Process Integration of Production, Purification, and Immobilization of β‑Glucosidase by Constructing Glu-linker-ELP-GB System
In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The tradit...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 57; no. 46; pp. 15620 - 15631 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
21.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The traditional multistep purification processes lead to rising production costs and reduced activity of cellulase; meanwhile, the difficulty in reusability of cellulase has also become a big baffle in the cost-effective application of cellulase in biomass degradation. In this paper, the biocatalyst Glu-linker-ELP-GB (GLEGB) containing binary tags, elastin-like polypeptide (ELP), and graphene-binding (GB), was constructed to simplify the purification and immobilization of β-glucosidase (Glu) from Coptotermes formosanus. A high recovery rate (97.2%) and purification fold (18.7) of GLEGB was obtained by only one round of inverse transition cycling (ITC) with 0.5 M (NH4)2SO4 at 25 °C in a short incubating time of 10 min. The purification performance of the one-round ITC method is superior to the commonly used Ni-NTA resin affinity method. Furthermore, the high loading amounts of GLEGB immobilized on GO (698.2 mg g–1) and C3N4 (527.3 mg g–1) were achieved by the synergistic effects of ELP and GB tags. The storage stability and thermal stability of GLEGB was significantly enhanced after immobilization. The recombinant GLEGB immobilized on GO, MGO, graphite, C3N4, C200, and C400 retained 71.4%, 69.5%, 75.1%, 61.2%, 73.5%, and 80.2% of their initial activities respectively after eight cycles. It is worth mentioning that the K m values of GLEGB immobilized on lamellar carbon materials including GO, MGO, and C3N4 are very close to free GLEGB, showing a high affinity of recombinant GLEGB to substrate. To our knowledge, this is the first report on enzyme-linker-ELP-GB system with wide application prospect in the efficient purification and immobilization of enzyme, which can achieve the goal of reducing cost and improving efficiency of biocatalyst in enzymatic conversion of biomass. |
---|---|
AbstractList | In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The traditional multistep purification processes lead to rising production costs and reduced activity of cellulase; meanwhile, the difficulty in reusability of cellulase has also become a big baffle in the cost-effective application of cellulase in biomass degradation. In this paper, the biocatalyst Glu-linker-ELP-GB (GLEGB) containing binary tags, elastin-like polypeptide (ELP), and graphene-binding (GB), was constructed to simplify the purification and immobilization of β-glucosidase (Glu) from Coptotermes formosanus. A high recovery rate (97.2%) and purification fold (18.7) of GLEGB was obtained by only one round of inverse transition cycling (ITC) with 0.5 M (NH4)2SO4 at 25 °C in a short incubating time of 10 min. The purification performance of the one-round ITC method is superior to the commonly used Ni-NTA resin affinity method. Furthermore, the high loading amounts of GLEGB immobilized on GO (698.2 mg g–1) and C3N4 (527.3 mg g–1) were achieved by the synergistic effects of ELP and GB tags. The storage stability and thermal stability of GLEGB was significantly enhanced after immobilization. The recombinant GLEGB immobilized on GO, MGO, graphite, C3N4, C200, and C400 retained 71.4%, 69.5%, 75.1%, 61.2%, 73.5%, and 80.2% of their initial activities respectively after eight cycles. It is worth mentioning that the K m values of GLEGB immobilized on lamellar carbon materials including GO, MGO, and C3N4 are very close to free GLEGB, showing a high affinity of recombinant GLEGB to substrate. To our knowledge, this is the first report on enzyme-linker-ELP-GB system with wide application prospect in the efficient purification and immobilization of enzyme, which can achieve the goal of reducing cost and improving efficiency of biocatalyst in enzymatic conversion of biomass. In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The traditional multistep purification processes lead to rising production costs and reduced activity of cellulase; meanwhile, the difficulty in reusability of cellulase has also become a big baffle in the cost-effective application of cellulase in biomass degradation. In this paper, the biocatalyst Glu-linker-ELP-GB (GLEGB) containing binary tags, elastin-like polypeptide (ELP), and graphene-binding (GB), was constructed to simplify the purification and immobilization of β-glucosidase (Glu) from Coptotermes formosanus. A high recovery rate (97.2%) and purification fold (18.7) of GLEGB was obtained by only one round of inverse transition cycling (ITC) with 0.5 M (NH₄)₂SO₄ at 25 °C in a short incubating time of 10 min. The purification performance of the one-round ITC method is superior to the commonly used Ni-NTA resin affinity method. Furthermore, the high loading amounts of GLEGB immobilized on GO (698.2 mg g–¹) and C₃N₄ (527.3 mg g–¹) were achieved by the synergistic effects of ELP and GB tags. The storage stability and thermal stability of GLEGB was significantly enhanced after immobilization. The recombinant GLEGB immobilized on GO, MGO, graphite, C₃N₄, C200, and C400 retained 71.4%, 69.5%, 75.1%, 61.2%, 73.5%, and 80.2% of their initial activities respectively after eight cycles. It is worth mentioning that the Kₘ values of GLEGB immobilized on lamellar carbon materials including GO, MGO, and C₃N₄ are very close to free GLEGB, showing a high affinity of recombinant GLEGB to substrate. To our knowledge, this is the first report on enzyme-linker-ELP-GB system with wide application prospect in the efficient purification and immobilization of enzyme, which can achieve the goal of reducing cost and improving efficiency of biocatalyst in enzymatic conversion of biomass. |
Author | Wang, Lei Li, Chunmei Han, Juan Wang, Yun Zhou, Yang Rong, Junhui |
AuthorAffiliation | Institute of Life Science School of Chemistry and Chemical Engineering School of Food and Biological Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering – name: School of Food and Biological Engineering – name: Institute of Life Science |
Author_xml | – sequence: 1 givenname: Junhui orcidid: 0000-0002-3115-6476 surname: Rong fullname: Rong, Junhui organization: School of Chemistry and Chemical Engineering – sequence: 2 givenname: Juan surname: Han fullname: Han, Juan organization: School of Food and Biological Engineering – sequence: 3 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: Institute of Life Science – sequence: 4 givenname: Lei surname: Wang fullname: Wang, Lei organization: School of Chemistry and Chemical Engineering – sequence: 5 givenname: Chunmei orcidid: 0000-0003-2708-0947 surname: Li fullname: Li, Chunmei organization: School of Chemistry and Chemical Engineering – sequence: 6 givenname: Yun orcidid: 0000-0003-0024-0824 surname: Wang fullname: Wang, Yun email: yunwang@ujs.edu.cn organization: School of Chemistry and Chemical Engineering |
BookMark | eNp9kL1OwzAQxy1UJMrHzuiRoSl2Ygd3hApKpUpUAubo7NiVIbHBToYy8Qq8Cg_CQ_AkJLRiQILhdLr7fwy_fTRw3mmEjikZU5LSU1BxbLUKYyFJxibpDhpSnpKEE8YHaEiEEAkXgu-h_RgfCCGcMzZEr8vglY4Rz12jVwEa6x32BnfvslX9NcLLNlhjFWwucCWe17WXtrIvP_6P98_Xt1nVKh9tCVFjucZT72IT-ha3wp2WVNY96pBcLpbJ7ALfrmOj60O0a6CK-mi7D9D91eXd9DpZ3Mzm0_NFAhnNmiQznIFhACBLk5dSkwmXKVBFiBFKKZkTkRoFklPQWZYKziiVMs9ZSSeSltkBOtn0PgX_3OrYFLWNSlcVOO3bWKT0LM-Y6Kazko1VBR9j0KZ4CraGsC4oKXrYRQe76GEXW9hdJP8VUbb5htMEsNV_wdEm2CsPvg2ug_C3_QupD5wV |
CitedBy_id | crossref_primary_10_1021_acsami_9b09071 crossref_primary_10_1021_acsami_9b21511 crossref_primary_10_1111_jfbc_12976 crossref_primary_10_1016_j_cej_2021_131808 crossref_primary_10_1016_j_jhazmat_2019_120901 crossref_primary_10_1039_D2CY01641A crossref_primary_10_1016_j_enzmictec_2018_12_007 crossref_primary_10_1016_j_enzmictec_2021_109802 crossref_primary_10_1016_j_foodchem_2021_131543 crossref_primary_10_1016_j_bej_2024_109314 crossref_primary_10_1021_acs_iecr_0c03111 crossref_primary_10_1021_acssuschemeng_8b05489 crossref_primary_10_1021_acs_iecr_9b01370 crossref_primary_10_1016_j_colsurfb_2022_112694 crossref_primary_10_1016_j_colsurfb_2021_112034 crossref_primary_10_1007_s13738_023_02744_7 crossref_primary_10_1016_j_colsurfb_2021_112099 crossref_primary_10_1021_acs_jafc_2c07405 crossref_primary_10_1016_j_carbpol_2023_121319 crossref_primary_10_1016_j_bej_2020_107893 crossref_primary_10_1021_acs_jafc_1c02056 crossref_primary_10_1039_D2NJ01148D crossref_primary_10_1016_j_cej_2024_149453 crossref_primary_10_1016_j_jhazmat_2019_121130 |
Cites_doi | 10.1021/jp972167t 10.1016/j.foodchem.2015.06.040 10.1016/j.cej.2016.10.021 10.1016/j.procbio.2006.04.011 10.1021/bi980785+ 10.1021/ja102777p 10.1021/ie3000908 10.1039/C4GC01742K 10.1016/0079-6107(92)90003-O 10.1016/S0958-1669(02)00334-8 10.1002/bit.24370 10.1006/prep.1999.1108 10.1186/s13068-016-0434-0 10.1039/c1cs15124j 10.1038/15100 10.1021/la404333b 10.1021/acs.jafc.7b04469 10.1007/BF03033874 10.1038/nature07371 10.1016/j.bios.2010.06.036 10.1021/nl401088b 10.1021/cm800486u 10.1002/bip.360241212 10.1007/s10562-005-4904-4 10.1016/j.cej.2015.12.034 10.1021/acssuschemeng.8b00769 10.1038/nmat833 10.1016/j.nantod.2009.02.001 10.1007/s00253-008-1468-4 10.1039/C6NR00346J 10.1016/S0965-1748(01)00160-6 10.1016/j.procbio.2012.04.003 10.1021/acsami.6b05165 10.1006/abio.1997.2181 10.1016/j.biortech.2014.10.146 10.1021/cr400309c 10.1007/BF01824334 10.1088/0957-4484/24/37/375102 10.1016/j.cej.2014.05.136 10.1016/j.cej.2014.09.013 10.1016/j.cej.2015.07.067 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.8b03492 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 15631 |
ExternalDocumentID | 10_1021_acs_iecr_8b03492 c62346560 |
GroupedDBID | 02 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 4.4 5VS 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-3f54af4aaabdf6dbe095b2a1c00f8cccb6082fcab51ae33285411bb664d19b1d3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Thu Jul 10 18:27:45 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 00:48:56 EDT 2025 Thu Aug 27 13:45:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-3f54af4aaabdf6dbe095b2a1c00f8cccb6082fcab51ae33285411bb664d19b1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2708-0947 0000-0002-3115-6476 0000-0003-0024-0824 |
PQID | 2176348634 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2176348634 crossref_primary_10_1021_acs_iecr_8b03492 crossref_citationtrail_10_1021_acs_iecr_8b03492 acs_journals_10_1021_acs_iecr_8b03492 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-21 |
PublicationDateYYYYMMDD | 2018-11-21 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-21 day: 21 |
PublicationDecade | 2010 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 Wang J. (ref36/cit36) 2016 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.1021/jp972167t – ident: ref30/cit30 doi: 10.1016/j.foodchem.2015.06.040 – ident: ref39/cit39 doi: 10.1016/j.cej.2016.10.021 – ident: ref24/cit24 doi: 10.1016/j.procbio.2006.04.011 – ident: ref27/cit27 doi: 10.1021/bi980785+ – ident: ref32/cit32 doi: 10.1021/ja102777p – start-page: 69 year: 2016 ident: ref36/cit36 publication-title: J. Taiwan Inst. Chem. Eng. – ident: ref40/cit40 doi: 10.1021/ie3000908 – ident: ref42/cit42 doi: 10.1039/C4GC01742K – ident: ref13/cit13 doi: 10.1016/0079-6107(92)90003-O – ident: ref7/cit7 doi: 10.1016/S0958-1669(02)00334-8 – ident: ref10/cit10 doi: 10.1002/bit.24370 – ident: ref25/cit25 doi: 10.1006/prep.1999.1108 – ident: ref5/cit5 doi: 10.1186/s13068-016-0434-0 – ident: ref2/cit2 doi: 10.1039/c1cs15124j – ident: ref11/cit11 doi: 10.1038/15100 – ident: ref18/cit18 doi: 10.1021/la404333b – ident: ref28/cit28 doi: 10.1021/acs.jafc.7b04469 – ident: ref20/cit20 doi: 10.1007/BF03033874 – ident: ref4/cit4 doi: 10.1038/nature07371 – ident: ref16/cit16 doi: 10.1016/j.bios.2010.06.036 – ident: ref31/cit31 doi: 10.1021/nl401088b – ident: ref35/cit35 doi: 10.1021/cm800486u – ident: ref14/cit14 doi: 10.1002/bip.360241212 – ident: ref34/cit34 doi: 10.1007/s10562-005-4904-4 – ident: ref38/cit38 doi: 10.1016/j.cej.2015.12.034 – ident: ref41/cit41 doi: 10.1021/acssuschemeng.8b00769 – ident: ref19/cit19 doi: 10.1038/nmat833 – ident: ref6/cit6 doi: 10.1016/j.nantod.2009.02.001 – ident: ref21/cit21 doi: 10.1007/s00253-008-1468-4 – ident: ref9/cit9 doi: 10.1039/C6NR00346J – ident: ref3/cit3 doi: 10.1016/S0965-1748(01)00160-6 – ident: ref26/cit26 doi: 10.1016/j.procbio.2012.04.003 – ident: ref15/cit15 doi: 10.1021/acsami.6b05165 – ident: ref22/cit22 doi: 10.1006/abio.1997.2181 – ident: ref29/cit29 doi: 10.1016/j.biortech.2014.10.146 – ident: ref1/cit1 doi: 10.1021/cr400309c – ident: ref23/cit23 doi: 10.1007/BF01824334 – ident: ref37/cit37 doi: 10.1088/0957-4484/24/37/375102 – ident: ref17/cit17 doi: 10.1016/j.cej.2014.05.136 – ident: ref33/cit33 doi: 10.1016/j.cej.2014.09.013 – ident: ref8/cit8 doi: 10.1016/j.cej.2015.07.067 |
SSID | ssj0005544 |
Score | 2.3915956 |
Snippet | In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject.... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15620 |
SubjectTerms | ammonium sulfate beta-glucosidase biocatalysts biomass carbon nitride cellulose Coptotermes formosanus cost effectiveness endo-1,4-beta-glucanase enzyme activity glucose graphene polypeptides process design production costs purification methods storage quality synergism thermal stability |
Title | Process Integration of Production, Purification, and Immobilization of β‑Glucosidase by Constructing Glu-linker-ELP-GB System |
URI | http://dx.doi.org/10.1021/acs.iecr.8b03492 https://www.proquest.com/docview/2176348634 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz34Ft9E0INg1k2TZrtHlfWFyoIK3komDxGlK3b3oCf_gn_FH-KP8Jc4aavrC_HQQ9okhMxM8pWZ-YaQ1ab1IKTUDFxDMAmRYADcMlQP31AI6GUR8n98ovbP5eFFfNGnyfnuwY_4pjZ57QohVC2BwKWCx-1QpNCGAwzaOe2Hc8RF4VY0mpBJlMSVS_K3GcJFZPKvF9HXc7i4XHbHyipFecFJGGJKrmu9LtTMw0_Gxn-se5yMVhiTbpVKMUEGXDZJRj4xD06RxypBgB5UdBEoHtrxtF0SwGJrg7Z7dyGOSJctnVl6gEobgmkfPvq_PL8-Pu0VYe9XFi9ECvc01AAtWWmzS4rfWHASuzvWOmqzvW1acqRPk_Pd1tnOPquKMTAtuOgy4WOpvdRag_XKgkNsBpHmpl73iTEGFIIJbzTEXDshQmIm5wBKScubKH0xQwazTuZmCbWgQFjnTcKddFCHuo1tM8FZkoZUkZwja7h5aWVMeVr4ySOehpdhR9NqR-fI5rsEU1MxmofCGjd_jFj_GHFbsnn80XflXSlSNLngR9GZ6_TyFP_ilJAJPvP_XOkCGUaglYQcxogvkkEUgltCMNOF5UKL3wABz_Rl |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYQHIBDKdAKWtoaCQ5IOInXXmdzpAhIIKCIH4nbyuMfhIo2iE0OcOIVeBUepA_RJ-l4dxN-VKFy2IN3bWtkjz3fama-IWStZT0IKTUD1xRMQiQYALcM1cM3FQJ6WYT8Hx6p9pncP4_PJwgf5cKgEDnOlBdO_Cd2AV4P7y4RSdUSCJQqeOtOIRaJglJvbZ88RXXERf1WPDshoSiJK8_kv2YI9sjkL-3Ry-u4sDG7c-R4LF0RWvKrNhxAzdy9Im58l_gfyYcKcdKtUkXmyYTLFsjsMx7CRXJfpQvQTkUegZtF-572SjpYbG3S3vAmRBXpsqUzSzuowiG09m7c__fjn_uHvSII_tKieaRwS0NF0JKjNrug-I0Fl7G7YTvdHtv7SUvG9E_kbHfndLvNqtIMTAsuBkz4WGovtdZgvbLgEKlBpLlpNHxijAGF0MIbDTHXToiQpsk5gFLS8hbqgvhMJrN-5pYItaBAWOdNwp100ICGjW0rwVmSplSRXCbruHhpdbTytPCaRzwNL8OKptWKLpP6aCNTU_GbhzIbV2-M2BiPuC65Pd7ouzrSjRQPYPCq6Mz1h3mK_3RKyASfL_8p6Q8y3T497KbdztHBVzKDECwJ2Y0RXyGTuCHuG8KcAXwvFPsvX7T8xg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaqIqFy4K9FLb9GoodK9XYdO97ssZRuu1Cqldqi3iKPf1AFylbN7oGe-gq8Cg_CQ_AkzCTehSJUwSEHO7Y1sWc8E83MN4y96vsISmsrIPSU0JApASC9QPaIPYMGvW5C_t8fmv0T_fY0P11g-SwXBomocaW6ceKTVJ_7mBAG5Bb1n6E11SmAYFXw5r1FXjti7O2do1-RHXlTwxXlh5KKijx5J_-2AukkV1_XSdev5EbPDO6xD3MKm_CST53pBDru8g_wxv_-hPvsbrI8-XbLKg_YQqgesju_4REus6uUNsCHCUQCD42PIx-1sLDY2uSj6QVFF9m2ZSvPh8jKFGJ7OR___duPq697TTD8mUc1yeELp8qgLVZt9ZHjO0Gu43Ahdg9GYu81b5HTV9jJYPd4Z1-kEg3CKqkmQsVc26itteCj8RDQYoPMStftxsI5BwZNjOgs5NIGpShdU0oAY7SXfeQJ9YgtVuMqrDLuwYDyIbpCBh2gC12f-36BqxQ9bTK9xtZx88okYnXZeM8zWVIn7WiZdnSNbc0Os3QJ55zKbXy-YcbGfMZ5i_Fxw9iXM_4oURDJu2KrMJ7WJf7bGaULfB7_I6Uv2O3Rm0F5MDx894QtoSVWUJJjJp-yRTyP8AytnQk8b3j7J2dZ_0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Integration+of+Production%2C+Purification%2C+and+Immobilization+of+%CE%B2-Glucosidase+by+Constructing+Glu-linker-ELP-GB+System&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Rong%2C+Junhui&rft.au=Han%2C+Juan&rft.au=Zhou%2C+Yang&rft.au=Wang%2C+Lei&rft.date=2018-11-21&rft.issn=1520-5045&rft.volume=57&rft.issue=46+p.15620-15631&rft.spage=15620&rft.epage=15631&rft_id=info:doi/10.1021%2Facs.iecr.8b03492&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |