Face or Edge? Control of Molybdenite Surface Interactions with Divalent Cations

Molybdenite, MoS2, a 2-D transition metal dichalcogenide, is a potential substitute for graphene. Molybdenite mineral particles are separated from gangue minerals by flotation, a process often performed in saline waters, where the presence of divalent cations can cause serious selectivity issues. A...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 124; no. 1; pp. 372 - 381
Main Authors Lu, Zhenzhen, Ralston, John, Liu, Qingxia
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.01.2020
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
1932-7455
DOI10.1021/acs.jpcc.9b07632

Cover

Loading…
Abstract Molybdenite, MoS2, a 2-D transition metal dichalcogenide, is a potential substitute for graphene. Molybdenite mineral particles are separated from gangue minerals by flotation, a process often performed in saline waters, where the presence of divalent cations can cause serious selectivity issues. A fundamental question is posed: how do divalent cations, which are subject to hydrolysis as a function of pH, interact with anisotropic molybdenite surfaces? By use of a combination of atomic force microscopy (AFM) surface force measurements with time-of-flight secondary ion mass spectrometry (ToF-SIMS) surface spectroscopy, the surface potentials and surface ion species of MoS2 immersed in aqueous MgCl2 and CaCl2 solutions were distinguished for the face and the edge surfaces, respectively, for the first time. The adsorption mechanisms of MgII and CaII on anisotropic MoS2 surfaces are revealed as a function of pH, ion species in solution, and solid characteristics (dielectric constant and surface chemical groups). As a consequence of these fundamental insights, improved particle flotation pathways are available.
AbstractList Molybdenite, MoS2, a 2-D transition metal dichalcogenide, is a potential substitute for graphene. Molybdenite mineral particles are separated from gangue minerals by flotation, a process often performed in saline waters, where the presence of divalent cations can cause serious selectivity issues. A fundamental question is posed: how do divalent cations, which are subject to hydrolysis as a function of pH, interact with anisotropic molybdenite surfaces? By use of a combination of atomic force microscopy (AFM) surface force measurements with time-of-flight secondary ion mass spectrometry (ToF-SIMS) surface spectroscopy, the surface potentials and surface ion species of MoS2 immersed in aqueous MgCl2 and CaCl2 solutions were distinguished for the face and the edge surfaces, respectively, for the first time. The adsorption mechanisms of MgII and CaII on anisotropic MoS2 surfaces are revealed as a function of pH, ion species in solution, and solid characteristics (dielectric constant and surface chemical groups). As a consequence of these fundamental insights, improved particle flotation pathways are available.
Molybdenite, MoS₂, a 2-D transition metal dichalcogenide, is a potential substitute for graphene. Molybdenite mineral particles are separated from gangue minerals by flotation, a process often performed in saline waters, where the presence of divalent cations can cause serious selectivity issues. A fundamental question is posed: how do divalent cations, which are subject to hydrolysis as a function of pH, interact with anisotropic molybdenite surfaces? By use of a combination of atomic force microscopy (AFM) surface force measurements with time-of-flight secondary ion mass spectrometry (ToF-SIMS) surface spectroscopy, the surface potentials and surface ion species of MoS₂ immersed in aqueous MgCl₂ and CaCl₂ solutions were distinguished for the face and the edge surfaces, respectively, for the first time. The adsorption mechanisms of Mgᴵᴵ and Caᴵᴵ on anisotropic MoS₂ surfaces are revealed as a function of pH, ion species in solution, and solid characteristics (dielectric constant and surface chemical groups). As a consequence of these fundamental insights, improved particle flotation pathways are available.
Author Lu, Zhenzhen
Ralston, John
Liu, Qingxia
AuthorAffiliation Department of Chemical and Materials Engineering
University of South Australia
Future Industries Institute
AuthorAffiliation_xml – name: Department of Chemical and Materials Engineering
– name: Future Industries Institute
– name: University of South Australia
Author_xml – sequence: 1
  givenname: Zhenzhen
  orcidid: 0000-0002-4394-7232
  surname: Lu
  fullname: Lu, Zhenzhen
  organization: Department of Chemical and Materials Engineering
– sequence: 2
  givenname: John
  surname: Ralston
  fullname: Ralston, John
  organization: University of South Australia
– sequence: 3
  givenname: Qingxia
  orcidid: 0000-0002-4587-2086
  surname: Liu
  fullname: Liu, Qingxia
  email: qingxia2@ualberta.ca
  organization: Department of Chemical and Materials Engineering
BookMark eNp9kM1PAyEQxYmpiW317pGjB1thKctyMmZttUlND-qZsCwozRYqsJr-924_4sFET_My895k5jcAPeedBuASozFGGb6RKo5XG6XGvEIsJ9kJ6GNOshGbUNr70RN2BgYxrhCiBGHSB8uZVBr6AKf1m76FpXcp-AZ6A598s61q7WzS8LkNZuebu6SDVMl6F-GXTe_w3n7KRrsES7nvnoNTI5uoL451CF5n05fycbRYPszLu8VIEkzSiCKGeI7yjGlcyAxVNeHGFBRXWOmcS4ZMpzU1XCqV00IhVhlU0-4IrnJGyBBcHfZugv9odUxibaPSTSOd9m0UGSkKRjihqLOig1UFH2PQRmyCXcuwFRiJHTvRsRM7duLIrovkvyLKpv2DKUjb_Be8PgT3E98G10H42_4N7A-HCA
CitedBy_id crossref_primary_10_1002_aenm_202003545
crossref_primary_10_1016_j_colsurfa_2023_132931
crossref_primary_10_30797_madencilik_1125450
crossref_primary_10_1016_j_molliq_2023_121616
crossref_primary_10_1016_j_jcis_2020_03_007
crossref_primary_10_1016_j_mineng_2022_107984
crossref_primary_10_3390_separations8080107
crossref_primary_10_1016_j_seppur_2021_119926
crossref_primary_10_1016_j_colsurfa_2024_135570
crossref_primary_10_1016_j_cis_2022_102710
crossref_primary_10_1016_j_seppur_2025_131849
crossref_primary_10_3390_polym14173680
crossref_primary_10_1016_j_colsurfa_2024_134599
crossref_primary_10_1016_j_seppur_2024_126958
crossref_primary_10_1016_j_cclet_2020_06_036
Cites_doi 10.1016/S0301-7516(03)00003-6
10.1016/0021-9797(72)90172-5
10.1080/08827508.2016.1218871
10.1063/1.1143970
10.1002/cjce.5450850509
10.1039/C8RA02690D
10.1021/ja404523s
10.1016/j.minpro.2009.10.001
10.3390/min7060104
10.1351/pac200577122149
10.1038/nnano.2015.40
10.1021/acs.langmuir.9b00270
10.1016/0021-9797(72)90174-9
10.1021/la802112h
10.1016/0021-9797(73)90226-9
10.1016/j.cis.2010.12.009
10.1103/PhysRevLett.105.136805
10.1021/la960997c
10.1063/1.1699109
10.1016/j.colsurfa.2016.08.059
10.3389/fchem.2018.00361
10.1016/j.minpro.2012.01.004
10.1021/acs.langmuir.6b04611
10.1016/j.molcata.2004.01.010
10.1021/nl903868w
10.1016/j.minpro.2015.09.017
10.1039/C5EE03761A
10.1016/0021-9797(72)90173-7
10.1021/acs.langmuir.6b02224
10.1021/ja201269b
10.1021/acs.langmuir.5b02678
10.14356/kona.2011005
10.1016/0301-7516(88)90012-9
10.1016/j.minpro.2016.01.003
10.1038/s41699-018-0050-x
10.1016/0301-7516(84)90026-7
10.1007/BF01433225
10.1038/nmat3439
10.1016/j.mineng.2016.06.023
10.1016/j.jcis.2013.04.023
10.1038/nnano.2010.279
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.9b07632
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 381
ExternalDocumentID 10_1021_acs_jpcc_9b07632
c582782021
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
EJD
L.6
ID FETCH-LOGICAL-a313t-5070960627e18a20bd39ff851b1ce69a70f51be5f9acc658c07bf0d5ace9c6733
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 02:17:31 EDT 2025
Tue Jul 01 02:17:44 EDT 2025
Thu Apr 24 22:52:10 EDT 2025
Thu Aug 27 22:07:45 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-5070960627e18a20bd39ff851b1ce69a70f51be5f9acc658c07bf0d5ace9c6733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4394-7232
0000-0002-4587-2086
PQID 2388739350
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2388739350
crossref_primary_10_1021_acs_jpcc_9b07632
crossref_citationtrail_10_1021_acs_jpcc_9b07632
acs_journals_10_1021_acs_jpcc_9b07632
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-09
PublicationDateYYYYMMDD 2020-01-09
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-09
  day: 09
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
Hunter R. J. (ref42/cit42) 2001
ref3/cit3
ref27/cit27
ref18/cit18
Israelachvili J. N. (ref35/cit35) 2011
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref46/cit46
Chander S. (ref41/cit41) 1972; 251
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
Castro S. (ref15/cit15) 2012
ref7/cit7
References_xml – ident: ref37/cit37
  doi: 10.1016/S0301-7516(03)00003-6
– ident: ref48/cit48
– ident: ref19/cit19
  doi: 10.1016/0021-9797(72)90172-5
– ident: ref13/cit13
  doi: 10.1080/08827508.2016.1218871
– ident: ref30/cit30
  doi: 10.1063/1.1143970
– ident: ref33/cit33
  doi: 10.1002/cjce.5450850509
– ident: ref17/cit17
  doi: 10.1039/C8RA02690D
– ident: ref2/cit2
  doi: 10.1021/ja404523s
– ident: ref14/cit14
  doi: 10.1016/j.minpro.2009.10.001
– ident: ref25/cit25
  doi: 10.3390/min7060104
– ident: ref31/cit31
  doi: 10.1351/pac200577122149
– volume: 251
  start-page: 62
  year: 1972
  ident: ref41/cit41
  publication-title: Trans. Soc. Mining Eng. AIME
– ident: ref3/cit3
  doi: 10.1038/nnano.2015.40
– ident: ref40/cit40
  doi: 10.1021/acs.langmuir.9b00270
– ident: ref44/cit44
– ident: ref21/cit21
  doi: 10.1016/0021-9797(72)90174-9
– ident: ref29/cit29
  doi: 10.1021/la802112h
– ident: ref34/cit34
  doi: 10.1016/0021-9797(73)90226-9
– ident: ref43/cit43
  doi: 10.1016/j.cis.2010.12.009
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.105.136805
– ident: ref38/cit38
  doi: 10.1021/la960997c
– ident: ref36/cit36
  doi: 10.1063/1.1699109
– volume-title: Intermolecular and Surface Forces
  year: 2011
  ident: ref35/cit35
– ident: ref18/cit18
  doi: 10.1016/j.colsurfa.2016.08.059
– ident: ref27/cit27
  doi: 10.3389/fchem.2018.00361
– ident: ref23/cit23
  doi: 10.1016/j.minpro.2012.01.004
– start-page: 16
  volume-title: XXVI International Mineral Processing Congress (Impc) 2012 Proceedings
  year: 2012
  ident: ref15/cit15
– ident: ref26/cit26
  doi: 10.1021/acs.langmuir.6b04611
– ident: ref45/cit45
  doi: 10.1016/j.molcata.2004.01.010
– ident: ref7/cit7
  doi: 10.1021/nl903868w
– ident: ref12/cit12
  doi: 10.1016/j.minpro.2015.09.017
– ident: ref28/cit28
– ident: ref4/cit4
  doi: 10.1039/C5EE03761A
– ident: ref20/cit20
  doi: 10.1016/0021-9797(72)90173-7
– ident: ref8/cit8
  doi: 10.1021/acs.langmuir.6b02224
– ident: ref10/cit10
  doi: 10.1021/ja201269b
– ident: ref9/cit9
  doi: 10.1021/acs.langmuir.5b02678
– ident: ref11/cit11
  doi: 10.14356/kona.2011005
– ident: ref22/cit22
  doi: 10.1016/0301-7516(88)90012-9
– ident: ref39/cit39
  doi: 10.1016/j.minpro.2016.01.003
– volume-title: Foundations of Colloid Science
  year: 2001
  ident: ref42/cit42
– ident: ref46/cit46
  doi: 10.1038/s41699-018-0050-x
– ident: ref47/cit47
  doi: 10.1016/0301-7516(84)90026-7
– ident: ref32/cit32
  doi: 10.1007/BF01433225
– ident: ref1/cit1
  doi: 10.1038/nmat3439
– ident: ref16/cit16
  doi: 10.1016/j.mineng.2016.06.023
– ident: ref24/cit24
  doi: 10.1016/j.jcis.2013.04.023
– ident: ref5/cit5
  doi: 10.1038/nnano.2010.279
SSID ssj0053013
Score 2.4215813
Snippet Molybdenite, MoS2, a 2-D transition metal dichalcogenide, is a potential substitute for graphene. Molybdenite mineral particles are separated from gangue...
Molybdenite, MoS₂, a 2-D transition metal dichalcogenide, is a potential substitute for graphene. Molybdenite mineral particles are separated from gangue...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 372
SubjectTerms adsorption
anisotropy
atomic force microscopy
calcium chloride
cations
dielectric properties
graphene
hydrolysis
magnesium chloride
mass spectrometry
minerals
molybdenum disulfide
saline water
surface interactions
Title Face or Edge? Control of Molybdenite Surface Interactions with Divalent Cations
URI http://dx.doi.org/10.1021/acs.jpcc.9b07632
https://www.proquest.com/docview/2388739350
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3rxW5xfRNCDh25p07TNSUbdGML0MAe7lSRNRB3rWLeD_vW-tJ0ylbFbKUkbXl7f-7330t9D6NrzmeX44A6T0qZuBHGE1JHDmAJ0HgXEFL0Be49Bd-A_DNnwhybndwXfc5tC5Y23iVINLiHmpmBuN70gCi1PfivuL6wuA0WlZQUZEKPvh1VJ8r8nWEek8mVHtGyHC-fS2S27FOUFJ6E9U_LemM9kQ33-ZWxcY917aKfCmLhVKsU-2tDjA7QVL1q7HaKnjlAaZ1PcTl_0HY7L4-o4M7iXjT4kmCIAorg_nxo7rkgalv8_5NjmbfH9K-gneCscl_m-IzTotJ_jrlN1VnAEdenMARBYhC5eqN1IeESmlBsD4Eu6SgdchMTAtWaGC6UAoygSSkNSBi_lKggpPUa1cTbWJwhDwGOIoUQol_qB9HmqJQ9VqgB5RQDO6ugGJJFUX0aeFEVvz02KmyCepBJPHTUX25Goip7cdskYrZhx-z1jUlJzrBh7tdjhBGRtiyJirLN5ngBkiSwrICOna670DG17Nui2eRh-jmqz6VxfADKZyctCJb8AttHdSw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LHtaLb_FtBD146Jo2TducRKrL-lgFH-CtJGkiPtjKdvegv95J2iqKiN5KaNJhMp35ZiaZQWgnCJmt8cE9JqUN3QjiCakTjzEF6DyJiHG9AfsXUe82PL1jdy3kN3dhgIgSVipdEv-zuoC_b8ceX5TqcAmuNwWtOwlYJLDl8g_T60b5MpBXWiWSATiGYVxnJn9awdojVX61R1_VsbMx3Rl09UGdO1ry1BmPZEe9fSvc-C_yZ9F0jTjxYSUic6ilB_OonTaN3hbQZVcojYshPs7v9QFOq8PruDC4Xzy_SlBMAEvx9Xho7HsuhFjdhiixjeLioweQVrBdOK2if4votnt8k_a8us-CJ6hPRx5AQufIBLH2ExEQmVNuDEAx6SsdcRETA8-aGS6UAsSiSCwNyRl8lKsopnQJTQyKgV5GGNwfQwwlQvk0jGTIcy15rHIFOCwBqLaCdoETWf2flJlLgQd-5gaBPVnNnhW03-xKpupi5bZnxvMvM_Y-ZrxUhTp-eXe72egMeG1TJGKgi3GZAYBJbI1ARlb_SOkWavdu-ufZ-cnF2RqaCqw7biM0fB1NjIZjvQGYZSQ3nZS-A-Cy5aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ioF58i28j6MFD17Rp2uYkS9fFt4IPvJUkTcQH22W7e9Bf7yRtBUVEbyU0aTqZzHwzk8wgtBuEzOb44B6T0rpuBPGE1InHmAJ0nkTEuNqAF5fR8V14-sAexhBr7sLAJEoYqXRBfLur-7mpMwz4B7b9ua9Ui0swvylI3gkbtbMp89vpTSOAGfAsrYLJAB7DMK6jkz-NYHWSKr_qpK8i2emZ7iy6_5yhO17y0hoNZUu9f0ve-O9fmEMzNfLE7YpV5tGY7i2gqbQp-LaIrrpCaVwM8FH-qA9xWh1ix4XBF8XrmwQBBfAU34wGxr7nXInVrYgSW28u7jwB14IOw2nlBVxCd92j2_TYq-steIL6dOgBNHQGTRBrPxEBkTnlxgAkk77SERcxMfCsmeFCKUAuisTSkJzBR7mKYkqX0Xiv6OkVhMEMMsRQIpRPw0iGPNeSxypXgMcSgGyraA8okdX7pcxcKDzwM9cI5Mlq8qyig2ZlMlUnLbe1M15_6bH_2aNfJez45d2dZrEzoLUNlYieLkZlBkAmsbkCGVn740y30eR1p5udn1yeraPpwFrl1lHDN9D4cDDSmwBdhnLLMeoHaGboLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+or+Edge%3F+Control+of+Molybdenite+Surface+Interactions+with+Divalent+Cations&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Lu%2C+Zhenzhen&rft.au=Ralston%2C+John&rft.au=Liu%2C+Qingxia&rft.date=2020-01-09&rft.issn=1932-7455&rft.volume=124&rft.issue=1+p.372-381&rft.spage=372&rft.epage=381&rft_id=info:doi/10.1021%2Facs.jpcc.9b07632&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon