Process Integration of Production, Purification, and Immobilization of β‑Glucosidase by Constructing Glu-linker-ELP-GB System

In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The tradit...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 57; no. 46; pp. 15620 - 15631
Main Authors Rong, Junhui, Han, Juan, Zhou, Yang, Wang, Lei, Li, Chunmei, Wang, Yun
Format Journal Article
LanguageEnglish
Published American Chemical Society 21.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The traditional multistep purification processes lead to rising production costs and reduced activity of cellulase; meanwhile, the difficulty in reusability of cellulase has also become a big baffle in the cost-effective application of cellulase in biomass degradation. In this paper, the biocatalyst Glu-linker-ELP-GB (GLEGB) containing binary tags, elastin-like polypeptide (ELP), and graphene-binding (GB), was constructed to simplify the purification and immobilization of β-glucosidase (Glu) from Coptotermes formosanus. A high recovery rate (97.2%) and purification fold (18.7) of GLEGB was obtained by only one round of inverse transition cycling (ITC) with 0.5 M (NH4)2SO4 at 25 °C in a short incubating time of 10 min. The purification performance of the one-round ITC method is superior to the commonly used Ni-NTA resin affinity method. Furthermore, the high loading amounts of GLEGB immobilized on GO (698.2 mg g–1) and C3N4 (527.3 mg g–1) were achieved by the synergistic effects of ELP and GB tags. The storage stability and thermal stability of GLEGB was significantly enhanced after immobilization. The recombinant GLEGB immobilized on GO, MGO, graphite, C3N4, C200, and C400 retained 71.4%, 69.5%, 75.1%, 61.2%, 73.5%, and 80.2% of their initial activities respectively after eight cycles. It is worth mentioning that the K m values of GLEGB immobilized on lamellar carbon materials including GO, MGO, and C3N4 are very close to free GLEGB, showing a high affinity of recombinant GLEGB to substrate. To our knowledge, this is the first report on enzyme-linker-ELP-GB system with wide application prospect in the efficient purification and immobilization of enzyme, which can achieve the goal of reducing cost and improving efficiency of biocatalyst in enzymatic conversion of biomass.
AbstractList In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The traditional multistep purification processes lead to rising production costs and reduced activity of cellulase; meanwhile, the difficulty in reusability of cellulase has also become a big baffle in the cost-effective application of cellulase in biomass degradation. In this paper, the biocatalyst Glu-linker-ELP-GB (GLEGB) containing binary tags, elastin-like polypeptide (ELP), and graphene-binding (GB), was constructed to simplify the purification and immobilization of β-glucosidase (Glu) from Coptotermes formosanus. A high recovery rate (97.2%) and purification fold (18.7) of GLEGB was obtained by only one round of inverse transition cycling (ITC) with 0.5 M (NH4)2SO4 at 25 °C in a short incubating time of 10 min. The purification performance of the one-round ITC method is superior to the commonly used Ni-NTA resin affinity method. Furthermore, the high loading amounts of GLEGB immobilized on GO (698.2 mg g–1) and C3N4 (527.3 mg g–1) were achieved by the synergistic effects of ELP and GB tags. The storage stability and thermal stability of GLEGB was significantly enhanced after immobilization. The recombinant GLEGB immobilized on GO, MGO, graphite, C3N4, C200, and C400 retained 71.4%, 69.5%, 75.1%, 61.2%, 73.5%, and 80.2% of their initial activities respectively after eight cycles. It is worth mentioning that the K m values of GLEGB immobilized on lamellar carbon materials including GO, MGO, and C3N4 are very close to free GLEGB, showing a high affinity of recombinant GLEGB to substrate. To our knowledge, this is the first report on enzyme-linker-ELP-GB system with wide application prospect in the efficient purification and immobilization of enzyme, which can achieve the goal of reducing cost and improving efficiency of biocatalyst in enzymatic conversion of biomass.
In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject. As for the application of cellulase in cellulose degradation, the process optimization in enzyme engineering is urgently desired. The traditional multistep purification processes lead to rising production costs and reduced activity of cellulase; meanwhile, the difficulty in reusability of cellulase has also become a big baffle in the cost-effective application of cellulase in biomass degradation. In this paper, the biocatalyst Glu-linker-ELP-GB (GLEGB) containing binary tags, elastin-like polypeptide (ELP), and graphene-binding (GB), was constructed to simplify the purification and immobilization of β-glucosidase (Glu) from Coptotermes formosanus. A high recovery rate (97.2%) and purification fold (18.7) of GLEGB was obtained by only one round of inverse transition cycling (ITC) with 0.5 M (NH₄)₂SO₄ at 25 °C in a short incubating time of 10 min. The purification performance of the one-round ITC method is superior to the commonly used Ni-NTA resin affinity method. Furthermore, the high loading amounts of GLEGB immobilized on GO (698.2 mg g–¹) and C₃N₄ (527.3 mg g–¹) were achieved by the synergistic effects of ELP and GB tags. The storage stability and thermal stability of GLEGB was significantly enhanced after immobilization. The recombinant GLEGB immobilized on GO, MGO, graphite, C₃N₄, C200, and C400 retained 71.4%, 69.5%, 75.1%, 61.2%, 73.5%, and 80.2% of their initial activities respectively after eight cycles. It is worth mentioning that the Kₘ values of GLEGB immobilized on lamellar carbon materials including GO, MGO, and C₃N₄ are very close to free GLEGB, showing a high affinity of recombinant GLEGB to substrate. To our knowledge, this is the first report on enzyme-linker-ELP-GB system with wide application prospect in the efficient purification and immobilization of enzyme, which can achieve the goal of reducing cost and improving efficiency of biocatalyst in enzymatic conversion of biomass.
Author Wang, Lei
Li, Chunmei
Han, Juan
Wang, Yun
Zhou, Yang
Rong, Junhui
AuthorAffiliation Institute of Life Science
School of Chemistry and Chemical Engineering
School of Food and Biological Engineering
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering
– name: School of Food and Biological Engineering
– name: Institute of Life Science
Author_xml – sequence: 1
  givenname: Junhui
  orcidid: 0000-0002-3115-6476
  surname: Rong
  fullname: Rong, Junhui
  organization: School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Juan
  surname: Han
  fullname: Han, Juan
  organization: School of Food and Biological Engineering
– sequence: 3
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: Institute of Life Science
– sequence: 4
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: School of Chemistry and Chemical Engineering
– sequence: 5
  givenname: Chunmei
  orcidid: 0000-0003-2708-0947
  surname: Li
  fullname: Li, Chunmei
  organization: School of Chemistry and Chemical Engineering
– sequence: 6
  givenname: Yun
  orcidid: 0000-0003-0024-0824
  surname: Wang
  fullname: Wang, Yun
  email: yunwang@ujs.edu.cn
  organization: School of Chemistry and Chemical Engineering
BookMark eNp9kL1OwzAQxy1UJMrHzuiRoSl2Ygd3hApKpUpUAubo7NiVIbHBToYy8Qq8Cg_CQ_AkJLRiQILhdLr7fwy_fTRw3mmEjikZU5LSU1BxbLUKYyFJxibpDhpSnpKEE8YHaEiEEAkXgu-h_RgfCCGcMzZEr8vglY4Rz12jVwEa6x32BnfvslX9NcLLNlhjFWwucCWe17WXtrIvP_6P98_Xt1nVKh9tCVFjucZT72IT-ha3wp2WVNY96pBcLpbJ7ALfrmOj60O0a6CK-mi7D9D91eXd9DpZ3Mzm0_NFAhnNmiQznIFhACBLk5dSkwmXKVBFiBFKKZkTkRoFklPQWZYKziiVMs9ZSSeSltkBOtn0PgX_3OrYFLWNSlcVOO3bWKT0LM-Y6Kazko1VBR9j0KZ4CraGsC4oKXrYRQe76GEXW9hdJP8VUbb5htMEsNV_wdEm2CsPvg2ug_C3_QupD5wV
CitedBy_id crossref_primary_10_1021_acsami_9b09071
crossref_primary_10_1021_acsami_9b21511
crossref_primary_10_1111_jfbc_12976
crossref_primary_10_1016_j_cej_2021_131808
crossref_primary_10_1016_j_jhazmat_2019_120901
crossref_primary_10_1039_D2CY01641A
crossref_primary_10_1016_j_enzmictec_2018_12_007
crossref_primary_10_1016_j_enzmictec_2021_109802
crossref_primary_10_1016_j_foodchem_2021_131543
crossref_primary_10_1016_j_bej_2024_109314
crossref_primary_10_1021_acs_iecr_0c03111
crossref_primary_10_1021_acssuschemeng_8b05489
crossref_primary_10_1021_acs_iecr_9b01370
crossref_primary_10_1016_j_colsurfb_2022_112694
crossref_primary_10_1016_j_colsurfb_2021_112034
crossref_primary_10_1007_s13738_023_02744_7
crossref_primary_10_1016_j_colsurfb_2021_112099
crossref_primary_10_1021_acs_jafc_2c07405
crossref_primary_10_1016_j_carbpol_2023_121319
crossref_primary_10_1016_j_bej_2020_107893
crossref_primary_10_1021_acs_jafc_1c02056
crossref_primary_10_1039_D2NJ01148D
crossref_primary_10_1016_j_cej_2024_149453
crossref_primary_10_1016_j_jhazmat_2019_121130
Cites_doi 10.1021/jp972167t
10.1016/j.foodchem.2015.06.040
10.1016/j.cej.2016.10.021
10.1016/j.procbio.2006.04.011
10.1021/bi980785+
10.1021/ja102777p
10.1021/ie3000908
10.1039/C4GC01742K
10.1016/0079-6107(92)90003-O
10.1016/S0958-1669(02)00334-8
10.1002/bit.24370
10.1006/prep.1999.1108
10.1186/s13068-016-0434-0
10.1039/c1cs15124j
10.1038/15100
10.1021/la404333b
10.1021/acs.jafc.7b04469
10.1007/BF03033874
10.1038/nature07371
10.1016/j.bios.2010.06.036
10.1021/nl401088b
10.1021/cm800486u
10.1002/bip.360241212
10.1007/s10562-005-4904-4
10.1016/j.cej.2015.12.034
10.1021/acssuschemeng.8b00769
10.1038/nmat833
10.1016/j.nantod.2009.02.001
10.1007/s00253-008-1468-4
10.1039/C6NR00346J
10.1016/S0965-1748(01)00160-6
10.1016/j.procbio.2012.04.003
10.1021/acsami.6b05165
10.1006/abio.1997.2181
10.1016/j.biortech.2014.10.146
10.1021/cr400309c
10.1007/BF01824334
10.1088/0957-4484/24/37/375102
10.1016/j.cej.2014.05.136
10.1016/j.cej.2014.09.013
10.1016/j.cej.2015.07.067
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.8b03492
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 15631
ExternalDocumentID 10_1021_acs_iecr_8b03492
c62346560
GroupedDBID 02
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
4.4
5VS
6TJ
AAYXX
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
~02
7S9
L.6
ID FETCH-LOGICAL-a313t-3f54af4aaabdf6dbe095b2a1c00f8cccb6082fcab51ae33285411bb664d19b1d3
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Thu Jul 10 18:27:45 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Jul 01 00:48:56 EDT 2025
Thu Aug 27 13:45:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-3f54af4aaabdf6dbe095b2a1c00f8cccb6082fcab51ae33285411bb664d19b1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2708-0947
0000-0002-3115-6476
0000-0003-0024-0824
PQID 2176348634
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2176348634
crossref_primary_10_1021_acs_iecr_8b03492
crossref_citationtrail_10_1021_acs_iecr_8b03492
acs_journals_10_1021_acs_iecr_8b03492
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-21
PublicationDateYYYYMMDD 2018-11-21
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-21
  day: 21
PublicationDecade 2010
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
Wang J. (ref36/cit36) 2016
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1021/jp972167t
– ident: ref30/cit30
  doi: 10.1016/j.foodchem.2015.06.040
– ident: ref39/cit39
  doi: 10.1016/j.cej.2016.10.021
– ident: ref24/cit24
  doi: 10.1016/j.procbio.2006.04.011
– ident: ref27/cit27
  doi: 10.1021/bi980785+
– ident: ref32/cit32
  doi: 10.1021/ja102777p
– start-page: 69
  year: 2016
  ident: ref36/cit36
  publication-title: J. Taiwan Inst. Chem. Eng.
– ident: ref40/cit40
  doi: 10.1021/ie3000908
– ident: ref42/cit42
  doi: 10.1039/C4GC01742K
– ident: ref13/cit13
  doi: 10.1016/0079-6107(92)90003-O
– ident: ref7/cit7
  doi: 10.1016/S0958-1669(02)00334-8
– ident: ref10/cit10
  doi: 10.1002/bit.24370
– ident: ref25/cit25
  doi: 10.1006/prep.1999.1108
– ident: ref5/cit5
  doi: 10.1186/s13068-016-0434-0
– ident: ref2/cit2
  doi: 10.1039/c1cs15124j
– ident: ref11/cit11
  doi: 10.1038/15100
– ident: ref18/cit18
  doi: 10.1021/la404333b
– ident: ref28/cit28
  doi: 10.1021/acs.jafc.7b04469
– ident: ref20/cit20
  doi: 10.1007/BF03033874
– ident: ref4/cit4
  doi: 10.1038/nature07371
– ident: ref16/cit16
  doi: 10.1016/j.bios.2010.06.036
– ident: ref31/cit31
  doi: 10.1021/nl401088b
– ident: ref35/cit35
  doi: 10.1021/cm800486u
– ident: ref14/cit14
  doi: 10.1002/bip.360241212
– ident: ref34/cit34
  doi: 10.1007/s10562-005-4904-4
– ident: ref38/cit38
  doi: 10.1016/j.cej.2015.12.034
– ident: ref41/cit41
  doi: 10.1021/acssuschemeng.8b00769
– ident: ref19/cit19
  doi: 10.1038/nmat833
– ident: ref6/cit6
  doi: 10.1016/j.nantod.2009.02.001
– ident: ref21/cit21
  doi: 10.1007/s00253-008-1468-4
– ident: ref9/cit9
  doi: 10.1039/C6NR00346J
– ident: ref3/cit3
  doi: 10.1016/S0965-1748(01)00160-6
– ident: ref26/cit26
  doi: 10.1016/j.procbio.2012.04.003
– ident: ref15/cit15
  doi: 10.1021/acsami.6b05165
– ident: ref22/cit22
  doi: 10.1006/abio.1997.2181
– ident: ref29/cit29
  doi: 10.1016/j.biortech.2014.10.146
– ident: ref1/cit1
  doi: 10.1021/cr400309c
– ident: ref23/cit23
  doi: 10.1007/BF01824334
– ident: ref37/cit37
  doi: 10.1088/0957-4484/24/37/375102
– ident: ref17/cit17
  doi: 10.1016/j.cej.2014.05.136
– ident: ref33/cit33
  doi: 10.1016/j.cej.2014.09.013
– ident: ref8/cit8
  doi: 10.1016/j.cej.2015.07.067
SSID ssj0005544
Score 2.3915956
Snippet In enzymatic conversion of biomass, how to degrade cellulose into fermentable glucose in an economic, efficient, and clean way has become an important subject....
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15620
SubjectTerms ammonium sulfate
beta-glucosidase
biocatalysts
biomass
carbon nitride
cellulose
Coptotermes formosanus
cost effectiveness
endo-1,4-beta-glucanase
enzyme activity
glucose
graphene
polypeptides
process design
production costs
purification methods
storage quality
synergism
thermal stability
Title Process Integration of Production, Purification, and Immobilization of β‑Glucosidase by Constructing Glu-linker-ELP-GB System
URI http://dx.doi.org/10.1021/acs.iecr.8b03492
https://www.proquest.com/docview/2176348634
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz34Ft9E0INg1k2TZrtHlfWFyoIK3komDxGlK3b3oCf_gn_FH-KP8Jc4aavrC_HQQ9okhMxM8pWZ-YaQ1ab1IKTUDFxDMAmRYADcMlQP31AI6GUR8n98ovbP5eFFfNGnyfnuwY_4pjZ57QohVC2BwKWCx-1QpNCGAwzaOe2Hc8RF4VY0mpBJlMSVS_K3GcJFZPKvF9HXc7i4XHbHyipFecFJGGJKrmu9LtTMw0_Gxn-se5yMVhiTbpVKMUEGXDZJRj4xD06RxypBgB5UdBEoHtrxtF0SwGJrg7Z7dyGOSJctnVl6gEobgmkfPvq_PL8-Pu0VYe9XFi9ECvc01AAtWWmzS4rfWHASuzvWOmqzvW1acqRPk_Pd1tnOPquKMTAtuOgy4WOpvdRag_XKgkNsBpHmpl73iTEGFIIJbzTEXDshQmIm5wBKScubKH0xQwazTuZmCbWgQFjnTcKddFCHuo1tM8FZkoZUkZwja7h5aWVMeVr4ySOehpdhR9NqR-fI5rsEU1MxmofCGjd_jFj_GHFbsnn80XflXSlSNLngR9GZ6_TyFP_ilJAJPvP_XOkCGUaglYQcxogvkkEUgltCMNOF5UKL3wABz_Rl
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYQHIBDKdAKWtoaCQ5IOInXXmdzpAhIIKCIH4nbyuMfhIo2iE0OcOIVeBUepA_RJ-l4dxN-VKFy2IN3bWtkjz3fama-IWStZT0IKTUD1xRMQiQYALcM1cM3FQJ6WYT8Hx6p9pncP4_PJwgf5cKgEDnOlBdO_Cd2AV4P7y4RSdUSCJQqeOtOIRaJglJvbZ88RXXERf1WPDshoSiJK8_kv2YI9sjkL-3Ry-u4sDG7c-R4LF0RWvKrNhxAzdy9Im58l_gfyYcKcdKtUkXmyYTLFsjsMx7CRXJfpQvQTkUegZtF-572SjpYbG3S3vAmRBXpsqUzSzuowiG09m7c__fjn_uHvSII_tKieaRwS0NF0JKjNrug-I0Fl7G7YTvdHtv7SUvG9E_kbHfndLvNqtIMTAsuBkz4WGovtdZgvbLgEKlBpLlpNHxijAGF0MIbDTHXToiQpsk5gFLS8hbqgvhMJrN-5pYItaBAWOdNwp100ICGjW0rwVmSplSRXCbruHhpdbTytPCaRzwNL8OKptWKLpP6aCNTU_GbhzIbV2-M2BiPuC65Pd7ouzrSjRQPYPCq6Mz1h3mK_3RKyASfL_8p6Q8y3T497KbdztHBVzKDECwJ2Y0RXyGTuCHuG8KcAXwvFPsvX7T8xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaqIqFy4K9FLb9GoodK9XYdO97ssZRuu1Cqldqi3iKPf1AFylbN7oGe-gq8Cg_CQ_AkzCTehSJUwSEHO7Y1sWc8E83MN4y96vsISmsrIPSU0JApASC9QPaIPYMGvW5C_t8fmv0T_fY0P11g-SwXBomocaW6ceKTVJ_7mBAG5Bb1n6E11SmAYFXw5r1FXjti7O2do1-RHXlTwxXlh5KKijx5J_-2AukkV1_XSdev5EbPDO6xD3MKm_CST53pBDru8g_wxv_-hPvsbrI8-XbLKg_YQqgesju_4REus6uUNsCHCUQCD42PIx-1sLDY2uSj6QVFF9m2ZSvPh8jKFGJ7OR___duPq697TTD8mUc1yeELp8qgLVZt9ZHjO0Gu43Ahdg9GYu81b5HTV9jJYPd4Z1-kEg3CKqkmQsVc26itteCj8RDQYoPMStftxsI5BwZNjOgs5NIGpShdU0oAY7SXfeQJ9YgtVuMqrDLuwYDyIbpCBh2gC12f-36BqxQ9bTK9xtZx88okYnXZeM8zWVIn7WiZdnSNbc0Os3QJ55zKbXy-YcbGfMZ5i_Fxw9iXM_4oURDJu2KrMJ7WJf7bGaULfB7_I6Uv2O3Rm0F5MDx894QtoSVWUJJjJp-yRTyP8AytnQk8b3j7J2dZ_0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Integration+of+Production%2C+Purification%2C+and+Immobilization+of+%CE%B2-Glucosidase+by+Constructing+Glu-linker-ELP-GB+System&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Rong%2C+Junhui&rft.au=Han%2C+Juan&rft.au=Zhou%2C+Yang&rft.au=Wang%2C+Lei&rft.date=2018-11-21&rft.issn=1520-5045&rft.volume=57&rft.issue=46+p.15620-15631&rft.spage=15620&rft.epage=15631&rft_id=info:doi/10.1021%2Facs.iecr.8b03492&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon