Predicting the Operational Stability of Phosphorescent OLED Host Molecules from First Principles: A Case Study
Low operational stability is the main limiting factor for commercialization of the blue phosphorescent organic light emitting diodes (PhOLEDs). The high energy and long lifetime of triplet excitons in blue PhOLEDs makes them more prone to degradation. Degradation of the host molecules in the emittin...
Saved in:
Published in | Journal of physical chemistry. C Vol. 121; no. 40; pp. 22422 - 22433 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
12.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low operational stability is the main limiting factor for commercialization of the blue phosphorescent organic light emitting diodes (PhOLEDs). The high energy and long lifetime of triplet excitons in blue PhOLEDs makes them more prone to degradation. Degradation of the host molecules in the emitting layer of PhOLEDs is one of the possible mechanisms leading to the luminosity loss in the course of device operation. Although possible degradation mechanisms are proposed in the literature, predicting the degradation kinetics is not straightforward because the evolution of excited states should be accurately described. We propose a computational scheme to assess the operational stability of PhOLED host materials. Our protocol relies on the usage of the multireference CASSCF/XMCQDPT2 method. In the present work we consider the degradation of four prototypical blue PhOLED host molecules in the charged and excited states as well as the degradation induced by exciton–polaron and exciton–exciton annihilation processes with the focus on breaking of exocyclic C–C or C–N bonds and triazine ring fission. By analyzing the calculated activation energies for different mechanisms we found the least stable states and the most probable dissociation pathways. On the basis of our computations, we derived a stability series for the studied molecules and determine the structural features that provide higher stability with respect to the unimolecular dissociation. |
---|---|
AbstractList | Low operational stability is the main limiting factor for commercialization of the blue phosphorescent organic light emitting diodes (PhOLEDs). The high energy and long lifetime of triplet excitons in blue PhOLEDs makes them more prone to degradation. Degradation of the host molecules in the emitting layer of PhOLEDs is one of the possible mechanisms leading to the luminosity loss in the course of device operation. Although possible degradation mechanisms are proposed in the literature, predicting the degradation kinetics is not straightforward because the evolution of excited states should be accurately described. We propose a computational scheme to assess the operational stability of PhOLED host materials. Our protocol relies on the usage of the multireference CASSCF/XMCQDPT2 method. In the present work we consider the degradation of four prototypical blue PhOLED host molecules in the charged and excited states as well as the degradation induced by exciton–polaron and exciton–exciton annihilation processes with the focus on breaking of exocyclic C–C or C–N bonds and triazine ring fission. By analyzing the calculated activation energies for different mechanisms we found the least stable states and the most probable dissociation pathways. On the basis of our computations, we derived a stability series for the studied molecules and determine the structural features that provide higher stability with respect to the unimolecular dissociation. |
Author | Freidzon, Alexandra Ya Krasikov, Dmitry N Kwon, Ohyun Bagaturyants, Alexander A Yakubovich, Alexander V Osipov, Alexey A Potapkin, Boris V Safonov, Andrey A |
AuthorAffiliation | Photochemistry Center Samsung R&D Institute Russia, DMC, SEC Russian Academy of Sciences Samsung Advanced Institute of Technology, Samsung Electronics, Company, Limited SAIT-Russia Lab, SRR National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) |
AuthorAffiliation_xml | – name: Samsung Advanced Institute of Technology, Samsung Electronics, Company, Limited – name: Samsung R&D Institute Russia, DMC, SEC – name: SAIT-Russia Lab, SRR – name: Russian Academy of Sciences – name: Photochemistry Center – name: National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) |
Author_xml | – sequence: 1 givenname: Alexandra Ya orcidid: 0000-0002-7473-7692 surname: Freidzon fullname: Freidzon, Alexandra Ya email: freidzon.sanya@gmail.com organization: National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) – sequence: 2 givenname: Andrey A surname: Safonov fullname: Safonov, Andrey A organization: Russian Academy of Sciences – sequence: 3 givenname: Alexander A surname: Bagaturyants fullname: Bagaturyants, Alexander A organization: National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) – sequence: 4 givenname: Dmitry N surname: Krasikov fullname: Krasikov, Dmitry N – sequence: 5 givenname: Boris V surname: Potapkin fullname: Potapkin, Boris V – sequence: 6 givenname: Alexey A surname: Osipov fullname: Osipov, Alexey A email: al.osipov@samsung.com organization: Samsung R&D Institute Russia, DMC, SEC – sequence: 7 givenname: Alexander V surname: Yakubovich fullname: Yakubovich, Alexander V organization: Samsung R&D Institute Russia, DMC, SEC – sequence: 8 givenname: Ohyun surname: Kwon fullname: Kwon, Ohyun email: o.kwon@samsung.com organization: Samsung Advanced Institute of Technology, Samsung Electronics, Company, Limited |
BookMark | eNp9kL1PwzAQxS1UJNrCzuiRgRQ7jvPBVpWWIhW1EjBHrn2hrtI42M7Q_x73QwxIMN3p3XtPp98A9RrTAEK3lIwoiemDkG60baUcZWvCs5ReoD4tWBxlCee9nz3JrtDAuS0hnBHK-qhZWVBaet18Yr8BvGzBCq9NI2r85sVa19rvsanwamNcuzEWnITG4-Vi-oTnxnn8amqQXQ0OV9bs8EzbIK6sbqRug_qIx3giHIS2Tu2v0WUlagc35zlEH7Pp-2QeLZbPL5PxIhKMMh9RrhQTUkFaAPCCguSiWoNKY1axNI8l4TwhKstjEmwJz5niXKYqh0LlNFNsiO5Ova01Xx04X-50eLyuRQOmc2VM8oQEAlkWrORkldY4Z6EqW6t3wu5LSsoD2jKgLQ9oyzPaEEl_RaT2R2reCl3_F7w_BY8X09mA2f1t_wb-eZKN |
CitedBy_id | crossref_primary_10_1002_adma_202407882 crossref_primary_10_1002_tcr_201800138 crossref_primary_10_1016_j_dyepig_2019_107551 crossref_primary_10_1002_adom_202401391 crossref_primary_10_1021_acs_jpcc_8b10726 crossref_primary_10_1021_acs_jpclett_4c03097 crossref_primary_10_1002_qua_26071 crossref_primary_10_1016_j_mattod_2023_06_016 crossref_primary_10_1002_advs_201800846 crossref_primary_10_1002_adom_202301484 crossref_primary_10_1039_C9TC05585A crossref_primary_10_1039_D1QM00884F crossref_primary_10_1149_2162_8777_acc96f crossref_primary_10_1002_adfm_202206207 crossref_primary_10_1002_cptc_201900029 crossref_primary_10_1002_advs_201802246 crossref_primary_10_1016_j_orgel_2021_106346 crossref_primary_10_1038_s41467_023_39697_7 crossref_primary_10_1002_sdtp_17094 crossref_primary_10_1016_j_orgel_2019_04_019 crossref_primary_10_1103_PhysRevMaterials_4_044603 crossref_primary_10_1002_adom_202102309 crossref_primary_10_1021_acs_jpclett_4c00705 crossref_primary_10_1039_D0TC01897J crossref_primary_10_1039_C8CP06314A crossref_primary_10_1039_C9TC05373E crossref_primary_10_1002_asia_202401234 crossref_primary_10_1021_acs_jpcc_8b10599 crossref_primary_10_1002_adom_202302815 crossref_primary_10_1039_D0CP00221F crossref_primary_10_1038_s41563_024_02004_w crossref_primary_10_1038_s41524_021_00628_z crossref_primary_10_1063_1_5124802 crossref_primary_10_1016_j_mser_2020_100581 crossref_primary_10_1021_acs_inorgchem_8b01675 crossref_primary_10_1021_acs_chemmater_8b03142 |
Cites_doi | 10.1117/12.782407 10.1088/0268-1242/26/3/034001 10.1021/cm062621i 10.1063/1.3021474 10.1021/acs.jpcc.6b00696 10.1126/science.283.5409.1900 10.1021/acs.chemmater.6b02069 10.1021/jp111303a 10.1021/jp412614k 10.1889/1.2835032 10.1021/jp0740649 10.1063/1.1531231 10.1002/adma.201205022 10.1063/1.3527085 10.1063/1.1835567 10.1063/1.4938169 10.1063/1.1749604 10.1063/1.2884530 10.1021/ct300846m 10.1021/j100238a002 10.1002/(SICI)1521-4095(199802)10:3<230::AID-ADMA230>3.0.CO;2-Y 10.1021/jp503437b 10.1039/C3CP53806K 10.1002/adma.201101066 10.1021/am507050g 10.1021/cr200107z 10.1021/ja00239a014 10.1021/jp305415x 10.1002/pssa.201228292 10.1021/acs.jpcc.5b07084 10.1038/srep05161 10.1021/acs.jpca.6b07258 10.1063/1.447421 10.1021/jp509492e 10.1103/PhysRevA.72.024502 10.1063/1.465674 10.1021/cr400704v 10.1002/adfm.200700816 10.1098/rsta.2014.0320 10.1016/j.orgel.2012.07.035 10.1021/cm00010a003 10.1098/rsta.2014.0321 10.1016/j.orgel.2013.01.009 10.1021/acs.jpcc.5b08239 10.1007/s00894-014-2397-z 10.1063/1.3151689 10.1038/nmat4259 10.1126/science.1157617 10.1021/acsami.6b13689 10.1063/1.3596699 10.1002/jcc.540141112 10.1021/j100360a009 10.1063/1.2430922 10.1063/1.4745194 10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B 10.1103/PhysRevLett.100.146401 10.1002/adma.200902624 10.1146/annurev.physchem.49.1.233 10.1117/12.680411 10.1038/ncomms6008 10.1143/JJAP.43.L1226 10.1103/PhysRevB.84.115208 10.1039/c3pp25449f 10.1002/adma.201200627 10.1016/j.orgel.2014.03.020 10.1021/jp9609592 10.1063/1.1409582 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.jpcc.7b05761 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 22433 |
ExternalDocumentID | 10_1021_acs_jpcc_7b05761 a901587670 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-15dd3acde69ee591ec5afbed623f3682c05540d78203ac4583d55c6d8e9d817d3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri Jul 11 03:42:09 EDT 2025 Tue Jul 01 02:16:57 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Thu Aug 27 13:42:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-15dd3acde69ee591ec5afbed623f3682c05540d78203ac4583d55c6d8e9d817d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7473-7692 |
PQID | 2084030177 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2084030177 crossref_primary_10_1021_acs_jpcc_7b05761 crossref_citationtrail_10_1021_acs_jpcc_7b05761 acs_journals_10_1021_acs_jpcc_7b05761 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171012 2017-10-12 |
PublicationDateYYYYMMDD | 2017-10-12 |
PublicationDate_xml | – month: 10 year: 2017 text: 20171012 day: 12 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 Kaplunov M. G. (ref20/cit20) 2012 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 Granovsky A. A. (ref64/cit64) 2017 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 Roos B. (ref60/cit60) 2008; 5 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1117/12.782407 – ident: ref26/cit26 doi: 10.1088/0268-1242/26/3/034001 – ident: ref45/cit45 doi: 10.1021/cm062621i – ident: ref57/cit57 doi: 10.1063/1.3021474 – ident: ref23/cit23 doi: 10.1021/acs.jpcc.6b00696 – ident: ref46/cit46 doi: 10.1126/science.283.5409.1900 – ident: ref35/cit35 doi: 10.1021/acs.chemmater.6b02069 – ident: ref53/cit53 doi: 10.1021/jp111303a – ident: ref34/cit34 doi: 10.1021/jp412614k – ident: ref16/cit16 doi: 10.1889/1.2835032 – ident: ref40/cit40 doi: 10.1021/jp0740649 – ident: ref12/cit12 doi: 10.1063/1.1531231 – ident: ref15/cit15 doi: 10.1002/adma.201205022 – ident: ref68/cit68 doi: 10.1063/1.3527085 – ident: ref13/cit13 doi: 10.1063/1.1835567 – ident: ref66/cit66 doi: 10.1063/1.4938169 – ident: ref42/cit42 doi: 10.1063/1.1749604 – ident: ref30/cit30 doi: 10.1063/1.2884530 – ident: ref58/cit58 doi: 10.1021/ct300846m – ident: ref43/cit43 doi: 10.1021/j100238a002 – ident: ref17/cit17 doi: 10.1002/(SICI)1521-4095(199802)10:3<230::AID-ADMA230>3.0.CO;2-Y – ident: ref24/cit24 doi: 10.1021/jp503437b – ident: ref2/cit2 doi: 10.1039/C3CP53806K – ident: ref29/cit29 – ident: ref27/cit27 doi: 10.1002/adma.201101066 – ident: ref22/cit22 doi: 10.1021/am507050g – ident: ref56/cit56 doi: 10.1021/cr200107z – ident: ref39/cit39 doi: 10.1021/ja00239a014 – ident: ref33/cit33 doi: 10.1021/jp305415x – ident: ref10/cit10 doi: 10.1002/pssa.201228292 – ident: ref11/cit11 doi: 10.1021/acs.jpcc.5b07084 – ident: ref19/cit19 doi: 10.1038/srep05161 – ident: ref52/cit52 doi: 10.1021/acs.jpca.6b07258 – ident: ref37/cit37 doi: 10.1063/1.447421 – ident: ref54/cit54 doi: 10.1021/jp509492e – ident: ref59/cit59 doi: 10.1103/PhysRevA.72.024502 – ident: ref62/cit62 doi: 10.1063/1.465674 – ident: ref6/cit6 doi: 10.1021/cr400704v – ident: ref14/cit14 doi: 10.1002/adfm.200700816 – ident: ref32/cit32 doi: 10.1098/rsta.2014.0320 – ident: ref18/cit18 doi: 10.1016/j.orgel.2012.07.035 – volume-title: Organic Light Emitting Devices year: 2012 ident: ref20/cit20 – ident: ref44/cit44 doi: 10.1021/cm00010a003 – ident: ref49/cit49 doi: 10.1098/rsta.2014.0321 – ident: ref71/cit71 doi: 10.1016/j.orgel.2013.01.009 – ident: ref51/cit51 doi: 10.1021/acs.jpcc.5b08239 – ident: ref50/cit50 doi: 10.1007/s00894-014-2397-z – ident: ref31/cit31 doi: 10.1063/1.3151689 – ident: ref67/cit67 doi: 10.1038/nmat4259 – ident: ref41/cit41 doi: 10.1126/science.1157617 – ident: ref25/cit25 doi: 10.1021/acsami.6b13689 – ident: ref63/cit63 doi: 10.1063/1.3596699 – ident: ref65/cit65 doi: 10.1002/jcc.540141112 – ident: ref48/cit48 doi: 10.1021/j100360a009 – ident: ref5/cit5 doi: 10.1063/1.2430922 – ident: ref7/cit7 doi: 10.1063/1.4745194 – ident: ref28/cit28 doi: 10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B – ident: ref55/cit55 doi: 10.1103/PhysRevLett.100.146401 – ident: ref9/cit9 doi: 10.1002/adma.200902624 – ident: ref61/cit61 doi: 10.1146/annurev.physchem.49.1.233 – ident: ref70/cit70 doi: 10.1117/12.680411 – ident: ref4/cit4 doi: 10.1038/ncomms6008 – ident: ref69/cit69 doi: 10.1143/JJAP.43.L1226 – ident: ref47/cit47 doi: 10.1103/PhysRevB.84.115208 – volume: 5 start-page: 125 volume-title: Radiation Induced Molecular Phenomena in Nucleic Acids, Challenges and Advances in Computational Chemistry and Physics year: 2008 ident: ref60/cit60 – volume-title: Firefly year: 2017 ident: ref64/cit64 – ident: ref21/cit21 doi: 10.1039/c3pp25449f – ident: ref36/cit36 doi: 10.1002/adma.201200627 – ident: ref8/cit8 doi: 10.1016/j.orgel.2014.03.020 – ident: ref38/cit38 doi: 10.1021/jp9609592 – ident: ref1/cit1 doi: 10.1063/1.1409582 |
SSID | ssj0053013 |
Score | 2.4182813 |
Snippet | Low operational stability is the main limiting factor for commercialization of the blue phosphorescent organic light emitting diodes (PhOLEDs). The high energy... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22422 |
SubjectTerms | activation energy case studies chemical bonding commercialization dissociation energy light emitting diodes phosphorescence prediction triazines |
Title | Predicting the Operational Stability of Phosphorescent OLED Host Molecules from First Principles: A Case Study |
URI | http://dx.doi.org/10.1021/acs.jpcc.7b05761 https://www.proquest.com/docview/2084030177 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5SD3pxF-tGBD14mLazZBZvpbYUsbaghd6GbENdmBma6aH-el9mUapSepnDkISQvOR9yffyPYSuqeBR4MFC8gMhDP2002AtBh_qMWpysAChL_QHT25_7DxMyORHJuc3g2-ZTcpV4y3lvOExwBb6pLNpub6nD1rtznO16xIwVLtgkAExOo5XUpL_taAdEVfLjmh5H86dS2-3yFKkck1CHVPy3phnrME__yo2rtHvPbRTYkzcLoxiH23I-ABtdarUbocoHs00P6MjnjEAQDxM5ay8FMSAPvN42QVOIjyaJiqdJrNC8wkPH7v3uJ-oDA-KrLpSYf0-BfdeAUTiUXVxr-5wG3fAP2Idprg4QuNe96XTN8rECwa1TTszTCKETbmQbiAlCUzJCY2YFACVItv1Ld4CENISWmoPimnmVRDCXeHLQPimJ-xjVIuTWJ4g7DACmFK6jEvqRBGjnLq2hAahpYDwoI5uYKDCcuGoMOfELTPMf8LoheXo1VGzmq2Ql-rlOonGx4oat9810kK5Y0XZq8oAQpgKzZnQWCZzFVotOAGDbXne6Zo9PUPblnb9edTLOapls7m8AOCSscvcYr8Aud3rAA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUqOJQLO6KsRoIDh5RmcdJwq0qrAt0EReIWeYvKoqSq00P5esZZQEWogksOVjwa2WPPs994BqFzKnjoe7CQ6r4Qhn7aabAagw_1GDU5WIDQF_q9vtt5cu6eyXMJmcVbGFBCgSSVkvjf2QXMK932OuG86jGAGPrAswpYxNLnrUbzsdh8CdirnRHJABwdx8uZyd8kaH_E1aI_WtyOUx_T3kAPX9qloSVv1VnCqvzjR-LGf6m_idZzxIkbmYlsoZKMtlG5WRR620HRcKrZGh3_jAEO4sFETvMrQgxYNI2eneM4xMNxrCbjeJplgMKDbusGd2KV4F5WY1cqrF-r4PYLQEo8LK7x1TVu4CZ4S6yDFue76KndGjU7Rl6GwaC2aSeGSYSwKRfS9aUkvik5oSGTAoBTaLt1i9cAktSETrwHv2keVhDCXVGXvqibnrD30EoUR3IfYYcRQJjSZVxSJwwZ5dS1JQgEST7hfgVdwEAF-TJSQcqQW2aQNsLoBfnoVdBVMWkBz3OZ65Ia70t6XH71mGR5PJb8e1bYQQBToRkUGsl4pgKrBudhMDHPO_ijpqeo3Bn1ukH3tn9_iNYsDQrSeJgjtJJMZ_IYIE3CTlIj_gRBevNh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSMCFHVFWI8GBQ0rTxEnDrSqtylYqsYhb5C0qi5KoTg_l65nJggRCCC45WPbIsceeZ7_xDCFHXMko8GEhtQKlLHzaaYmGgA_3BbclaIDCC_2bgdd_cC-f2NMMYdVbGOiEAUkmJ_FxVacqKiMM2KdY_pJKWfcFwAw89Mwha4dnrnbnrtqAGeisU5DJAB5d1y_ZyZ8koE2S5qtN-rol53amt0weP3uYu5e81ieZqMv3b8Eb__0LK2SpRJ60XajKKpnR8RpZ6FQJ39ZJPBwja4N-0BRgIb1N9bi8KqSASXMv2ilNIjocJSYdJeMiEhS9ve6e035iMnpT5NrVhuKrFdp7BmhJh9V1vjmjbdoBq0nReXG6QR563ftO3yrTMVjcsZ3MsplSDpdKe4HWLLC1ZDwSWgGAihyv1ZQNgCYNhQH4oBrysYox6amWDlTL9pWzSWbjJNZbhLqCAdLUnpCau1EkuOSeo0EgSAqYDGrkGAYqLJeTCXOmvGmHeSGMXliOXo2cVhMXyjKmOabWePulxclni7SI5_FL3cNKF0KYCmRSeKyTiQmbDTgXg5r5_vYfe3pA5ofnvfD6YnC1QxabiA1yt5hdMpuNJ3oPkE0m9nM9_gAddvXk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+Operational+Stability+of+Phosphorescent+OLED+Host+Molecules+from+First+Principles%3A+A+Case+Study&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Freidzon%2C+Alexandra+Ya&rft.au=Safonov%2C+Andrey+A&rft.au=Bagaturyants%2C+Alexander+A&rft.au=Krasikov%2C+Dmitry+N&rft.date=2017-10-12&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=121&rft.issue=40&rft.spage=22422&rft.epage=22433&rft_id=info:doi/10.1021%2Facs.jpcc.7b05761&rft.externalDocID=a901587670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |