Detailed Design and Economic Evaluation of a Cryogenic Air Separation Unit with Recent Literature Solutions

Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 60; no. 41; pp. 14830 - 14844
Main Authors Young, André F, Villardi, Hugo G. D, Araujo, Leonardo S, Raptopoulos, Luciano S. C, Dutra, Max S
Format Journal Article
LanguageEnglish
Published American Chemical Society 20.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential because installing an air separation unit can also be considered at the design stage of other common industrial projects, such as oxidation/combustion processes and ammonia production. This study aims to elucidate the technical and economic aspects of a real-size air separation unit and analyze the feasibility of incorporating some alternatives recently proposed in the literature, such as multistage compression with and without an organic Rankine cycle for energy saving, integrated argon column, energy recovery systems in turbines, and a PSA unit for CO2 removal, and in the implementation of a new plant. For this, we performed a rigorous simulation and a robust economic evaluation. Thus, it was possible to identify the main bottlenecks of the process, which may become the subject for future work. As a result, the relevance of the compression (34–36%) and refrigeration (54–55%) stages in the capital cost and the importance of conscious electricity (29–32% of the production costs) and maintenance spending for the process’ economic viability were shown. Flowsheets and economic analysis are presented in detail so that they could be used as a base case for future developments in this field.
AbstractList Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential because installing an air separation unit can also be considered at the design stage of other common industrial projects, such as oxidation/combustion processes and ammonia production. This study aims to elucidate the technical and economic aspects of a real-size air separation unit and analyze the feasibility of incorporating some alternatives recently proposed in the literature, such as multistage compression with and without an organic Rankine cycle for energy saving, integrated argon column, energy recovery systems in turbines, and a PSA unit for CO₂ removal, and in the implementation of a new plant. For this, we performed a rigorous simulation and a robust economic evaluation. Thus, it was possible to identify the main bottlenecks of the process, which may become the subject for future work. As a result, the relevance of the compression (34–36%) and refrigeration (54–55%) stages in the capital cost and the importance of conscious electricity (29–32% of the production costs) and maintenance spending for the process’ economic viability were shown. Flowsheets and economic analysis are presented in detail so that they could be used as a base case for future developments in this field.
Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential because installing an air separation unit can also be considered at the design stage of other common industrial projects, such as oxidation/combustion processes and ammonia production. This study aims to elucidate the technical and economic aspects of a real-size air separation unit and analyze the feasibility of incorporating some alternatives recently proposed in the literature, such as multistage compression with and without an organic Rankine cycle for energy saving, integrated argon column, energy recovery systems in turbines, and a PSA unit for CO2 removal, and in the implementation of a new plant. For this, we performed a rigorous simulation and a robust economic evaluation. Thus, it was possible to identify the main bottlenecks of the process, which may become the subject for future work. As a result, the relevance of the compression (34–36%) and refrigeration (54–55%) stages in the capital cost and the importance of conscious electricity (29–32% of the production costs) and maintenance spending for the process’ economic viability were shown. Flowsheets and economic analysis are presented in detail so that they could be used as a base case for future developments in this field.
Author Young, André F
Dutra, Max S
Raptopoulos, Luciano S. C
Villardi, Hugo G. D
Araujo, Leonardo S
AuthorAffiliation Department of Chemical and Petroleum Engineering
SENAI CIMATEC
Department of Metallurgical and Materials Engineering
Control and Automation Engineering Coordination
Celso Suckow da Fonseca Federal Centre of Technological Education
Department of Mechanical Engineering
Federal University of Rio de Janeiro
AuthorAffiliation_xml – name: SENAI CIMATEC
– name: Department of Mechanical Engineering
– name: Department of Chemical and Petroleum Engineering
– name: Federal University of Rio de Janeiro
– name: Control and Automation Engineering Coordination
– name: Celso Suckow da Fonseca Federal Centre of Technological Education
– name: Department of Metallurgical and Materials Engineering
Author_xml – sequence: 1
  givenname: André F
  orcidid: 0000-0002-3022-6006
  surname: Young
  fullname: Young, André F
  email: ayoung@id.uff.br
  organization: Department of Chemical and Petroleum Engineering
– sequence: 2
  givenname: Hugo G. D
  surname: Villardi
  fullname: Villardi, Hugo G. D
  organization: SENAI CIMATEC
– sequence: 3
  givenname: Leonardo S
  surname: Araujo
  fullname: Araujo, Leonardo S
  organization: Federal University of Rio de Janeiro
– sequence: 4
  givenname: Luciano S. C
  surname: Raptopoulos
  fullname: Raptopoulos, Luciano S. C
  organization: Celso Suckow da Fonseca Federal Centre of Technological Education
– sequence: 5
  givenname: Max S
  surname: Dutra
  fullname: Dutra, Max S
  organization: Department of Mechanical Engineering
BookMark eNp9kEtPAjEUhRuDiYDuXXbpwsE-pjNlSQAfCYmJyHrS6dzB4tBi29Hw7x2ElYmu7uKc7ybnG6CedRYQuqZkRAmjd0qHkQHtR1QTJqk8Q30qGEkESUUP9YmUMhFSigs0CGFDCBEiTfvofQZRmQYqPINg1hYrW-G5dtZtjcbzT9W0KhpnsauxwlO_d2uwXTIxHi9hp_wxXVkT8ZeJb_gFNNiIFyZCl7Ue8NI17aEULtF5rZoAV6c7RKv7-ev0MVk8PzxNJ4tEccpjwvMsI9m4GrMy5SIvtVCECT5mOZC825rVNC8Fy-tSKsKFVhVRjEqpOYBkrOJDdHP8u_Puo4UQi60JGppGWXBtKFjGMyFERllXzY5V7V0IHupCm_gzKfpOS0FJcbBbdHaLg93iZLcDyS9w581W-f1_yO0ROSQb13rbSfi7_g3ayJBV
CitedBy_id crossref_primary_10_1021_acs_iecr_3c00058
crossref_primary_10_1016_j_fuel_2024_132952
crossref_primary_10_1016_j_renene_2023_119591
crossref_primary_10_1016_j_ijft_2022_100261
crossref_primary_10_1016_j_memlet_2025_100092
crossref_primary_10_1016_j_energy_2024_132552
crossref_primary_10_1016_j_enconman_2023_117348
crossref_primary_10_1016_j_jclepro_2024_143493
crossref_primary_10_1021_acsomega_1c06669
crossref_primary_10_1039_D4SE00229F
crossref_primary_10_1016_j_cej_2023_146195
crossref_primary_10_1016_j_fuel_2024_134052
crossref_primary_10_1002_bbb_2722
crossref_primary_10_1016_j_applthermaleng_2023_120194
crossref_primary_10_1016_j_enconman_2024_118764
crossref_primary_10_1063_5_0202719
crossref_primary_10_1016_j_enconman_2025_119597
crossref_primary_10_1021_jacs_3c10753
crossref_primary_10_1016_j_enconman_2024_118504
crossref_primary_10_1007_s13399_024_06059_2
crossref_primary_10_1016_j_wasman_2023_08_006
crossref_primary_10_1016_j_ces_2024_120437
crossref_primary_10_1016_j_apenergy_2024_123789
crossref_primary_10_1016_j_ijhydene_2024_06_016
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_1016_j_ecmx_2024_100841
crossref_primary_10_1016_j_fuel_2023_130584
crossref_primary_10_1016_j_jclepro_2023_138443
crossref_primary_10_1016_j_seppur_2024_128419
crossref_primary_10_1016_j_resconrec_2022_106693
Cites_doi 10.1016/j.energy.2015.06.083
10.1016/j.energy.2015.07.101
10.1016/j.enconman.2015.09.077
10.1016/S0196-8904(98)00062-4
10.1016/j.energy.2011.11.012
10.1016/j.enconman.2009.06.033
10.1016/j.applthermaleng.2015.02.034
10.1016/j.energy.2010.12.013
10.1007/978-3-540-32599-4
10.1016/j.fuel.2014.09.100
10.1016/j.egypro.2017.03.1385
10.1533/9781845699574.5.492
10.1590/S0100-40422005000400013
10.1016/0031-8914(73)90162-6
10.1016/B978-0-08-100649-8.00029-9
10.1016/j.enconman.2008.11.012
10.1016/j.compchemeng.2006.05.038
10.1016/j.ces.2010.11.039
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.1c02818
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 14844
ExternalDocumentID 10_1021_acs_iecr_1c02818
a167952252
GroupedDBID 02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
JG
K2
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
6TJ
AAYXX
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
ED~
JG~
~02
7S9
L.6
ID FETCH-LOGICAL-a313t-3766069d92b4357bc5a0253927e071026f17b527fb8a035cad0a2188c3ee822d3
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Fri Jul 11 16:22:20 EDT 2025
Tue Jul 01 04:23:51 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Fri Oct 22 13:17:37 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-3766069d92b4357bc5a0253927e071026f17b527fb8a035cad0a2188c3ee822d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3022-6006
PQID 2636555612
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2636555612
crossref_citationtrail_10_1021_acs_iecr_1c02818
crossref_primary_10_1021_acs_iecr_1c02818
acs_journals_10_1021_acs_iecr_1c02818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-20
  day: 20
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
Gaspar J. (ref14/cit14) 2017; 40
ref27/cit27
ref18/cit18
Turton R. (ref37/cit37) 2009
Incropera F. P. (ref36/cit36) 2008
ref11/cit11
ref25/cit25
Hinkov I. (ref31/cit31) 2016; 51
Rao P. P. A. N. (ref13/cit13) 2016
ref16/cit16
PINI (ref39/cit39) 2019
Birat J.-P. (ref29/cit29) 2010
ref32/cit32
ref23/cit23
Mills D. (ref24/cit24) 2016
ref8/cit8
ref5/cit5
ref2/cit2
Mythri D. L. (ref12/cit12) 2016
Fu C. (ref15/cit15) 2012; 31
ref34/cit34
Seider W. D. (ref20/cit20) 2003
ref40/cit40
ref17/cit17
ref10/cit10
Haruna K. (ref28/cit28) 2005; 2
ref26/cit26
Perlingeiro C. A. G. (ref35/cit35) 2005
ref19/cit19
ref42/cit42
Schoen H. (ref1/cit1) 2015
Botelho M. H. C. (ref21/cit21) 2004
ref41/cit41
Sinnott R. (ref22/cit22) 2008
ref4/cit4
ref30/cit30
ref38/cit38
Szostak R. (ref33/cit33) 1992
ref7/cit7
References_xml – volume-title: Fundamentals of Heat and Mass Transfer
  year: 2008
  ident: ref36/cit36
– ident: ref8/cit8
  doi: 10.1016/j.energy.2015.06.083
– volume-title: Chemical Engineering Design
  year: 2008
  ident: ref22/cit22
– volume-title: Reinforced Concrete, I Love You, v. II
  year: 2004
  ident: ref21/cit21
– ident: ref25/cit25
– ident: ref9/cit9
  doi: 10.1016/j.energy.2015.07.101
– ident: ref11/cit11
  doi: 10.1016/j.enconman.2015.09.077
– ident: ref3/cit3
  doi: 10.1016/S0196-8904(98)00062-4
– volume-title: Product and Process Design Principles - Synthesis, Analysis, and Evaluation
  year: 2003
  ident: ref20/cit20
– ident: ref4/cit4
  doi: 10.1016/j.energy.2011.11.012
– start-page: 91
  year: 2016
  ident: ref13/cit13
  publication-title: Int. J. Mod. Trends Eng. Res.
– ident: ref42/cit42
  doi: 10.1016/j.enconman.2009.06.033
– ident: ref18/cit18
– ident: ref16/cit16
  doi: 10.1016/j.applthermaleng.2015.02.034
– ident: ref6/cit6
  doi: 10.1016/j.energy.2010.12.013
– volume-title: Analysis, Synthesis and Design of Chemical Processes
  year: 2009
  ident: ref37/cit37
– volume-title: Handbook of Purified Gases
  year: 2015
  ident: ref1/cit1
  doi: 10.1007/978-3-540-32599-4
– ident: ref32/cit32
  doi: 10.1016/j.fuel.2014.09.100
– ident: ref30/cit30
  doi: 10.1016/j.egypro.2017.03.1385
– ident: ref34/cit34
– volume-title: Process Systems Engineering
  year: 2005
  ident: ref35/cit35
– ident: ref17/cit17
– ident: ref40/cit40
– ident: ref23/cit23
– start-page: 492
  volume-title: Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology
  year: 2010
  ident: ref29/cit29
  doi: 10.1533/9781845699574.5.492
– ident: ref26/cit26
  doi: 10.1590/S0100-40422005000400013
– ident: ref19/cit19
  doi: 10.1016/0031-8914(73)90162-6
– volume: 51
  start-page: 609
  year: 2016
  ident: ref31/cit31
  publication-title: J. Chem. Technol. Metall.
– ident: ref5/cit5
– start-page: 108
  year: 2016
  ident: ref12/cit12
  publication-title: Int. J. Mod. Trends Eng. Res.
– ident: ref27/cit27
– volume-title: Handbook of Molecular Sieves
  year: 1992
  ident: ref33/cit33
– start-page: 665
  volume-title: Pneumatic Conveying Design Guide
  year: 2016
  ident: ref24/cit24
  doi: 10.1016/B978-0-08-100649-8.00029-9
– volume: 40
  start-page: 1543
  volume-title: Computer Aided Chemical Engineering
  year: 2017
  ident: ref14/cit14
– volume: 2
  start-page: 1
  year: 2005
  ident: ref28/cit28
  publication-title: Sumitomo Kagaku
– volume: 31
  start-page: 1602
  volume-title: Computer Aided Chemical Engineering
  year: 2012
  ident: ref15/cit15
– ident: ref41/cit41
– ident: ref7/cit7
  doi: 10.1016/j.enconman.2008.11.012
– volume-title: Unit Prices Practiced in the Rio de Janeiro Market
  year: 2019
  ident: ref39/cit39
– ident: ref2/cit2
  doi: 10.1016/j.compchemeng.2006.05.038
– ident: ref10/cit10
  doi: 10.1016/j.ces.2010.11.039
– ident: ref38/cit38
SSID ssj0005544
Score 2.5145376
Snippet Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14830
SubjectTerms air
ammonia
capital costs
carbon dioxide
combustion
economic evaluation
economic feasibility
economic sustainability
electricity
energy
energy recovery
process design
Process Systems Engineering
refrigeration
Title Detailed Design and Economic Evaluation of a Cryogenic Air Separation Unit with Recent Literature Solutions
URI http://dx.doi.org/10.1021/acs.iecr.1c02818
https://www.proquest.com/docview/2636555612
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAjiibjAQHDkkbJ85yrLqoQsClVOot8hapKkpQkx7g6xk7aaCAql7j2LJsj9-zZ_wGoTsFsMB9Elo0UonlhYpakXRcKwK4A4LhUy711cDziz8ce48TOvmWyfntwSdOi4ncngKFsh3R1tJF22iH-GDDmgZ1R9_hHNQkbgWj0S-JQlq5JP9rQQORyFeBaHUfNuAyOCizFOVGk1DHlMzsRcFt8flXsXGDfh-i_Ypj4k65KI7QlkqP0d4P5cETNOuZ0FElcc-EcGCWSrx8pIz7tQQ4zhLMcHf-kcFCg5LOdI5HqtQLh1LNWLG-ysVAPwG-8FOt0ozrC7dTNB70X7tDq8q7YDHXcQu958CxJpIR4UCmAi4oA2YERCpQhpD4iRNwSoKEh6ztUsFkmwFTCIWrFPAN6Z6hRpql6hzhJBHMk4w7THpAfSTnHpwxuVKCESYEbaJ7GKe4sps8Ni5x4sT6ox68uBq8JmotJysWlXi5zqHxtqbGQ13jvRTuWPPv7XL-Y7Au7TJhqcoWeUx816cmg-jFhj29RLtEh70AvJH2FWoU84W6Bt5S8BuzYL8ANfzo2w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO6KsRoIDh7SNE6fJseqiAi0HoFJvkbdIVVGKmvYAX8_YTcMihOBqx9bIGXuePTNvAC41mgUR0NBhkU4cP9TMiZTrORGaOwQYARPKPA307oNO378dsMESuItcGBQiw5ky68T_YBdwK6ZtiEiq7MqqYTBahlXEItQodb3x-BHVwWz9Vtw7JqEoZLln8qcZjD2S2Vd79PU4tjamvQUPhXQ2tGRUnk1FWb59I278l_jbsJkjTlKfq8gOLOl0FzY-8RDuwahpA0m1Ik0b0EF4qsgiZZm0CkJwMk4IJ43J6xjVDnvqwwl51HP2cOw1-JWYh12CYBSNGekWnM2keH7bh3679dToOHkVBod7rjc1JxBeciIVUYHQqiYk44iTEFbVtIUnQeLWBKO1RIS86jHJVZUjbgilpzWiD-UdwEo6TvUhkCSR3FdcuFz5CISUED7eOIXWklMuJSvBFa5TnO-iLLYOcurGptEsXpwvXgkqi38Wy5zK3FTUeP5lxHUx4mVO4_HLtxcLNYhxrxkHCk_1eJbFNPACZuuJHv1R0nNY6zz1unH35v7uGNapCYhBw0erJ7Ayncz0KSKaqTizOvwOj-nxPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0VkBAc2BE7RoIDh7TN4jQ5Vl3EUiqkAuIWeYtUFSWoaQ_w9YzdJFCEEFzt2HLsGc-zZ_wG4FyhWeC-E1g0VLHlBYpaobRdK0RzhwDDp1zqq4G7vn_16N080-cK0OItDA4iw54y48TXWv0q45xhwK7p8iGiqaot6prFaAGWtNdOC3azNfiM7KAmhyvqj35UFNDcO_lTD9omiWzeJs1vycbOdNfhqRyhCS8ZVacTXhXv38gb__0LG7CWI0_SnInKJlRUsgWrX_gIt2HUNgGlSpK2CewgLJGkeLpMOiUxOEljwkhr_Jai-GFNczgmAzVjEcdajWOJvuAlCErRqJFeyd1Mymu4HXjsdh5aV1aejcFiru1O9E6Eh51Qhg5HiNXggjLESwivGsrAFD-2G5w6jZgHrO5SwWSdIX4IhKsUohDp7sJikiZqD0gcC-ZJxm0mPQREknMPT55cKcEcJgTdhwucpyjXpiwyjnLHjnShnrwon7x9qBXrFomc0lxn1nj5pcVl2eJ1Rufxy7dnhShEqHPakcISlU6zyPFdn5q8ogd_HOkpLN-3u1Hvun97CCuOjotB--fUj2BxMp6qYwQ2E35ixPgDYr3zvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detailed+Design+and+Economic+Evaluation+of+a+Cryogenic+Air+Separation+Unit+with+Recent+Literature+Solutions&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Young%2C+Andre%CC%81+F&rft.au=Villardi%2C+Hugo+G.+D&rft.au=Araujo%2C+Leonardo+S&rft.au=Raptopoulos%2C+Luciano+S.+C&rft.date=2021-10-20&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=60&rft.issue=41&rft.spage=14830&rft.epage=14844&rft_id=info:doi/10.1021%2Facs.iecr.1c02818&rft.externalDocID=a167952252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon