Detailed Design and Economic Evaluation of a Cryogenic Air Separation Unit with Recent Literature Solutions
Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 60; no. 41; pp. 14830 - 14844 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
20.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential because installing an air separation unit can also be considered at the design stage of other common industrial projects, such as oxidation/combustion processes and ammonia production. This study aims to elucidate the technical and economic aspects of a real-size air separation unit and analyze the feasibility of incorporating some alternatives recently proposed in the literature, such as multistage compression with and without an organic Rankine cycle for energy saving, integrated argon column, energy recovery systems in turbines, and a PSA unit for CO2 removal, and in the implementation of a new plant. For this, we performed a rigorous simulation and a robust economic evaluation. Thus, it was possible to identify the main bottlenecks of the process, which may become the subject for future work. As a result, the relevance of the compression (34–36%) and refrigeration (54–55%) stages in the capital cost and the importance of conscious electricity (29–32% of the production costs) and maintenance spending for the process’ economic viability were shown. Flowsheets and economic analysis are presented in detail so that they could be used as a base case for future developments in this field. |
---|---|
AbstractList | Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential because installing an air separation unit can also be considered at the design stage of other common industrial projects, such as oxidation/combustion processes and ammonia production. This study aims to elucidate the technical and economic aspects of a real-size air separation unit and analyze the feasibility of incorporating some alternatives recently proposed in the literature, such as multistage compression with and without an organic Rankine cycle for energy saving, integrated argon column, energy recovery systems in turbines, and a PSA unit for CO₂ removal, and in the implementation of a new plant. For this, we performed a rigorous simulation and a robust economic evaluation. Thus, it was possible to identify the main bottlenecks of the process, which may become the subject for future work. As a result, the relevance of the compression (34–36%) and refrigeration (54–55%) stages in the capital cost and the importance of conscious electricity (29–32% of the production costs) and maintenance spending for the process’ economic viability were shown. Flowsheets and economic analysis are presented in detail so that they could be used as a base case for future developments in this field. Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging on this topic. Nevertheless, economic feasibility studies of cryogenic separation plants are still scarce. Studies of this type are essential because installing an air separation unit can also be considered at the design stage of other common industrial projects, such as oxidation/combustion processes and ammonia production. This study aims to elucidate the technical and economic aspects of a real-size air separation unit and analyze the feasibility of incorporating some alternatives recently proposed in the literature, such as multistage compression with and without an organic Rankine cycle for energy saving, integrated argon column, energy recovery systems in turbines, and a PSA unit for CO2 removal, and in the implementation of a new plant. For this, we performed a rigorous simulation and a robust economic evaluation. Thus, it was possible to identify the main bottlenecks of the process, which may become the subject for future work. As a result, the relevance of the compression (34–36%) and refrigeration (54–55%) stages in the capital cost and the importance of conscious electricity (29–32% of the production costs) and maintenance spending for the process’ economic viability were shown. Flowsheets and economic analysis are presented in detail so that they could be used as a base case for future developments in this field. |
Author | Young, André F Dutra, Max S Raptopoulos, Luciano S. C Villardi, Hugo G. D Araujo, Leonardo S |
AuthorAffiliation | Department of Chemical and Petroleum Engineering SENAI CIMATEC Department of Metallurgical and Materials Engineering Control and Automation Engineering Coordination Celso Suckow da Fonseca Federal Centre of Technological Education Department of Mechanical Engineering Federal University of Rio de Janeiro |
AuthorAffiliation_xml | – name: SENAI CIMATEC – name: Department of Mechanical Engineering – name: Department of Chemical and Petroleum Engineering – name: Federal University of Rio de Janeiro – name: Control and Automation Engineering Coordination – name: Celso Suckow da Fonseca Federal Centre of Technological Education – name: Department of Metallurgical and Materials Engineering |
Author_xml | – sequence: 1 givenname: André F orcidid: 0000-0002-3022-6006 surname: Young fullname: Young, André F email: ayoung@id.uff.br organization: Department of Chemical and Petroleum Engineering – sequence: 2 givenname: Hugo G. D surname: Villardi fullname: Villardi, Hugo G. D organization: SENAI CIMATEC – sequence: 3 givenname: Leonardo S surname: Araujo fullname: Araujo, Leonardo S organization: Federal University of Rio de Janeiro – sequence: 4 givenname: Luciano S. C surname: Raptopoulos fullname: Raptopoulos, Luciano S. C organization: Celso Suckow da Fonseca Federal Centre of Technological Education – sequence: 5 givenname: Max S surname: Dutra fullname: Dutra, Max S organization: Department of Mechanical Engineering |
BookMark | eNp9kEtPAjEUhRuDiYDuXXbpwsE-pjNlSQAfCYmJyHrS6dzB4tBi29Hw7x2ElYmu7uKc7ybnG6CedRYQuqZkRAmjd0qHkQHtR1QTJqk8Q30qGEkESUUP9YmUMhFSigs0CGFDCBEiTfvofQZRmQYqPINg1hYrW-G5dtZtjcbzT9W0KhpnsauxwlO_d2uwXTIxHi9hp_wxXVkT8ZeJb_gFNNiIFyZCl7Ue8NI17aEULtF5rZoAV6c7RKv7-ev0MVk8PzxNJ4tEccpjwvMsI9m4GrMy5SIvtVCECT5mOZC825rVNC8Fy-tSKsKFVhVRjEqpOYBkrOJDdHP8u_Puo4UQi60JGppGWXBtKFjGMyFERllXzY5V7V0IHupCm_gzKfpOS0FJcbBbdHaLg93iZLcDyS9w581W-f1_yO0ROSQb13rbSfi7_g3ayJBV |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c00058 crossref_primary_10_1016_j_fuel_2024_132952 crossref_primary_10_1016_j_renene_2023_119591 crossref_primary_10_1016_j_ijft_2022_100261 crossref_primary_10_1016_j_memlet_2025_100092 crossref_primary_10_1016_j_energy_2024_132552 crossref_primary_10_1016_j_enconman_2023_117348 crossref_primary_10_1016_j_jclepro_2024_143493 crossref_primary_10_1021_acsomega_1c06669 crossref_primary_10_1039_D4SE00229F crossref_primary_10_1016_j_cej_2023_146195 crossref_primary_10_1016_j_fuel_2024_134052 crossref_primary_10_1002_bbb_2722 crossref_primary_10_1016_j_applthermaleng_2023_120194 crossref_primary_10_1016_j_enconman_2024_118764 crossref_primary_10_1063_5_0202719 crossref_primary_10_1016_j_enconman_2025_119597 crossref_primary_10_1021_jacs_3c10753 crossref_primary_10_1016_j_enconman_2024_118504 crossref_primary_10_1007_s13399_024_06059_2 crossref_primary_10_1016_j_wasman_2023_08_006 crossref_primary_10_1016_j_ces_2024_120437 crossref_primary_10_1016_j_apenergy_2024_123789 crossref_primary_10_1016_j_ijhydene_2024_06_016 crossref_primary_10_1039_D4CS00574K crossref_primary_10_1016_j_ecmx_2024_100841 crossref_primary_10_1016_j_fuel_2023_130584 crossref_primary_10_1016_j_jclepro_2023_138443 crossref_primary_10_1016_j_seppur_2024_128419 crossref_primary_10_1016_j_resconrec_2022_106693 |
Cites_doi | 10.1016/j.energy.2015.06.083 10.1016/j.energy.2015.07.101 10.1016/j.enconman.2015.09.077 10.1016/S0196-8904(98)00062-4 10.1016/j.energy.2011.11.012 10.1016/j.enconman.2009.06.033 10.1016/j.applthermaleng.2015.02.034 10.1016/j.energy.2010.12.013 10.1007/978-3-540-32599-4 10.1016/j.fuel.2014.09.100 10.1016/j.egypro.2017.03.1385 10.1533/9781845699574.5.492 10.1590/S0100-40422005000400013 10.1016/0031-8914(73)90162-6 10.1016/B978-0-08-100649-8.00029-9 10.1016/j.enconman.2008.11.012 10.1016/j.compchemeng.2006.05.038 10.1016/j.ces.2010.11.039 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.1c02818 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 14844 |
ExternalDocumentID | 10_1021_acs_iecr_1c02818 a167952252 |
GroupedDBID | 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED F5P GGK GNL IH9 JG K2 LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV BAANH CITATION CUPRZ ED~ JG~ ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-3766069d92b4357bc5a0253927e071026f17b527fb8a035cad0a2188c3ee822d3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Fri Jul 11 16:22:20 EDT 2025 Tue Jul 01 04:23:51 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Fri Oct 22 13:17:37 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-3766069d92b4357bc5a0253927e071026f17b527fb8a035cad0a2188c3ee822d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3022-6006 |
PQID | 2636555612 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2636555612 crossref_citationtrail_10_1021_acs_iecr_1c02818 crossref_primary_10_1021_acs_iecr_1c02818 acs_journals_10_1021_acs_iecr_1c02818 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-20 |
PublicationDateYYYYMMDD | 2021-10-20 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 Gaspar J. (ref14/cit14) 2017; 40 ref27/cit27 ref18/cit18 Turton R. (ref37/cit37) 2009 Incropera F. P. (ref36/cit36) 2008 ref11/cit11 ref25/cit25 Hinkov I. (ref31/cit31) 2016; 51 Rao P. P. A. N. (ref13/cit13) 2016 ref16/cit16 PINI (ref39/cit39) 2019 Birat J.-P. (ref29/cit29) 2010 ref32/cit32 ref23/cit23 Mills D. (ref24/cit24) 2016 ref8/cit8 ref5/cit5 ref2/cit2 Mythri D. L. (ref12/cit12) 2016 Fu C. (ref15/cit15) 2012; 31 ref34/cit34 Seider W. D. (ref20/cit20) 2003 ref40/cit40 ref17/cit17 ref10/cit10 Haruna K. (ref28/cit28) 2005; 2 ref26/cit26 Perlingeiro C. A. G. (ref35/cit35) 2005 ref19/cit19 ref42/cit42 Schoen H. (ref1/cit1) 2015 Botelho M. H. C. (ref21/cit21) 2004 ref41/cit41 Sinnott R. (ref22/cit22) 2008 ref4/cit4 ref30/cit30 ref38/cit38 Szostak R. (ref33/cit33) 1992 ref7/cit7 |
References_xml | – volume-title: Fundamentals of Heat and Mass Transfer year: 2008 ident: ref36/cit36 – ident: ref8/cit8 doi: 10.1016/j.energy.2015.06.083 – volume-title: Chemical Engineering Design year: 2008 ident: ref22/cit22 – volume-title: Reinforced Concrete, I Love You, v. II year: 2004 ident: ref21/cit21 – ident: ref25/cit25 – ident: ref9/cit9 doi: 10.1016/j.energy.2015.07.101 – ident: ref11/cit11 doi: 10.1016/j.enconman.2015.09.077 – ident: ref3/cit3 doi: 10.1016/S0196-8904(98)00062-4 – volume-title: Product and Process Design Principles - Synthesis, Analysis, and Evaluation year: 2003 ident: ref20/cit20 – ident: ref4/cit4 doi: 10.1016/j.energy.2011.11.012 – start-page: 91 year: 2016 ident: ref13/cit13 publication-title: Int. J. Mod. Trends Eng. Res. – ident: ref42/cit42 doi: 10.1016/j.enconman.2009.06.033 – ident: ref18/cit18 – ident: ref16/cit16 doi: 10.1016/j.applthermaleng.2015.02.034 – ident: ref6/cit6 doi: 10.1016/j.energy.2010.12.013 – volume-title: Analysis, Synthesis and Design of Chemical Processes year: 2009 ident: ref37/cit37 – volume-title: Handbook of Purified Gases year: 2015 ident: ref1/cit1 doi: 10.1007/978-3-540-32599-4 – ident: ref32/cit32 doi: 10.1016/j.fuel.2014.09.100 – ident: ref30/cit30 doi: 10.1016/j.egypro.2017.03.1385 – ident: ref34/cit34 – volume-title: Process Systems Engineering year: 2005 ident: ref35/cit35 – ident: ref17/cit17 – ident: ref40/cit40 – ident: ref23/cit23 – start-page: 492 volume-title: Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology year: 2010 ident: ref29/cit29 doi: 10.1533/9781845699574.5.492 – ident: ref26/cit26 doi: 10.1590/S0100-40422005000400013 – ident: ref19/cit19 doi: 10.1016/0031-8914(73)90162-6 – volume: 51 start-page: 609 year: 2016 ident: ref31/cit31 publication-title: J. Chem. Technol. Metall. – ident: ref5/cit5 – start-page: 108 year: 2016 ident: ref12/cit12 publication-title: Int. J. Mod. Trends Eng. Res. – ident: ref27/cit27 – volume-title: Handbook of Molecular Sieves year: 1992 ident: ref33/cit33 – start-page: 665 volume-title: Pneumatic Conveying Design Guide year: 2016 ident: ref24/cit24 doi: 10.1016/B978-0-08-100649-8.00029-9 – volume: 40 start-page: 1543 volume-title: Computer Aided Chemical Engineering year: 2017 ident: ref14/cit14 – volume: 2 start-page: 1 year: 2005 ident: ref28/cit28 publication-title: Sumitomo Kagaku – volume: 31 start-page: 1602 volume-title: Computer Aided Chemical Engineering year: 2012 ident: ref15/cit15 – ident: ref41/cit41 – ident: ref7/cit7 doi: 10.1016/j.enconman.2008.11.012 – volume-title: Unit Prices Practiced in the Rio de Janeiro Market year: 2019 ident: ref39/cit39 – ident: ref2/cit2 doi: 10.1016/j.compchemeng.2006.05.038 – ident: ref10/cit10 doi: 10.1016/j.ces.2010.11.039 – ident: ref38/cit38 |
SSID | ssj0005544 |
Score | 2.5145376 |
Snippet | Cryogenic air separation is a well-established technology. However, due to its associated energy intensity and hazardousness, new studies are always emerging... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14830 |
SubjectTerms | air ammonia capital costs carbon dioxide combustion economic evaluation economic feasibility economic sustainability electricity energy energy recovery process design Process Systems Engineering refrigeration |
Title | Detailed Design and Economic Evaluation of a Cryogenic Air Separation Unit with Recent Literature Solutions |
URI | http://dx.doi.org/10.1021/acs.iecr.1c02818 https://www.proquest.com/docview/2636555612 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAjiibjAQHDkkbJ85yrLqoQsClVOot8hapKkpQkx7g6xk7aaCAql7j2LJsj9-zZ_wGoTsFsMB9Elo0UonlhYpakXRcKwK4A4LhUy711cDziz8ce48TOvmWyfntwSdOi4ncngKFsh3R1tJF22iH-GDDmgZ1R9_hHNQkbgWj0S-JQlq5JP9rQQORyFeBaHUfNuAyOCizFOVGk1DHlMzsRcFt8flXsXGDfh-i_Ypj4k65KI7QlkqP0d4P5cETNOuZ0FElcc-EcGCWSrx8pIz7tQQ4zhLMcHf-kcFCg5LOdI5HqtQLh1LNWLG-ysVAPwG-8FOt0ozrC7dTNB70X7tDq8q7YDHXcQu958CxJpIR4UCmAi4oA2YERCpQhpD4iRNwSoKEh6ztUsFkmwFTCIWrFPAN6Z6hRpql6hzhJBHMk4w7THpAfSTnHpwxuVKCESYEbaJ7GKe4sps8Ni5x4sT6ox68uBq8JmotJysWlXi5zqHxtqbGQ13jvRTuWPPv7XL-Y7Au7TJhqcoWeUx816cmg-jFhj29RLtEh70AvJH2FWoU84W6Bt5S8BuzYL8ANfzo2w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO6KsRoIDh7SNE6fJseqiAi0HoFJvkbdIVVGKmvYAX8_YTcMihOBqx9bIGXuePTNvAC41mgUR0NBhkU4cP9TMiZTrORGaOwQYARPKPA307oNO378dsMESuItcGBQiw5ky68T_YBdwK6ZtiEiq7MqqYTBahlXEItQodb3x-BHVwWz9Vtw7JqEoZLln8qcZjD2S2Vd79PU4tjamvQUPhXQ2tGRUnk1FWb59I278l_jbsJkjTlKfq8gOLOl0FzY-8RDuwahpA0m1Ik0b0EF4qsgiZZm0CkJwMk4IJ43J6xjVDnvqwwl51HP2cOw1-JWYh12CYBSNGekWnM2keH7bh3679dToOHkVBod7rjc1JxBeciIVUYHQqiYk44iTEFbVtIUnQeLWBKO1RIS86jHJVZUjbgilpzWiD-UdwEo6TvUhkCSR3FdcuFz5CISUED7eOIXWklMuJSvBFa5TnO-iLLYOcurGptEsXpwvXgkqi38Wy5zK3FTUeP5lxHUx4mVO4_HLtxcLNYhxrxkHCk_1eJbFNPACZuuJHv1R0nNY6zz1unH35v7uGNapCYhBw0erJ7Ayncz0KSKaqTizOvwOj-nxPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0VkBAc2BE7RoIDh7TN4jQ5Vl3EUiqkAuIWeYtUFSWoaQ_w9YzdJFCEEFzt2HLsGc-zZ_wG4FyhWeC-E1g0VLHlBYpaobRdK0RzhwDDp1zqq4G7vn_16N080-cK0OItDA4iw54y48TXWv0q45xhwK7p8iGiqaot6prFaAGWtNdOC3azNfiM7KAmhyvqj35UFNDcO_lTD9omiWzeJs1vycbOdNfhqRyhCS8ZVacTXhXv38gb__0LG7CWI0_SnInKJlRUsgWrX_gIt2HUNgGlSpK2CewgLJGkeLpMOiUxOEljwkhr_Jai-GFNczgmAzVjEcdajWOJvuAlCErRqJFeyd1Mymu4HXjsdh5aV1aejcFiru1O9E6Eh51Qhg5HiNXggjLESwivGsrAFD-2G5w6jZgHrO5SwWSdIX4IhKsUohDp7sJikiZqD0gcC-ZJxm0mPQREknMPT55cKcEcJgTdhwucpyjXpiwyjnLHjnShnrwon7x9qBXrFomc0lxn1nj5pcVl2eJ1Rufxy7dnhShEqHPakcISlU6zyPFdn5q8ogd_HOkpLN-3u1Hvun97CCuOjotB--fUj2BxMp6qYwQ2E35ixPgDYr3zvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detailed+Design+and+Economic+Evaluation+of+a+Cryogenic+Air+Separation+Unit+with+Recent+Literature+Solutions&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Young%2C+Andre%CC%81+F&rft.au=Villardi%2C+Hugo+G.+D&rft.au=Araujo%2C+Leonardo+S&rft.au=Raptopoulos%2C+Luciano+S.+C&rft.date=2021-10-20&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=60&rft.issue=41&rft.spage=14830&rft.epage=14844&rft_id=info:doi/10.1021%2Facs.iecr.1c02818&rft.externalDocID=a167952252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |