Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes

Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 7; pp. 11970 - 11980
Main Authors Zhou, Zongyao, Guo, Dong, Shinde, Digambar B, Cao, Li, Li, Zhen, Li, Xiang, Lu, Dongwei, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published American Chemical Society 27.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution.
AbstractList Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution.
Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution.Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution.
Author Li, Zhen
Lu, Dongwei
Lai, Zhiping
Zhou, Zongyao
Guo, Dong
Cao, Li
Li, Xiang
Shinde, Digambar B
AuthorAffiliation Division of Physical Science and Engineering
AuthorAffiliation_xml – name: Division of Physical Science and Engineering
Author_xml – sequence: 1
  givenname: Zongyao
  orcidid: 0000-0002-4694-2330
  surname: Zhou
  fullname: Zhou, Zongyao
– sequence: 2
  givenname: Dong
  orcidid: 0000-0002-1055-482X
  surname: Guo
  fullname: Guo, Dong
– sequence: 3
  givenname: Digambar B
  surname: Shinde
  fullname: Shinde, Digambar B
– sequence: 4
  givenname: Li
  surname: Cao
  fullname: Cao, Li
– sequence: 5
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
– sequence: 6
  givenname: Xiang
  orcidid: 0000-0002-5656-1363
  surname: Li
  fullname: Li, Xiang
– sequence: 7
  givenname: Dongwei
  surname: Lu
  fullname: Lu, Dongwei
– sequence: 8
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
BookMark eNp9kM9LwzAUx4NMcJuevfYoSLekbdrmOIY_BhsO58BbSNPXkdEmNWkP---NdngQ9PS-8L6fx_d9J2ikjQaEbgmeERyRuZBOC21mROKYsOQCjQmL0xDn6fvoR1NyhSbOHTGmWZ6lY_S6tSCVg2DXF-FCH1xnTROsjA520AorOuXl3il9CJZGH_uD6KAMNkpa0xprehdsTX1qwAYbaAorNLhrdFmJ2sHNeU7R_vHhbfkcrl-eVsvFOhQxwV3IZFJQwkAWcVTikkRFXMUlAxAspVUSZaxkIk8gxVVJRQREAoMqz_OEUc9CPEV3w93Wmo8eXMcb5STUtQ_hg_GIJinLMsywt9LB6mM7Z6HiUnXfv3VWqJoTzL865OcO-blDz81_ca1VjbCnf4j7gfALfjS91b6CP92f5SeIYA
CitedBy_id crossref_primary_10_1002_anie_202421615
crossref_primary_10_1016_j_seppur_2022_121674
crossref_primary_10_1016_j_memsci_2022_120344
crossref_primary_10_1016_j_memsci_2024_122600
crossref_primary_10_1021_acsmacrolett_3c00420
crossref_primary_10_1021_acsnano_3c12616
crossref_primary_10_1021_jacs_2c00318
crossref_primary_10_1038_s41467_024_48419_6
crossref_primary_10_1126_science_adi9531
crossref_primary_10_1002_adfm_202406430
crossref_primary_10_1016_j_desal_2024_118412
crossref_primary_10_1002_anie_202302168
crossref_primary_10_1016_j_apcatb_2023_122585
crossref_primary_10_3390_mi13091466
crossref_primary_10_1007_s11426_022_1475_x
crossref_primary_10_1038_s41467_022_35681_9
crossref_primary_10_1002_aic_18232
crossref_primary_10_1002_smll_202303919
crossref_primary_10_1039_D3MH00672G
crossref_primary_10_1126_sciadv_abo2929
crossref_primary_10_1016_j_electacta_2022_141450
crossref_primary_10_1016_j_seppur_2025_131795
crossref_primary_10_1002_ange_202312795
crossref_primary_10_1002_mame_202300218
crossref_primary_10_6023_A21110505
crossref_primary_10_1016_j_advmem_2021_100014
crossref_primary_10_1021_jacs_2c03759
crossref_primary_10_1002_smtd_202301554
crossref_primary_10_1002_asia_202301065
crossref_primary_10_1038_s41467_022_35594_7
crossref_primary_10_1093_nsr_nwae439
crossref_primary_10_1021_acsnano_2c04767
crossref_primary_10_1021_acsaem_3c01072
crossref_primary_10_1002_ange_202302168
crossref_primary_10_1002_adma_202305755
crossref_primary_10_1002_chem_202301163
crossref_primary_10_1002_anie_202312795
crossref_primary_10_1002_slct_202302281
crossref_primary_10_1016_j_catcom_2022_106463
crossref_primary_10_1126_sciadv_abm6741
crossref_primary_10_1021_acsnano_2c07641
crossref_primary_10_1002_smll_202107108
crossref_primary_10_1016_j_seppur_2024_127755
crossref_primary_10_1021_acs_chemmater_4c01424
crossref_primary_10_1002_ange_202421615
crossref_primary_10_1021_acsnano_3c11068
crossref_primary_10_1021_acs_est_1c06176
crossref_primary_10_1016_j_memsci_2022_120314
crossref_primary_10_1039_D2TA02178A
crossref_primary_10_1021_acs_chemmater_2c00999
crossref_primary_10_1002_adma_202401137
crossref_primary_10_1016_j_cjche_2022_01_027
crossref_primary_10_1016_j_seppur_2023_125783
crossref_primary_10_1016_j_dyepig_2021_109989
crossref_primary_10_1039_D2TA08802A
crossref_primary_10_1002_adfm_202406165
crossref_primary_10_1038_s44221_024_00368_6
crossref_primary_10_1021_acsomega_4c01688
crossref_primary_10_1080_15685551_2022_2088977
Cites_doi 10.1038/s41557-018-0093-9
10.1126/science.1203771
10.1016/j.memsci.2019.117569
10.1038/s41467-020-17373-4
10.1016/S0022-0728(81)80016-2
10.1021/ct700301q
10.1038/nmat5025
10.1126/sciadv.aar8266
10.1016/j.micromeso.2011.08.020
10.1111/jace.12068
10.1038/s41467-019-14056-7
10.1126/science.280.5360.69
10.1126/science.1245711
10.1038/s41563-020-0634-7
10.1126/science.1236686
10.1126/science.1146744
10.1016/j.pmatsci.2017.10.006
10.1038/ncomms11315
10.1002/ange.201809907
10.1126/science.1192160
10.1016/0022-0728(92)80575-O
10.1002/jcc.20090
10.1016/j.memsci.2020.118273
10.1038/s41467-020-19182-1
10.1038/nnano.2017.21
10.1038/s41467-020-15771-2
10.1126/science.aaq1739
10.1021/acsnano.0c05649
10.1002/ange.201510849
10.1021/jacs.8b08788
10.1126/science.1254227
10.1126/sciadv.aaq0066
10.1088/0143-0807/3/1/005
10.1038/s41467-017-00990-x
10.1016/j.memsci.2017.12.057
10.1126/science.aan5275
10.1021/acs.chemrev.9b00399
10.1021/acs.jpclett.5b01895
10.1039/C8TA04178D
10.1002/adma.201300839
10.1126/science.1250247
10.1016/j.coche.2015.01.004
10.1016/S0378-3812(01)00662-8
10.1002/anie.200701595
10.1107/S0907444904011679
10.1016/j.memsci.2010.09.028
10.1016/0263-7855(96)00018-5
10.1002/wcms.19
10.1038/s41563-019-0536-8
10.1002/macp.201800207
10.1002/adma.201202569
10.1021/acsami.8b18719
10.1126/sciadv.1602610
10.1021/acsnano.0c06944
10.1021/la100449z
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.1c03194
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 11980
ExternalDocumentID 10_1021_acsnano_1c03194
c614935949
GroupedDBID -
.K2
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a310t-9c4b519ecb32d0d12b3f3d9eea965f4279d9a84e60fd5a2e1ce9ef8884959c4e3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:09:14 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Tue Jul 01 03:37:13 EDT 2025
Thu Jul 29 03:24:45 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords electropolymerization
ion sieving
precise separation
membrane
conjugated microporous polymer
carbon nanotube film
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a310t-9c4b519ecb32d0d12b3f3d9eea965f4279d9a84e60fd5a2e1ce9ef8884959c4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4694-2330
0000-0001-9555-6009
0000-0002-1055-482X
0000-0002-5656-1363
PQID 2546977090
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2546977090
crossref_citationtrail_10_1021_acsnano_1c03194
crossref_primary_10_1021_acsnano_1c03194
acs_journals_10_1021_acsnano_1c03194
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210727
2021-07-27
PublicationDateYYYYMMDD 2021-07-27
PublicationDate_xml – month: 07
  year: 2021
  text: 20210727
  day: 27
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
Shannon M. A. (ref2/cit2) 2010
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref37/cit37
  doi: 10.1038/s41557-018-0093-9
– ident: ref3/cit3
  doi: 10.1126/science.1203771
– ident: ref8/cit8
  doi: 10.1016/j.memsci.2019.117569
– ident: ref42/cit42
  doi: 10.1038/s41467-020-17373-4
– ident: ref50/cit50
  doi: 10.1016/S0022-0728(81)80016-2
– ident: ref53/cit53
  doi: 10.1021/ct700301q
– ident: ref20/cit20
  doi: 10.1038/nmat5025
– ident: ref4/cit4
  doi: 10.1126/sciadv.aar8266
– ident: ref47/cit47
  doi: 10.1016/j.micromeso.2011.08.020
– ident: ref34/cit34
  doi: 10.1111/jace.12068
– ident: ref17/cit17
  doi: 10.1038/s41467-019-14056-7
– ident: ref6/cit6
  doi: 10.1126/science.280.5360.69
– ident: ref18/cit18
  doi: 10.1126/science.1245711
– ident: ref13/cit13
  doi: 10.1038/s41563-020-0634-7
– ident: ref21/cit21
  doi: 10.1126/science.1236686
– ident: ref23/cit23
  doi: 10.1126/science.1146744
– ident: ref24/cit24
  doi: 10.1016/j.pmatsci.2017.10.006
– ident: ref12/cit12
  doi: 10.1038/ncomms11315
– ident: ref16/cit16
  doi: 10.1002/ange.201809907
– ident: ref36/cit36
  doi: 10.1126/science.1192160
– ident: ref49/cit49
  doi: 10.1016/0022-0728(92)80575-O
– ident: ref54/cit54
  doi: 10.1002/jcc.20090
– ident: ref29/cit29
  doi: 10.1016/j.memsci.2020.118273
– ident: ref28/cit28
  doi: 10.1038/s41467-020-19182-1
– ident: ref19/cit19
  doi: 10.1038/nnano.2017.21
– ident: ref7/cit7
  doi: 10.1038/s41467-020-15771-2
– ident: ref51/cit51
– ident: ref5/cit5
  doi: 10.1126/science.aaq1739
– ident: ref41/cit41
  doi: 10.1021/acsnano.0c05649
– ident: ref10/cit10
  doi: 10.1002/ange.201510849
– ident: ref33/cit33
  doi: 10.1021/jacs.8b08788
– ident: ref11/cit11
  doi: 10.1126/science.1254227
– ident: ref14/cit14
  doi: 10.1126/sciadv.aaq0066
– ident: ref57/cit57
  doi: 10.1088/0143-0807/3/1/005
– ident: ref22/cit22
  doi: 10.1038/s41467-017-00990-x
– ident: ref40/cit40
  doi: 10.1016/j.memsci.2017.12.057
– ident: ref43/cit43
  doi: 10.1126/science.aan5275
– ident: ref25/cit25
  doi: 10.1021/acs.chemrev.9b00399
– ident: ref39/cit39
  doi: 10.1021/acs.jpclett.5b01895
– ident: ref15/cit15
  doi: 10.1039/C8TA04178D
– ident: ref48/cit48
  doi: 10.1002/adma.201300839
– ident: ref1/cit1
  doi: 10.1126/science.1250247
– start-page: 337
  volume-title: Nanoscience and Technology: A Collection of Reviews from Nature Journals
  year: 2010
  ident: ref2/cit2
– ident: ref9/cit9
  doi: 10.1016/j.coche.2015.01.004
– ident: ref56/cit56
  doi: 10.1016/S0378-3812(01)00662-8
– ident: ref26/cit26
  doi: 10.1002/anie.200701595
– ident: ref55/cit55
  doi: 10.1107/S0907444904011679
– ident: ref46/cit46
– ident: ref45/cit45
  doi: 10.1016/j.memsci.2010.09.028
– ident: ref58/cit58
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref52/cit52
  doi: 10.1002/wcms.19
– ident: ref38/cit38
  doi: 10.1038/s41563-019-0536-8
– ident: ref30/cit30
  doi: 10.1002/macp.201800207
– ident: ref31/cit31
  doi: 10.1002/adma.201202569
– ident: ref44/cit44
  doi: 10.1021/acsami.8b18719
– ident: ref27/cit27
  doi: 10.1126/sciadv.1602610
– ident: ref32/cit32
  doi: 10.1021/acsnano.0c06944
– ident: ref35/cit35
  doi: 10.1021/la100449z
SSID ssj0057876
Score 2.562627
Snippet Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11970
Title Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes
URI http://dx.doi.org/10.1021/acsnano.1c03194
https://www.proquest.com/docview/2546977090
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwRpSXjNSBJSFxnIfHqqIqSEUVpVK3yLEdJGgT1CQD_HrOSVooVQVbhtiyzvbd9_nOnxFq2YGAoOEQAyaYAkFhgREwDizFY4HNI98T5a33_qPXG9GHsTv-Fov-ncEn9i0XWcKT1LSFvnBDN9EW8QJf86x2Zzh3unrdeVUCGQgyoIiFis9KBzoMiWw5DC174TK0dPeqoqysVCTUFSVvZpFHpvhc1Wv8e9T7aLcGmLhdrYgDtKGSQ7TzQ3bwCD0NtKRFpjB4DaOdvGT5LJ3i-zTBQ1VJgcNnWUuAO2nyWuiTNon7unQP0HpaZHiQTj6maob7agpsG7zlMRp17547PaN-W8HgAOhygwkaAXhTInKItKRNIid2JFOKM8-NKfGZZDygyrNi6XKibKGYioEuA6GCtso5QY0kTdQpwhpFMarcmMWCBpE-ItEiZr6QseSeazdRC6wR1nsjC8u0N7HD2kRhbaImMuczEopan1w_kzFZ3-Bm0eC9kuZY_-v1fIpD2D46JwK2AXuF-jkAgMAWs87-N8xztE10WYvlG8S_QI18VqhLwCV5dFWuyC-4It3a
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS-RAEC5cPbgefO2Kb1twYS8Zk86zDx6GUZlRR2RV8JZNOhVBZxKZziD6a_wr_jOrM5nxheBF8BZCOnSqKlX1dVV_DbBlBZKChs0NUrBDAEUERiAiQimeCKwo9j1Z7npvH3vNc-fgwr0Yg4fhXhiahKI3qbKI_8wuYG3TvSzK8pol9b4bp2qjPMS7WwJpaqe1Sxr9w_n-3lmjaVTnCBgRJS-FIaQTU6KCMrZ5YiYWj-3UTgRiJDw3dbgvEhEFDnpmmrgRR0uiwJSgIYEHGos2vfcHTFDqwzW8qzdOh75em7s3qFsTLqfkZUQe9G7COvpJ9Tr6vXb-ZUTbn4HHkSzKRpbrWr-Ia_L-DU3kdxbWLExX6TSrD-x_DsYwm4epFySLv-DfiSbwUMjIRxr17FIVvbzLWnnGTnFAfE6XZecEa-TZVV-vKyasrRsVCZvkfcVO8s5dF3usjd2YQjuq33D-JR-1AONZnuEiMJ0zCgfdVKTSCWK9IKQp23yZpEnkudYSbJH0w8oTqLAs8nMrrFQSVipZgtrQEEJZsbHrQ0E6Hw_4OxpwMyAi-fjRzaFlheQsdAWIZEPyCvXhB5Twm8Jc_tw0N2CyedY-Co9ax4cr8JPrhh7TN7i_CuNFr49rlJEV8Xr5UzD4_9WG9QRx6UIp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7xkCo4tDyKoJTWSFTikiVxnj5wWC1dscCiVSkStzSxJ0h0N0HrrCr4PfwV_hfjbHbFQ0i9IHGLothyZuyZ-TzjzwA7TiTJabjcIgV7BFBEZEUiIZQSiMhJ0jCQ1an37mlweO4dXfgXM3A3OQtDg9DUk66S-GZVX6usZhhw9uh9nuRFw5Hm7I1Xl1Ie480_Amp6v3NAWv3Befvn79ahVd8lYCUUwJSWkF5KwQrK1OXKVg5P3cxVAjERgZ95PBRKJJGHgZ0pP-HoSBSYETwkAEFt0aV-Z2HeJAkNxGu2zib23kz5YJy7JmxOAcyUQOjFgI0HlPqpB3zqACqv1v4E91N5VMUsfxujMm3I22dUke9dYEvwsQ6rWXO8DpZhBvMVWHxEtrgKv3qGyEMjI1tpNfNLXQ6LAesUOTvDMQE6PVYVFKxV5Fcjs7-oWNcULBJGKUaa9Yr-zQCHrIuDlFw86s9w_iY_tQZzeZHjOjATOwoP_Uxk0otSszFkqNtCqTKVBL6zATsk_bi2CDqukv3ciWuVxLVKNqAxmQyxrFnZzeUg_dcb7E4bXI8JSV7_dHsyu2IyGiYTRLIhecXmEgQK_G1hf_m_YX6HD72DdnzSOT3ehAVu6nrs0OLhV5grhyPcosCsTL9V64LBn7eeVw8P2kSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+Sub-Angstrom+Ion+Separation+Using+Conjugated+Microporous+Polymer+Membranes&rft.jtitle=ACS+nano&rft.au=Zhou%2C+Zongyao&rft.au=Guo%2C+Dong&rft.au=Shinde%2C+Digambar+B.&rft.au=Cao%2C+Li&rft.date=2021-07-27&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=7&rft.spage=11970&rft.epage=11980&rft_id=info:doi/10.1021%2Facsnano.1c03194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c03194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon