Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes
Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the...
Saved in:
Published in | ACS nano Vol. 15; no. 7; pp. 11970 - 11980 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
27.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution. |
---|---|
AbstractList | Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution. Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution.Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution. |
Author | Li, Zhen Lu, Dongwei Lai, Zhiping Zhou, Zongyao Guo, Dong Cao, Li Li, Xiang Shinde, Digambar B |
AuthorAffiliation | Division of Physical Science and Engineering |
AuthorAffiliation_xml | – name: Division of Physical Science and Engineering |
Author_xml | – sequence: 1 givenname: Zongyao orcidid: 0000-0002-4694-2330 surname: Zhou fullname: Zhou, Zongyao – sequence: 2 givenname: Dong orcidid: 0000-0002-1055-482X surname: Guo fullname: Guo, Dong – sequence: 3 givenname: Digambar B surname: Shinde fullname: Shinde, Digambar B – sequence: 4 givenname: Li surname: Cao fullname: Cao, Li – sequence: 5 givenname: Zhen surname: Li fullname: Li, Zhen – sequence: 6 givenname: Xiang orcidid: 0000-0002-5656-1363 surname: Li fullname: Li, Xiang – sequence: 7 givenname: Dongwei surname: Lu fullname: Lu, Dongwei – sequence: 8 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa |
BookMark | eNp9kM9LwzAUx4NMcJuevfYoSLekbdrmOIY_BhsO58BbSNPXkdEmNWkP---NdngQ9PS-8L6fx_d9J2ikjQaEbgmeERyRuZBOC21mROKYsOQCjQmL0xDn6fvoR1NyhSbOHTGmWZ6lY_S6tSCVg2DXF-FCH1xnTROsjA520AorOuXl3il9CJZGH_uD6KAMNkpa0xprehdsTX1qwAYbaAorNLhrdFmJ2sHNeU7R_vHhbfkcrl-eVsvFOhQxwV3IZFJQwkAWcVTikkRFXMUlAxAspVUSZaxkIk8gxVVJRQREAoMqz_OEUc9CPEV3w93Wmo8eXMcb5STUtQ_hg_GIJinLMsywt9LB6mM7Z6HiUnXfv3VWqJoTzL865OcO-blDz81_ca1VjbCnf4j7gfALfjS91b6CP92f5SeIYA |
CitedBy_id | crossref_primary_10_1002_anie_202421615 crossref_primary_10_1016_j_seppur_2022_121674 crossref_primary_10_1016_j_memsci_2022_120344 crossref_primary_10_1016_j_memsci_2024_122600 crossref_primary_10_1021_acsmacrolett_3c00420 crossref_primary_10_1021_acsnano_3c12616 crossref_primary_10_1021_jacs_2c00318 crossref_primary_10_1038_s41467_024_48419_6 crossref_primary_10_1126_science_adi9531 crossref_primary_10_1002_adfm_202406430 crossref_primary_10_1016_j_desal_2024_118412 crossref_primary_10_1002_anie_202302168 crossref_primary_10_1016_j_apcatb_2023_122585 crossref_primary_10_3390_mi13091466 crossref_primary_10_1007_s11426_022_1475_x crossref_primary_10_1038_s41467_022_35681_9 crossref_primary_10_1002_aic_18232 crossref_primary_10_1002_smll_202303919 crossref_primary_10_1039_D3MH00672G crossref_primary_10_1126_sciadv_abo2929 crossref_primary_10_1016_j_electacta_2022_141450 crossref_primary_10_1016_j_seppur_2025_131795 crossref_primary_10_1002_ange_202312795 crossref_primary_10_1002_mame_202300218 crossref_primary_10_6023_A21110505 crossref_primary_10_1016_j_advmem_2021_100014 crossref_primary_10_1021_jacs_2c03759 crossref_primary_10_1002_smtd_202301554 crossref_primary_10_1002_asia_202301065 crossref_primary_10_1038_s41467_022_35594_7 crossref_primary_10_1093_nsr_nwae439 crossref_primary_10_1021_acsnano_2c04767 crossref_primary_10_1021_acsaem_3c01072 crossref_primary_10_1002_ange_202302168 crossref_primary_10_1002_adma_202305755 crossref_primary_10_1002_chem_202301163 crossref_primary_10_1002_anie_202312795 crossref_primary_10_1002_slct_202302281 crossref_primary_10_1016_j_catcom_2022_106463 crossref_primary_10_1126_sciadv_abm6741 crossref_primary_10_1021_acsnano_2c07641 crossref_primary_10_1002_smll_202107108 crossref_primary_10_1016_j_seppur_2024_127755 crossref_primary_10_1021_acs_chemmater_4c01424 crossref_primary_10_1002_ange_202421615 crossref_primary_10_1021_acsnano_3c11068 crossref_primary_10_1021_acs_est_1c06176 crossref_primary_10_1016_j_memsci_2022_120314 crossref_primary_10_1039_D2TA02178A crossref_primary_10_1021_acs_chemmater_2c00999 crossref_primary_10_1002_adma_202401137 crossref_primary_10_1016_j_cjche_2022_01_027 crossref_primary_10_1016_j_seppur_2023_125783 crossref_primary_10_1016_j_dyepig_2021_109989 crossref_primary_10_1039_D2TA08802A crossref_primary_10_1002_adfm_202406165 crossref_primary_10_1038_s44221_024_00368_6 crossref_primary_10_1021_acsomega_4c01688 crossref_primary_10_1080_15685551_2022_2088977 |
Cites_doi | 10.1038/s41557-018-0093-9 10.1126/science.1203771 10.1016/j.memsci.2019.117569 10.1038/s41467-020-17373-4 10.1016/S0022-0728(81)80016-2 10.1021/ct700301q 10.1038/nmat5025 10.1126/sciadv.aar8266 10.1016/j.micromeso.2011.08.020 10.1111/jace.12068 10.1038/s41467-019-14056-7 10.1126/science.280.5360.69 10.1126/science.1245711 10.1038/s41563-020-0634-7 10.1126/science.1236686 10.1126/science.1146744 10.1016/j.pmatsci.2017.10.006 10.1038/ncomms11315 10.1002/ange.201809907 10.1126/science.1192160 10.1016/0022-0728(92)80575-O 10.1002/jcc.20090 10.1016/j.memsci.2020.118273 10.1038/s41467-020-19182-1 10.1038/nnano.2017.21 10.1038/s41467-020-15771-2 10.1126/science.aaq1739 10.1021/acsnano.0c05649 10.1002/ange.201510849 10.1021/jacs.8b08788 10.1126/science.1254227 10.1126/sciadv.aaq0066 10.1088/0143-0807/3/1/005 10.1038/s41467-017-00990-x 10.1016/j.memsci.2017.12.057 10.1126/science.aan5275 10.1021/acs.chemrev.9b00399 10.1021/acs.jpclett.5b01895 10.1039/C8TA04178D 10.1002/adma.201300839 10.1126/science.1250247 10.1016/j.coche.2015.01.004 10.1016/S0378-3812(01)00662-8 10.1002/anie.200701595 10.1107/S0907444904011679 10.1016/j.memsci.2010.09.028 10.1016/0263-7855(96)00018-5 10.1002/wcms.19 10.1038/s41563-019-0536-8 10.1002/macp.201800207 10.1002/adma.201202569 10.1021/acsami.8b18719 10.1126/sciadv.1602610 10.1021/acsnano.0c06944 10.1021/la100449z |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published
by American
Chemical Society |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.1c03194 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 11980 |
ExternalDocumentID | 10_1021_acsnano_1c03194 c614935949 |
GroupedDBID | - .K2 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a310t-9c4b519ecb32d0d12b3f3d9eea965f4279d9a84e60fd5a2e1ce9ef8884959c4e3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 09:09:14 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Tue Jul 01 03:37:13 EDT 2025 Thu Jul 29 03:24:45 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | electropolymerization ion sieving precise separation membrane conjugated microporous polymer carbon nanotube film |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a310t-9c4b519ecb32d0d12b3f3d9eea965f4279d9a84e60fd5a2e1ce9ef8884959c4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4694-2330 0000-0001-9555-6009 0000-0002-1055-482X 0000-0002-5656-1363 |
PQID | 2546977090 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2546977090 crossref_citationtrail_10_1021_acsnano_1c03194 crossref_primary_10_1021_acsnano_1c03194 acs_journals_10_1021_acsnano_1c03194 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210727 2021-07-27 |
PublicationDateYYYYMMDD | 2021-07-27 |
PublicationDate_xml | – month: 07 year: 2021 text: 20210727 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 Shannon M. A. (ref2/cit2) 2010 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref37/cit37 doi: 10.1038/s41557-018-0093-9 – ident: ref3/cit3 doi: 10.1126/science.1203771 – ident: ref8/cit8 doi: 10.1016/j.memsci.2019.117569 – ident: ref42/cit42 doi: 10.1038/s41467-020-17373-4 – ident: ref50/cit50 doi: 10.1016/S0022-0728(81)80016-2 – ident: ref53/cit53 doi: 10.1021/ct700301q – ident: ref20/cit20 doi: 10.1038/nmat5025 – ident: ref4/cit4 doi: 10.1126/sciadv.aar8266 – ident: ref47/cit47 doi: 10.1016/j.micromeso.2011.08.020 – ident: ref34/cit34 doi: 10.1111/jace.12068 – ident: ref17/cit17 doi: 10.1038/s41467-019-14056-7 – ident: ref6/cit6 doi: 10.1126/science.280.5360.69 – ident: ref18/cit18 doi: 10.1126/science.1245711 – ident: ref13/cit13 doi: 10.1038/s41563-020-0634-7 – ident: ref21/cit21 doi: 10.1126/science.1236686 – ident: ref23/cit23 doi: 10.1126/science.1146744 – ident: ref24/cit24 doi: 10.1016/j.pmatsci.2017.10.006 – ident: ref12/cit12 doi: 10.1038/ncomms11315 – ident: ref16/cit16 doi: 10.1002/ange.201809907 – ident: ref36/cit36 doi: 10.1126/science.1192160 – ident: ref49/cit49 doi: 10.1016/0022-0728(92)80575-O – ident: ref54/cit54 doi: 10.1002/jcc.20090 – ident: ref29/cit29 doi: 10.1016/j.memsci.2020.118273 – ident: ref28/cit28 doi: 10.1038/s41467-020-19182-1 – ident: ref19/cit19 doi: 10.1038/nnano.2017.21 – ident: ref7/cit7 doi: 10.1038/s41467-020-15771-2 – ident: ref51/cit51 – ident: ref5/cit5 doi: 10.1126/science.aaq1739 – ident: ref41/cit41 doi: 10.1021/acsnano.0c05649 – ident: ref10/cit10 doi: 10.1002/ange.201510849 – ident: ref33/cit33 doi: 10.1021/jacs.8b08788 – ident: ref11/cit11 doi: 10.1126/science.1254227 – ident: ref14/cit14 doi: 10.1126/sciadv.aaq0066 – ident: ref57/cit57 doi: 10.1088/0143-0807/3/1/005 – ident: ref22/cit22 doi: 10.1038/s41467-017-00990-x – ident: ref40/cit40 doi: 10.1016/j.memsci.2017.12.057 – ident: ref43/cit43 doi: 10.1126/science.aan5275 – ident: ref25/cit25 doi: 10.1021/acs.chemrev.9b00399 – ident: ref39/cit39 doi: 10.1021/acs.jpclett.5b01895 – ident: ref15/cit15 doi: 10.1039/C8TA04178D – ident: ref48/cit48 doi: 10.1002/adma.201300839 – ident: ref1/cit1 doi: 10.1126/science.1250247 – start-page: 337 volume-title: Nanoscience and Technology: A Collection of Reviews from Nature Journals year: 2010 ident: ref2/cit2 – ident: ref9/cit9 doi: 10.1016/j.coche.2015.01.004 – ident: ref56/cit56 doi: 10.1016/S0378-3812(01)00662-8 – ident: ref26/cit26 doi: 10.1002/anie.200701595 – ident: ref55/cit55 doi: 10.1107/S0907444904011679 – ident: ref46/cit46 – ident: ref45/cit45 doi: 10.1016/j.memsci.2010.09.028 – ident: ref58/cit58 doi: 10.1016/0263-7855(96)00018-5 – ident: ref52/cit52 doi: 10.1002/wcms.19 – ident: ref38/cit38 doi: 10.1038/s41563-019-0536-8 – ident: ref30/cit30 doi: 10.1002/macp.201800207 – ident: ref31/cit31 doi: 10.1002/adma.201202569 – ident: ref44/cit44 doi: 10.1021/acsami.8b18719 – ident: ref27/cit27 doi: 10.1126/sciadv.1602610 – ident: ref32/cit32 doi: 10.1021/acsnano.0c06944 – ident: ref35/cit35 doi: 10.1021/la100449z |
SSID | ssj0057876 |
Score | 2.562627 |
Snippet | Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11970 |
Title | Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes |
URI | http://dx.doi.org/10.1021/acsnano.1c03194 https://www.proquest.com/docview/2546977090 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwRpSXjNSBJSFxnIfHqqIqSEUVpVK3yLEdJGgT1CQD_HrOSVooVQVbhtiyzvbd9_nOnxFq2YGAoOEQAyaYAkFhgREwDizFY4HNI98T5a33_qPXG9GHsTv-Fov-ncEn9i0XWcKT1LSFvnBDN9EW8QJf86x2Zzh3unrdeVUCGQgyoIiFis9KBzoMiWw5DC174TK0dPeqoqysVCTUFSVvZpFHpvhc1Wv8e9T7aLcGmLhdrYgDtKGSQ7TzQ3bwCD0NtKRFpjB4DaOdvGT5LJ3i-zTBQ1VJgcNnWUuAO2nyWuiTNon7unQP0HpaZHiQTj6maob7agpsG7zlMRp17547PaN-W8HgAOhygwkaAXhTInKItKRNIid2JFOKM8-NKfGZZDygyrNi6XKibKGYioEuA6GCtso5QY0kTdQpwhpFMarcmMWCBpE-ItEiZr6QseSeazdRC6wR1nsjC8u0N7HD2kRhbaImMuczEopan1w_kzFZ3-Bm0eC9kuZY_-v1fIpD2D46JwK2AXuF-jkAgMAWs87-N8xztE10WYvlG8S_QI18VqhLwCV5dFWuyC-4It3a |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS-RAEC5cPbgefO2Kb1twYS8Zk86zDx6GUZlRR2RV8JZNOhVBZxKZziD6a_wr_jOrM5nxheBF8BZCOnSqKlX1dVV_DbBlBZKChs0NUrBDAEUERiAiQimeCKwo9j1Z7npvH3vNc-fgwr0Yg4fhXhiahKI3qbKI_8wuYG3TvSzK8pol9b4bp2qjPMS7WwJpaqe1Sxr9w_n-3lmjaVTnCBgRJS-FIaQTU6KCMrZ5YiYWj-3UTgRiJDw3dbgvEhEFDnpmmrgRR0uiwJSgIYEHGos2vfcHTFDqwzW8qzdOh75em7s3qFsTLqfkZUQe9G7COvpJ9Tr6vXb-ZUTbn4HHkSzKRpbrWr-Ia_L-DU3kdxbWLExX6TSrD-x_DsYwm4epFySLv-DfiSbwUMjIRxr17FIVvbzLWnnGTnFAfE6XZecEa-TZVV-vKyasrRsVCZvkfcVO8s5dF3usjd2YQjuq33D-JR-1AONZnuEiMJ0zCgfdVKTSCWK9IKQp23yZpEnkudYSbJH0w8oTqLAs8nMrrFQSVipZgtrQEEJZsbHrQ0E6Hw_4OxpwMyAi-fjRzaFlheQsdAWIZEPyCvXhB5Twm8Jc_tw0N2CyedY-Co9ax4cr8JPrhh7TN7i_CuNFr49rlJEV8Xr5UzD4_9WG9QRx6UIp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7xkCo4tDyKoJTWSFTikiVxnj5wWC1dscCiVSkStzSxJ0h0N0HrrCr4PfwV_hfjbHbFQ0i9IHGLothyZuyZ-TzjzwA7TiTJabjcIgV7BFBEZEUiIZQSiMhJ0jCQ1an37mlweO4dXfgXM3A3OQtDg9DUk66S-GZVX6usZhhw9uh9nuRFw5Hm7I1Xl1Ie480_Amp6v3NAWv3Befvn79ahVd8lYCUUwJSWkF5KwQrK1OXKVg5P3cxVAjERgZ95PBRKJJGHgZ0pP-HoSBSYETwkAEFt0aV-Z2HeJAkNxGu2zib23kz5YJy7JmxOAcyUQOjFgI0HlPqpB3zqACqv1v4E91N5VMUsfxujMm3I22dUke9dYEvwsQ6rWXO8DpZhBvMVWHxEtrgKv3qGyEMjI1tpNfNLXQ6LAesUOTvDMQE6PVYVFKxV5Fcjs7-oWNcULBJGKUaa9Yr-zQCHrIuDlFw86s9w_iY_tQZzeZHjOjATOwoP_Uxk0otSszFkqNtCqTKVBL6zATsk_bi2CDqukv3ciWuVxLVKNqAxmQyxrFnZzeUg_dcb7E4bXI8JSV7_dHsyu2IyGiYTRLIhecXmEgQK_G1hf_m_YX6HD72DdnzSOT3ehAVu6nrs0OLhV5grhyPcosCsTL9V64LBn7eeVw8P2kSs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+Sub-Angstrom+Ion+Separation+Using+Conjugated+Microporous+Polymer+Membranes&rft.jtitle=ACS+nano&rft.au=Zhou%2C+Zongyao&rft.au=Guo%2C+Dong&rft.au=Shinde%2C+Digambar+B.&rft.au=Cao%2C+Li&rft.date=2021-07-27&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=7&rft.spage=11970&rft.epage=11980&rft_id=info:doi/10.1021%2Facsnano.1c03194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c03194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |