.1021/ie800887v
– ident: ref34/cit34
  doi: 10.1002/aic.10666
– ident: ref35/cit35
  doi: 10.1002/macp.1994.021950212
– ident: ref21/cit21
  doi: 10.1016/j.actbio.2009.11.006
– ident: ref15/cit15
  doi: 10.1016/j.polymer.2008.08.051
– ident: ref41/cit41
  doi: 10.35848/1882-0786/ab9ba3
– ident: ref24/cit24
  doi: 10.1364/JOSAA.13.002072
– ident: ref4/cit4
  doi: 10.1016/0032-3861(95)96832-S
– ident: ref6/cit6
  doi: 10.1179/1433075X12Y.0000000072
– ident: ref5/cit5
  doi: 10.1016/S0014-3057(99)00287-6
– ident: ref16/cit16
  doi: 10.1021/ma5021215
– ident: ref10/cit10
  doi: 10.1016/j.dental.2005.03.014
– ident: ref42/cit42
  doi: 10.1016/j.dental.2011.07.010
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.5b00671
SSID ssj0005544
Score 2.3709276
Snippet The degree of conversion (DoC) is significantly linked with many material properties of a UV-cured resin. The current curing kinetic models provide insight...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7174
SubjectTerms acetophenones
evolution
light intensity
Materials and Interfaces
particle size
polymerization
process design
refractive index
Title Combining FDTD and Curing Kinetic Equations to Model the Degree of Conversion Evolution of UV-Curable Systems
URI http://dx.doi.org/10.1021/acs.iecr.1c01213
https://www.proquest.com/docview/2561530418
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDI54LDDwRrwVJBgYerRJ2qYjuodOIFjgEFuVpImEgB7QHgO_HjvX4y3EGiVRlNqxXdvfR8iBU9olhqnAKm0DIeIsyIywQRbLUIeJEZHDbuTzi6Q_EKc38c0HTM73DD6LjpWpWrfgQrUi4_HHpsksS2SKgdZJ-_KjnCP2xK2gNNhJJOMmJfnbDmiITPXVEH19h71x6S2OWYoqj0mINSV3rVGtW-b1J2LjP869RBYaH5OejIVimUzZcoXMf0IeXCUP8A5ozw1Be52rDlVlQdu-Y5GewSxYSLtPYxTwitZDipRp9xScRdqxEKFbOnS0jQXr_m8b7b40Eozjg2tEfcKWLNrgoa-RQa971e4HDfNCoHjE6yCFIMmwFEk5uFM2dVGm4R1kPOEWXEbHOQSOhRWhMJI545iJRRoWWlnpCqktXycz5bC0G4SmEDIxFupMcScUlxrEIUu5KjLOtZbJJjmEm8obzalynxRnUY6DeH15c32b5HjyuXLTwJcji8b9HyuO3lc8jqE7_pi7P5GAHPQLkyaqtMNRlYNLCEYhFJHc-udJt8kcw8IXhHjNdshM_Tyyu-C51HrPi-wbf2_pTg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcWlqo6AuMVA4csk1s53Vc7UNLXwfYRb1FtmNLiJKlTbaH_vrOeLPbFqGKXi3bGjljzzeZmW8ADp3SLjFcBVZpG0gZ50FupA3yOAt1mBgZOapGPjtPRhN5fBFfrEC0qIVBIWrcqfZB_Ht2geiIxn4ikupExtOQvYA1xCKc_K1u7_t9Vkfs-7fi3aGCoixuI5P_2oHskakf26PHz7G3McMN-LaUzqeW_OrMGt0xt38RNz5L_Dew3iJO1p2ryCas2GoLXj_gIXwLv_FV0L5TBBv2x32mqpL1fP0iO8FZuJANruac4DVrpowaqF0yhI6sb9Fft2zqWI_S1_2_Nza4afWZxic_iAOKCrRYy47-DibDwbg3Cto-DIESkWiCFF0mw1Nq0SGcsqmLco2vIheJsAggnRDoRpZWhtJk3BnHTSzTsNTKZq7MtBXbsFpNK_seWIoOFOehzpVwUolMo3LkqVBlLoTWWbIDn_GkivYe1YUPkfOooEE6vqI9vh04Wny1wrRk5tRT4_KJFV-WK_7MiTyemPtpoQgF3jYKoajKTmd1gQARTUQoo2z3PyX9CC9H47PT4vTr-ckevOKUEkPkr_k-rDbXM3uAmKbRH7wW3wH8ufGv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BlSo4lD5A0EJxJTj0kCWxndcR7UNQWoQEi7hFtmNLqDQLJNtDf31nvF4KVYXo1bItx55nZuYbgF2ntMsMV5FV2kZSpmVUGmmjMi1iHWdGJo6qkb-dZIdj-eUyvVyAdF4Lg4docafWB_GJq29qFxAGkn0av0JrqpcYD0W2CC8oakc-10H_7E9mR-p7uCL_UFFRkYbo5L92IJ1k2sc66bFI9npmtAoX9yf06SXfe9NO98yvv8Ab__sTXsOrYHmygxmpvIEF27yFlQd4hO_gB0oH7TtGsNHgfMBUU7O-r2NkxzgLF7Lh7QwbvGXdhFEjtWuGJiQbWPTbLZs41qc0dv8Pjg1_Brqm8fEFYUFRoRYLKOlrMB4Nz_uHUejHECmRiC7K0XUyPKdWHcIpm7uk1CgduciERUPSCYHuZG1lLE3BnXHcpDKPa61s4epCW7EOS82ksRvAcnSkOI91qYSTShQaiaTMhapLIbQusk3Yw5uqAj-1lQ-V86SiQbq-KlzfJuzPX64yAdScemtcP7Hi8_2KmxmgxxNzP82JoUKuo1CKauxk2lZoKKKqiGVSvH_mSXfg5elgVH09Ojn-AMucMmMIA7bcgqXubmq30bTp9EdPyL8B4Bj0Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+FDTD+and+Curing+Kinetic+Equations+to+Model+the+Degree+of+Conversion+Evolution+of+UV-Curable+Systems&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Xie%2C+Haochen&rft.au=Basu%2C+Saurabh&rft.au=De+Meter%2C+Edward+C&rft.date=2021-05-19&rft.issn=1520-5045&rft.volume=60&rft.issue=19+p.7174-7186&rft.spage=7174&rft.epage=7186&rft_id=info:doi/10.1021%2Facs.iecr.1c01213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon