Array-Structured Double-Ion Cooperative Adsorption Sites as Multifunctional Sulfur Hosts for Lithium–Sulfur Batteries with Low Electrolyte/Sulfur Ratio
Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium–sulfur batteries (LSBs) with desired energy density. However, it causes multiple problems, including a strong “shuttle effect” during both the cycle and storage process, and limited sulfur utilization. He...
Saved in:
Published in | ACS nano Vol. 15; no. 10; pp. 16322 - 16334 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.1c05536 |
Cover
Abstract | Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium–sulfur batteries (LSBs) with desired energy density. However, it causes multiple problems, including a strong “shuttle effect” during both the cycle and storage process, and limited sulfur utilization. Herein, we develop a Na2Ti6O13 (NTO) nanowire array as a multifunctional sulfur host to simultaneously tackle both the above problems. The synergistic coordination between Na and Ti cations in NTO can accelerate the conversion of soluble polysulfides (PSs) to insoluble sulfides and significantly enhance their adsorption. Therefore, accumulation of PSs, which is the primary cause of the “shuttle effect”, can be avoided in two ways. One is fast conversion kinetics during cycles; another is strong PS adsorption, which can suppress the disproportionation of PSs during storage. The as-prepared array represents an easy-to-infiltrate structure with efficient electron transport that allows good wetting ability of the conductive surface toward the electrolyte. Therefore, it helps improve sulfur utilization that is mainly limited by the presence of unwetted conductive surface. Consequently, NTO/sulfur array cathodes exhibit high sulfur utilization and extended cycle- and shelf-lives at a low E/S (5:1). Our work suggests that array materials featuring cooperative multi-ion adsorption sites are promising hosts for LSBs. |
---|---|
AbstractList | Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium-sulfur batteries (LSBs) with desired energy density. However, it causes multiple problems, including a strong "shuttle effect" during both the cycle and storage process, and limited sulfur utilization. Herein, we develop a Na2Ti6O13 (NTO) nanowire array as a multifunctional sulfur host to simultaneously tackle both the above problems. The synergistic coordination between Na and Ti cations in NTO can accelerate the conversion of soluble polysulfides (PSs) to insoluble sulfides and significantly enhance their adsorption. Therefore, accumulation of PSs, which is the primary cause of the "shuttle effect", can be avoided in two ways. One is fast conversion kinetics during cycles; another is strong PS adsorption, which can suppress the disproportionation of PSs during storage. The as-prepared array represents an easy-to-infiltrate structure with efficient electron transport that allows good wetting ability of the conductive surface toward the electrolyte. Therefore, it helps improve sulfur utilization that is mainly limited by the presence of unwetted conductive surface. Consequently, NTO/sulfur array cathodes exhibit high sulfur utilization and extended cycle- and shelf-lives at a low E/S (5:1). Our work suggests that array materials featuring cooperative multi-ion adsorption sites are promising hosts for LSBs.Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium-sulfur batteries (LSBs) with desired energy density. However, it causes multiple problems, including a strong "shuttle effect" during both the cycle and storage process, and limited sulfur utilization. Herein, we develop a Na2Ti6O13 (NTO) nanowire array as a multifunctional sulfur host to simultaneously tackle both the above problems. The synergistic coordination between Na and Ti cations in NTO can accelerate the conversion of soluble polysulfides (PSs) to insoluble sulfides and significantly enhance their adsorption. Therefore, accumulation of PSs, which is the primary cause of the "shuttle effect", can be avoided in two ways. One is fast conversion kinetics during cycles; another is strong PS adsorption, which can suppress the disproportionation of PSs during storage. The as-prepared array represents an easy-to-infiltrate structure with efficient electron transport that allows good wetting ability of the conductive surface toward the electrolyte. Therefore, it helps improve sulfur utilization that is mainly limited by the presence of unwetted conductive surface. Consequently, NTO/sulfur array cathodes exhibit high sulfur utilization and extended cycle- and shelf-lives at a low E/S (5:1). Our work suggests that array materials featuring cooperative multi-ion adsorption sites are promising hosts for LSBs. Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium–sulfur batteries (LSBs) with desired energy density. However, it causes multiple problems, including a strong “shuttle effect” during both the cycle and storage process, and limited sulfur utilization. Herein, we develop a Na2Ti6O13 (NTO) nanowire array as a multifunctional sulfur host to simultaneously tackle both the above problems. The synergistic coordination between Na and Ti cations in NTO can accelerate the conversion of soluble polysulfides (PSs) to insoluble sulfides and significantly enhance their adsorption. Therefore, accumulation of PSs, which is the primary cause of the “shuttle effect”, can be avoided in two ways. One is fast conversion kinetics during cycles; another is strong PS adsorption, which can suppress the disproportionation of PSs during storage. The as-prepared array represents an easy-to-infiltrate structure with efficient electron transport that allows good wetting ability of the conductive surface toward the electrolyte. Therefore, it helps improve sulfur utilization that is mainly limited by the presence of unwetted conductive surface. Consequently, NTO/sulfur array cathodes exhibit high sulfur utilization and extended cycle- and shelf-lives at a low E/S (5:1). Our work suggests that array materials featuring cooperative multi-ion adsorption sites are promising hosts for LSBs. |
Author | Guo, Junling Li, Zixuan Zhao, Siyuan Liu, Jinping Wang, Zhuo Shao, Guosheng Huang, Yuanyuan |
AuthorAffiliation | School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering Zhengzhou Materials Genome Institute |
AuthorAffiliation_xml | – name: School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing – name: State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering – name: Zhengzhou Materials Genome Institute |
Author_xml | – sequence: 1 givenname: Junling orcidid: 0000-0002-4931-5148 surname: Guo fullname: Guo, Junling organization: State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering – sequence: 2 givenname: Yuanyuan surname: Huang fullname: Huang, Yuanyuan organization: State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering – sequence: 3 givenname: Siyuan surname: Zhao fullname: Zhao, Siyuan organization: State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering – sequence: 4 givenname: Zixuan surname: Li fullname: Li, Zixuan organization: Zhengzhou Materials Genome Institute – sequence: 5 givenname: Zhuo orcidid: 0000-0003-4436-9689 surname: Wang fullname: Wang, Zhuo email: wangzh@zzu.edu.cn organization: Zhengzhou Materials Genome Institute – sequence: 6 givenname: Guosheng orcidid: 0000-0003-1498-7929 surname: Shao fullname: Shao, Guosheng email: gsshao@zzu.edu.cn organization: Zhengzhou Materials Genome Institute – sequence: 7 givenname: Jinping surname: Liu fullname: Liu, Jinping email: liujp@whut.edu.cn organization: School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing |
BookMark | eNp9kcFqGzEURUVIIU7adbZaBsrEkmzNjJeumzQBh0KcQnaDRvNEZeSR-yQleJd_yKq_1y-pjIcuAulK4t579MS7p-S49z0Qcs7ZJWeCj5UOver9JddMykl5REZ8NikLVpePx__ukp-Q0xDWjMmqrsoR-T1HVLtiFTHpmBA6-tWn1kFx63u68H4LqKJ9AjrvgsdttFle2QiBqkDvkovWpF7vZeXoKjmTkN74EAM1HunSxp82bf68vA7WFxUjoM34c7bo0j_TKwc6one7COMhdZ9H-o_kg1EuwKfhPCM_rq8eFjfF8vu328V8WagJZ7Ho2HQKU8GkANnx1hhgdS1KDUzWlZpVpWwNcNVCLWrGZ0JlQXIJ7QxE2Zl6ckYuDu9u0f9KEGKzsUGDc6oHn0Ij8qb4tKpEmaPyENXoQ0AwjbZx_9c-orKu4azZV9EMVTRDFZkbv-G2aDcKd_8hPh-IbDRrnzCvN7yb_gsHbKPP |
CitedBy_id | crossref_primary_10_1360_TB_2022_0050 crossref_primary_10_1016_j_jechem_2023_01_053 crossref_primary_10_1007_s10971_022_05835_8 crossref_primary_10_1021_acsnano_4c17661 crossref_primary_10_1016_j_jechem_2023_10_054 crossref_primary_10_1016_j_cej_2024_153650 crossref_primary_10_1039_D2TA03294E crossref_primary_10_1016_j_jechem_2022_08_027 crossref_primary_10_1039_D2TA02217F crossref_primary_10_1007_s40820_023_01137_y crossref_primary_10_1016_j_cej_2024_155028 crossref_primary_10_1021_acsaem_1c03785 crossref_primary_10_1007_s40820_023_01299_9 crossref_primary_10_1021_acsnano_3c09333 crossref_primary_10_1002_adfm_202411941 crossref_primary_10_26599_NRE_2023_9120054 crossref_primary_10_1007_s12598_024_02646_4 crossref_primary_10_1016_j_jelechem_2025_118997 crossref_primary_10_1021_acs_nanolett_2c02258 crossref_primary_10_1039_D3NR03046F |
Cites_doi | 10.1103/PhysRevLett.77.3865 10.1021/acs.jpcc.7b11849 10.1016/j.electacta.2019.135311 10.1002/adfm.201704443 10.1002/anie.201909339 10.1002/smtd.201900344 10.1021/nn501308m 10.1021/nl502331f 10.1021/jp506288w 10.1039/C9NA00040B 10.1002/aenm.201770141 10.1002/adfm.201905467 10.1039/C9TA03361K 10.1021/nl300794f 10.1016/j.nanoen.2018.06.052 10.1016/j.ensm.2019.04.038 10.1002/aenm.201702889 10.1016/j.nanoen.2019.03.060 10.1039/D0TA06636B 10.1002/adfm.201600264 10.1002/smll.201802443 10.1002/adma.201602734 10.1002/eem2.12053 10.1107/S0365110X62000511 10.1021/acscentsci.9b00846 10.1021/acsenergylett.7b01202 10.1038/nmat3191 10.1002/adma.201705951 10.1002/ange.201803511 10.1038/ncomms6002 10.1021/jacs.7b11434 10.1007/s12274-020-2850-5 10.1039/C7EE01430A 10.1002/adma.201705871 10.1016/j.nanoen.2017.01.040 10.1002/adma.201906357 10.1016/j.joule.2020.01.001 10.1021/acssuschemeng.0c00526 10.1021/acsenergylett.7b00697 10.1021/acsnano.9b07121 10.1002/anie.201902413 10.1021/jp810923r 10.1002/smll.201702853 10.1002/adfm.201807485 10.1016/j.jpowsour.2010.08.105 10.1021/cm5044667 10.1039/C8EE01402G 10.1002/advs.201700270 10.1002/aenm.201801868 10.1002/adfm.201702524 10.1002/adfm.201502978 10.1039/C8TA06869K 10.1002/adma.201700273 10.1007/s10008-019-04368-5 10.1016/j.jpowsour.2014.05.143 10.1021/acs.nanolett.5b04166 10.1002/anie.201812611 10.1038/ncomms5759 10.1002/adma.201405115 10.1016/j.nanoen.2019.103965 10.1002/eem2.12015 10.1002/adma.201601759 10.1016/j.ssc.2007.09.015 10.1039/C9NR08003A 10.1016/j.materresbull.2010.01.009 10.1021/cg801196u 10.1039/C7TA06986C 10.1021/jp8043797 10.1103/PhysRevB.47.558 10.1246/bcsj.79.1725 10.1039/a806734a 10.1016/j.apcatb.2015.01.026 10.1016/j.jallcom.2019.07.145 10.1021/acsnano.9b05908 10.1039/B911085B 10.1021/acs.jpcc.8b06560 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.1c05536 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 16334 |
ExternalDocumentID | 10_1021_acsnano_1c05536 b574671928 |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a310t-d044e42052e5d1bffe08826ce0587a9765bfe1abe8280192a65b515eb9e26df83 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 04:24:59 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 03:37:16 EDT 2025 Thu Oct 28 07:00:31 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | low E/S ratio Li−S battery long service life disproportionation effect double-ion adsorption |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a310t-d044e42052e5d1bffe08826ce0587a9765bfe1abe8280192a65b515eb9e26df83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1498-7929 0000-0002-4931-5148 0000-0003-4436-9689 |
PQID | 2578147726 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2578147726 crossref_citationtrail_10_1021_acsnano_1c05536 crossref_primary_10_1021_acsnano_1c05536 acs_journals_10_1021_acsnano_1c05536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211026 2021-10-26 |
PublicationDateYYYYMMDD | 2021-10-26 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211026 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref71/cit71 doi: 10.1103/PhysRevLett.77.3865 – ident: ref76/cit76 doi: 10.1021/acs.jpcc.7b11849 – ident: ref14/cit14 doi: 10.1016/j.electacta.2019.135311 – ident: ref55/cit55 doi: 10.1002/adfm.201704443 – ident: ref12/cit12 doi: 10.1002/anie.201909339 – ident: ref11/cit11 doi: 10.1002/smtd.201900344 – ident: ref40/cit40 doi: 10.1021/nn501308m – ident: ref51/cit51 doi: 10.1021/nl502331f – ident: ref20/cit20 doi: 10.1021/jp506288w – ident: ref34/cit34 doi: 10.1039/C9NA00040B – ident: ref10/cit10 doi: 10.1002/aenm.201770141 – ident: ref6/cit6 doi: 10.1002/adfm.201905467 – ident: ref65/cit65 doi: 10.1039/C9TA03361K – ident: ref66/cit66 doi: 10.1021/nl300794f – ident: ref25/cit25 doi: 10.1016/j.nanoen.2018.06.052 – ident: ref3/cit3 doi: 10.1016/j.ensm.2019.04.038 – ident: ref59/cit59 doi: 10.1002/aenm.201702889 – ident: ref29/cit29 doi: 10.1016/j.nanoen.2019.03.060 – ident: ref62/cit62 doi: 10.1039/D0TA06636B – ident: ref67/cit67 doi: 10.1002/adfm.201600264 – ident: ref49/cit49 doi: 10.1002/smll.201802443 – ident: ref16/cit16 doi: 10.1002/adma.201602734 – ident: ref75/cit75 doi: 10.1002/eem2.12053 – ident: ref56/cit56 doi: 10.1107/S0365110X62000511 – ident: ref60/cit60 doi: 10.1021/acscentsci.9b00846 – ident: ref50/cit50 doi: 10.1021/acsenergylett.7b01202 – ident: ref2/cit2 doi: 10.1038/nmat3191 – ident: ref33/cit33 doi: 10.1002/adma.201705951 – ident: ref52/cit52 doi: 10.1002/ange.201803511 – ident: ref15/cit15 doi: 10.1038/ncomms6002 – ident: ref26/cit26 doi: 10.1021/jacs.7b11434 – ident: ref61/cit61 doi: 10.1007/s12274-020-2850-5 – ident: ref27/cit27 doi: 10.1039/C7EE01430A – ident: ref1/cit1 doi: 10.1002/adma.201705871 – ident: ref18/cit18 doi: 10.1016/j.nanoen.2017.01.040 – ident: ref41/cit41 doi: 10.1002/adma.201906357 – ident: ref7/cit7 doi: 10.1016/j.joule.2020.01.001 – ident: ref35/cit35 doi: 10.1021/acssuschemeng.0c00526 – ident: ref32/cit32 doi: 10.1021/acsenergylett.7b00697 – ident: ref42/cit42 doi: 10.1021/acsnano.9b07121 – ident: ref13/cit13 doi: 10.1002/anie.201902413 – ident: ref72/cit72 doi: 10.1021/jp810923r – ident: ref24/cit24 doi: 10.1002/smll.201702853 – ident: ref43/cit43 doi: 10.1002/adfm.201807485 – ident: ref9/cit9 doi: 10.1016/j.jpowsour.2010.08.105 – ident: ref58/cit58 doi: 10.1021/cm5044667 – ident: ref28/cit28 doi: 10.1039/C8EE01402G – ident: ref30/cit30 doi: 10.1002/advs.201700270 – ident: ref19/cit19 doi: 10.1002/aenm.201801868 – ident: ref22/cit22 doi: 10.1002/adfm.201702524 – ident: ref38/cit38 doi: 10.1002/adfm.201502978 – ident: ref70/cit70 doi: 10.1039/C8TA06869K – ident: ref4/cit4 doi: 10.1002/adma.201700273 – ident: ref53/cit53 doi: 10.1007/s10008-019-04368-5 – ident: ref8/cit8 doi: 10.1016/j.jpowsour.2014.05.143 – ident: ref21/cit21 doi: 10.1021/acs.nanolett.5b04166 – ident: ref44/cit44 doi: 10.1002/anie.201812611 – ident: ref17/cit17 doi: 10.1038/ncomms5759 – ident: ref31/cit31 doi: 10.1002/adma.201405115 – ident: ref64/cit64 doi: 10.1016/j.nanoen.2019.103965 – ident: ref73/cit73 doi: 10.1002/eem2.12015 – ident: ref5/cit5 doi: 10.1002/adma.201601759 – ident: ref36/cit36 doi: 10.1016/j.ssc.2007.09.015 – ident: ref48/cit48 doi: 10.1039/C9NR08003A – ident: ref39/cit39 doi: 10.1016/j.materresbull.2010.01.009 – ident: ref45/cit45 doi: 10.1021/cg801196u – ident: ref69/cit69 doi: 10.1039/C7TA06986C – ident: ref74/cit74 doi: 10.1021/jp8043797 – ident: ref68/cit68 doi: 10.1103/PhysRevB.47.558 – ident: ref46/cit46 doi: 10.1246/bcsj.79.1725 – ident: ref57/cit57 doi: 10.1039/a806734a – ident: ref54/cit54 doi: 10.1016/j.apcatb.2015.01.026 – ident: ref37/cit37 doi: 10.1016/j.jallcom.2019.07.145 – ident: ref23/cit23 doi: 10.1021/acsnano.9b05908 – ident: ref47/cit47 doi: 10.1039/B911085B – ident: ref63/cit63 doi: 10.1021/acs.jpcc.8b06560 |
SSID | ssj0057876 |
Score | 2.482179 |
Snippet | Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium–sulfur batteries (LSBs) with desired energy density. However,... Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium-sulfur batteries (LSBs) with desired energy density. However,... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16322 |
Title | Array-Structured Double-Ion Cooperative Adsorption Sites as Multifunctional Sulfur Hosts for Lithium–Sulfur Batteries with Low Electrolyte/Sulfur Ratio |
URI | http://dx.doi.org/10.1021/acsnano.1c05536 https://www.proquest.com/docview/2578147726 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELZgeymH0h9QKVAZiUMvXhJv7A3H1WrRtgIObJG4RbYzFohtvIoTVfTUd-iJ1-uTdJxkKRShck1sy7LHM994xt8Qsp8rmw41F0xoASyxWjIFac4MWCNARdo04YKTUzk9T75ciIu_ZNH_RvB5fKCML1Th-rGJhBjIVfKCSxSygILGs6XSDXIn2wAyOsiIIu5YfB4NEMyQ8Q_N0EMt3JiWo_U2Kcs3jIQho-S6X1e6b3485mv8_6xfk1cdwKSjViLekBUo3pK1e7SD78jtqCzVDZs11LF1CTlFGK3nwD67go6dW0BLB05HuXdlo1PoDKGpp8rT5sVusIbtJSKd1XNbl3TqfOUpImB6fFVdXtXffv_81f1qKTzRI6fh0pceu-900hbfmd9UcNC1OgsiskHOjyZfx1PWlWhgCnFhxfIoSSDhkeAg8lhbCwGySwORSIcKoY7QFmKlAR27ACYVfkAEBfoQuMxtOtgkvcIV8J7QJB4CgBIRmm3EcCa1OO4gVegfGTO0covs46Jm3RHzWRM953HWrXTWrfQW6S83NjMdzXmotjF_usOnuw6LluHj6aZ7S0nJ8BSG0IoqwNU-C4ovTtBTkR-eN81t8pKH7Bi0glzukB7uOOwivKn0x0aw_wDGTfxZ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoPbQ9lP6qlJ-6EodevCTZ2BuOqxVoaRekdkHiFtnOWKBuYxQnquip78CJ1-NJGDvZBVohtVcntkb2eOYbj_0NIVuFNNlAJZxxxYGlRgkmISuYBqM5yEjpkC44OBTj4_TzCT9ZItH8LQwK4XAkF5L4t-wC8Ta2lbK0vVhHnPfFI_IYoUjiizUMR9O57fXqJ9o8MsbJCCYWZD5_DeC9kXb3vdF9Yxw8zN4K-bqQLVws-d5ratXTv_6gbfwf4V-Q5x3cpMNWP16SJShfkWd3SAhfk6thVckLNg1Esk0FBUVQrWbA9m1JR9aeQ0sOToeFs1WwMHSKQNVR6Wh4v-t9Y3ukSKfNzDQVHVtXO4p4mE7O6tOz5sf178vuU0voifE59UfAdGJ_0t22FM_soobt7q9vXmHekOO93aPRmHUFG5hElFizIkpTSJOIJ8CLWBkDHsALDRHPBhKBD1cGYqkAwzwPLSU2IJ4CtQOJKEzWf0uWS1vCO0LTeAAAkkfoxBHR6czguP1MYrSk9cCIVbKFk5p3G87lIZeexHk303k306ukN1_fXHek5772xuzhDp8WHc5bvo-Hf_04V5gc96RPtMgSbONybwbjFOMW8f7fxPxAnoyPDib5ZP_wyxp5mvh7M-gfE7FOlnH1YQOBT602g67fAP6mBMk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELZgkRB74B_t8mukPXBxN0ljNxyrslUXygpRKu0tsp2xWFHiKk6ElhPvwInX40kYO27FglaCq2Nbjj2e-cZjf0PIQSVNMVIZZ1xxYLlRgkkoKqbBaA4yUTqEC96eiNkyf33KT-OjMP8WBgfhsCcXgvh-V68rExkG0kMsr2VtB6lOOB-Kq-SaD9r5hA3jyWKjf70Iij6WjL4yAootoc9fHXiLpN1Fi3RRIQcrM71FltvxhcslnwZdqwb66x_Ujf_7A7fJzQg76biXkzvkCtR3ye5vZIT3yI9x08hztgiEsl0DFUVwrVbAjm1NJ9auoScJp-PK2SZoGrpAwOqodDS84_U2sj9apItuZbqGzqxrHUVcTOdn7cez7vPPb9_jp57YE_106o-C6dx-oUd9Sp7VeQuHsdZ7Lzj3yXJ69GEyYzFxA5OIFltWJXkOeZbwDHiVKmPAA3mhIeHFSCIA4spAKhWgu-chpsQCxFWgXkImKlMMH5Cd2tawR2iejgBA8gSNOSI7XRjsd1hI9Jq0HhmxTw5wUsu48VwZYupZWsaZLuNM75PBZo1LHcnPfQ6O1eUNXmwbrHvej8urPt8ITYl70wdcZA22c6VXh2mO_ot4-G_DfEauv3s1LefHJ28ekRuZvz6DZjITj8kOLj48QfzTqqdB3H8BP9EHTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Array-Structured+Double-Ion+Cooperative+Adsorption+Sites+as+Multifunctional+Sulfur+Hosts+for+Lithium%E2%80%93Sulfur+Batteries+with+Low+Electrolyte%2FSulfur+Ratio&rft.jtitle=ACS+nano&rft.au=Guo%2C+Junling&rft.au=Huang%2C+Yuanyuan&rft.au=Zhao%2C+Siyuan&rft.au=Li%2C+Zixuan&rft.date=2021-10-26&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=10&rft.spage=16322&rft.epage=16334&rft_id=info:doi/10.1021%2Facsnano.1c05536&rft.externalDocID=b574671928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |