Resource Orchestration of Cloud-Edge–based Smart Grid Fault Detection
Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection systems integrating deep learning have been proposed recently to monitor the grid in real time. However, state-of-the-art cloud-based detectio...
Saved in:
Published in | ACM transactions on sensor networks Vol. 18; no. 3; pp. 1 - 26 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
ACM
24.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1550-4859 1550-4867 |
DOI | 10.1145/3529509 |
Cover
Abstract | Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection systems integrating deep learning have been proposed recently to monitor the grid in real time. However, state-of-the-art cloud-based detection may require uploading a large amount of data and suffer from long network delay, while edge-based schemes do not adequately consider the detection requirement and thus cannot provide flexible and optimal performance. To solve these problems, we study a cloud-edge based hybrid smart grid fault detection system. Embedded devices are placed at the edge of the monitored equipment with several lightweight neural networks for fault detection. Considering limited communication resources, relatively low computation capabilities of edge devices, and different monitoring accuracies supported by these neural networks, we design an optimal communication and computational resource allocation method for this cloud-edge based smart grid fault detection system. Our method can maximize the processing throughput of the system and improve resource utilization while satisfying the data transmission and processing latency requirements. Extensive simulations are conducted and the results show the superiority of the proposed scheme over comparison schemes. We have also prototyped this system and verified its feasibility and performance in real-world scenarios. |
---|---|
AbstractList | Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection systems integrating deep learning have been proposed recently to monitor the grid in real time. However, state-of-the-art cloud-based detection may require uploading a large amount of data and suffer from long network delay, while edge-based schemes do not adequately consider the detection requirement and thus cannot provide flexible and optimal performance. To solve these problems, we study a cloud-edge based hybrid smart grid fault detection system. Embedded devices are placed at the edge of the monitored equipment with several lightweight neural networks for fault detection. Considering limited communication resources, relatively low computation capabilities of edge devices, and different monitoring accuracies supported by these neural networks, we design an optimal communication and computational resource allocation method for this cloud-edge based smart grid fault detection system. Our method can maximize the processing throughput of the system and improve resource utilization while satisfying the data transmission and processing latency requirements. Extensive simulations are conducted and the results show the superiority of the proposed scheme over comparison schemes. We have also prototyped this system and verified its feasibility and performance in real-world scenarios. |
ArticleNumber | 46 |
Author | Sun, Wei Li, Ruidong Li, Qiyue Deng, Yuxing Liu, Zhi Li, Jie Li, Weitao |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0001-8483-6240 surname: Li fullname: Li, Jie email: lijie@hfut.edu.cn organization: School of Computer and Information, Hefei University of Technology, Hefei, Anhui, China – sequence: 2 givenname: Yuxing surname: Deng fullname: Deng, Yuxing email: yxdeng@mail.hfut.edu.cn organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China – sequence: 3 givenname: Wei surname: Sun fullname: Sun, Wei email: wsun@hfut.edu.cn organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China – sequence: 4 givenname: Weitao surname: Li fullname: Li, Weitao email: wtli@hfut.edu.cn organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China – sequence: 5 givenname: Ruidong surname: Li fullname: Li, Ruidong email: lrd@se.kanazawa-u.ac.jp organization: Kanazawa University, Japan – sequence: 6 givenname: Qiyue orcidid: 0000-0002-9399-8759 surname: Li fullname: Li, Qiyue email: liqiyue@mail.ustc.edu.cn organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China – sequence: 7 givenname: Zhi surname: Liu fullname: Liu, Zhi email: liu@ieee.org organization: The University of Electro-Communications, Japan |
BookMark | eNptkL1OwzAUhS1UJNqC2Jm8MQXsOHbqEYU2IFWqxM8c-ecGgtIY2c7Axjvwhn0SUlo6IKZzpfPdq3PPBI061wFC55RcUZrxa8ZTyYk8QmPKOUmymchHh5nLEzQJ4Y0QxjJGxqh8gOB6bwCvvHmFEL2Kjeuwq3HRut4mc_sCm88vrQJY_LhWPuLSNxYvVN9GfAsRzHbhFB3Xqg1wttcpel7Mn4q7ZLkq74ubZaIYJTERhHKRg02VIbpWyhiRwcxqLRjQVA-e1JrXaWqFyHOmB60JM1xISUxmNZuiZHfXeBeCh7oyTfyJPCRv2oqSattCtW9h4C__8O--Gb74-Ie82JHKrA_Qr_kNlLxmow |
CitedBy_id | crossref_primary_10_1016_j_egyr_2023_09_049 crossref_primary_10_1007_s10723_023_09695_6 crossref_primary_10_1155_2023_9604454 crossref_primary_10_1016_j_seta_2023_103414 crossref_primary_10_1007_s10723_023_09715_5 crossref_primary_10_1007_s10723_023_09717_3 crossref_primary_10_1109_ACCESS_2023_3296254 crossref_primary_10_1007_s10723_023_09710_w crossref_primary_10_1007_s11082_023_06063_2 crossref_primary_10_3390_en16031403 crossref_primary_10_1016_j_egyr_2024_01_016 crossref_primary_10_3390_en17010083 crossref_primary_10_1145_3652515 crossref_primary_10_1016_j_adhoc_2023_103322 crossref_primary_10_1016_j_suscom_2023_100925 crossref_primary_10_1109_TIM_2024_3366268 crossref_primary_10_1016_j_micpro_2024_105049 crossref_primary_10_1007_s11276_023_03488_1 crossref_primary_10_1016_j_asr_2023_09_057 crossref_primary_10_1016_j_est_2023_106746 crossref_primary_10_1049_rpg2_12854 crossref_primary_10_1109_MCE_2023_3264884 crossref_primary_10_1007_s00500_023_09210_9 crossref_primary_10_1016_j_suscom_2022_100826 crossref_primary_10_1155_2023_9960743 crossref_primary_10_1007_s10723_023_09701_x crossref_primary_10_3389_fenrg_2023_1212304 crossref_primary_10_1109_ACCESS_2022_3231603 crossref_primary_10_1007_s10723_023_09706_6 crossref_primary_10_1007_s10723_023_09708_4 crossref_primary_10_1109_MCOMSTD_0001_2200019 crossref_primary_10_1155_2022_6002695 crossref_primary_10_1016_j_jksuci_2023_101870 crossref_primary_10_1109_ACCESS_2023_3263264 crossref_primary_10_3389_fenrg_2023_1148323 crossref_primary_10_1007_s10723_023_09712_8 crossref_primary_10_1155_2023_8198865 crossref_primary_10_1007_s11082_023_06062_3 crossref_primary_10_1007_s11082_023_06064_1 crossref_primary_10_1007_s11760_023_02761_2 crossref_primary_10_1049_rpg2_12902 crossref_primary_10_3390_su152416722 crossref_primary_10_1038_s41598_025_91897_x crossref_primary_10_1016_j_suscom_2023_100945 crossref_primary_10_1016_j_cosrev_2024_100617 crossref_primary_10_1155_2022_9995478 crossref_primary_10_1109_MITP_2022_3217886 crossref_primary_10_1016_j_ijepes_2023_109663 crossref_primary_10_1109_JSYST_2023_3293043 crossref_primary_10_1155_2023_1702918 crossref_primary_10_1016_j_jksuci_2023_101841 crossref_primary_10_1016_j_egyr_2023_06_022 crossref_primary_10_1007_s10723_023_09688_5 crossref_primary_10_4218_etrij_2023_0443 crossref_primary_10_1002_cpe_7995 crossref_primary_10_1007_s10723_023_09702_w crossref_primary_10_1007_s10723_023_09720_8 crossref_primary_10_1016_j_comcom_2023_02_016 crossref_primary_10_1002_ett_70102 crossref_primary_10_1007_s10723_024_09746_6 crossref_primary_10_1007_s10723_023_09705_7 crossref_primary_10_1007_s10723_023_09707_5 crossref_primary_10_1007_s10723_023_09709_3 crossref_primary_10_3233_JIFS_233418 crossref_primary_10_1109_ACCESS_2023_3263849 crossref_primary_10_1109_TCCN_2024_3417609 crossref_primary_10_1002_ett_4929 crossref_primary_10_1109_ACCESS_2024_3364400 crossref_primary_10_1007_s10723_023_09735_1 crossref_primary_10_1007_s11042_023_16517_0 crossref_primary_10_1109_TIM_2023_3250220 crossref_primary_10_1007_s11276_023_03604_1 |
Cites_doi | 10.1109/JIOT.2018.2875917 10.1109/JSYST.2021.3110502 10.1109/ICC.2004.1312911 10.1109/MWC.121.2100041 10.1109/ICII.2018.00019 10.1109/WiMOB.2019.8923222 10.1109/UPEC.2015.7339938 10.1109/SURV.2014.052914.00130 10.1109/TSG.2020.2994637 10.1109/ICIT.2017.24 10.1109/TSG.2018.2890809 10.1109/TIE.2018.2833045 10.1109/MPE.2009.934876 10.1109/TSG.2017.2776310 10.1109/ICC.2017.7996858 10.1109/MCOM.2016.7588230 10.1109/TSG.2015.2492827 10.1109/CCWC.2019.8666493 10.1109/TSG.2018.2828414 10.1109/TSG.2017.2697440 10.1109/SEST.2019.8849012 10.1109/TVT.2019.2904244 10.1109/SmartGridComm47815.2020.9302930 10.1109/TPAMI.2018.2886192 10.1109/TC.2013.153 10.1109/ICECCT.2019.8868990 10.1007/s11036-020-01724-y 10.1109/TPWRS.2017.2737465 10.1109/SGC.2017.8308852 10.1109/CEEC.2013.6659451 |
ContentType | Journal Article |
Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
DBID | AAYXX CITATION |
DOI | 10.1145/3529509 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1550-4867 |
EndPage | 26 |
ExternalDocumentID | 10_1145_3529509 3529509 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: PA2020GDJQ0027 – fundername: National Natural Science Foundation of China grantid: 52077049, 51877060 – fundername: Anhui Provincial Natural Science Foundation grantid: 2008085UD04 |
GroupedDBID | -DZ .4S .DC 23M 4.4 5GY 5VS 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACM ADBCU ADL ADMLS ADPZR AEBYY AEGXH AENEX AENSD AFWIH AFWXC AIAGR AIKLT ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CS3 D0L EBS EDO FEDTE GUFHI HGAVV H~9 I07 LHSKQ P1C P2P RNS ROL TUS W7O ZCA AAYXX AEFXT AEJOY AKRVB CITATION |
ID | FETCH-LOGICAL-a310t-601567ed2ac0bfaacc64e8dbb63e12b5679bb5f22d66773b2d6f03c56990c4db3 |
ISSN | 1550-4859 |
IngestDate | Thu Apr 24 23:07:49 EDT 2025 Thu Jul 03 08:43:15 EDT 2025 Fri Feb 21 04:13:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | lightweight neural network resource allocation Smart grid edge computing fault detection |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a310t-601567ed2ac0bfaacc64e8dbb63e12b5679bb5f22d66773b2d6f03c56990c4db3 |
ORCID | 0000-0001-8483-6240 0000-0002-9399-8759 |
PageCount | 26 |
ParticipantIDs | crossref_citationtrail_10_1145_3529509 crossref_primary_10_1145_3529509 acm_primary_3529509 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-24 |
PublicationDateYYYYMMDD | 2022-08-24 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | ACM transactions on sensor networks |
PublicationTitleAbbrev | ACM TOSN |
PublicationYear | 2022 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | (Bib0038) 2010; 20 (Bib0007) 2020; 7 (Bib0032) 2019; 3 (Bib0017) 2014; 16 (Bib0023) 2017; 8 (Bib0016) 2020 (Bib0030) 2019 (Bib0021) 2019; 10 (Bib0001) 2010; 8 (Bib0026) 2019; 10 (Bib0004) 2018 (Bib0027) 2019; 66 (Bib0042) 2014 (Bib0005) 2019; 10 (Bib0003) 2021 (Bib0015) 2019 (Bib0034) 2016; 521 (Bib0018) 2021 (Bib0031) 2020 (Bib0028) 2020 (Bib0002) 2018; 33 (Bib0014) 2016; 54 (Bib0025) 2017 (Bib0035) 2017 (Bib0022) 2017 (Bib0008) 2016; 3 (Bib0013) 2019; 6 (Bib0020) 2018; 9 (Bib0033) 2020; 42 (Bib0037) 2004 (Bib0040) 2020 (Bib0010) 2021 (Bib0036) 2014; 63 (Bib0024) 2019 (Bib0019) 2012 (Bib0039) 2013 (Bib0012) 2019; 6 (Bib0029) 2018 (Bib0009) 2021; 28 (Bib0011) 2019; 68 (Bib0006) 2015 (Bib0041) 2019 e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 (e_1_3_2_20_2) 2012 Sun Wei (e_1_3_2_4_2) 2021 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_43_2 Kulkarni S. (e_1_3_2_14_2) 2019; 6 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Peng N. (e_1_3_2_29_2) 2020 Adhikari M. (e_1_3_2_8_2) 2020; 7 Shi Weisong (e_1_3_2_9_2) 2016; 3 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 Hussain Md. (e_1_3_2_33_2) 2019; 3 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 Kolpakov R. M. (e_1_3_2_39_2) 2010; 20 Urban Gregor (e_1_3_2_35_2) 2016; 521 Zhang Yang (e_1_3_2_5_2) 2018 |
References_xml | – start-page: 1 issue: 4 year: 2021 end-page: 14 ident: Bib0010 article-title: An optimal uplink scheduling in heterogeneous PLC and LTE communication for delay-aware smart grid applications publication-title: Mobile Netw. Appl. – year: 2020 ident: Bib0031 article-title: Communication and computation resource allocation and offloading for edge intelligence enabled fault detection system in smart grid publication-title: Proceedings of the IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm’20) – volume: 8 start-page: 18 issue: 1 year: 2010 end-page: 28 ident: Bib0001 article-title: The path of the smart grid publication-title: IEEE Power Energy Mag. – year: 2021 ident: Bib0003 article-title: Distributed controller design and stability criterion for microgrids with time-varying delay and rapid switching communication topology publication-title: Sust. Energy Grids Netw. – volume: 28 start-page: 36 issue: 5 year: 2021 end-page: 42 ident: Bib0009 article-title: Robust edge computing in uav systems via scalable computing and cooperative computing publication-title: IEEE Wireless Commun. – volume: 6 start-page: 7406 issue: 5 year: 2019 end-page: 7419 ident: Bib0013 article-title: Enabling a decentralized smart grid using autonomous edge control devices publication-title: IEEE IoT J. – start-page: 99 year: 2018 end-page: 108 ident: Bib0029 article-title: An edge computing framework for real-time monitoring in smart grid publication-title: Proceedings of the IEEE International Conference on Industrial Internet (ICII’18) – start-page: 1 year: 2017 end-page: 6 ident: Bib0022 article-title: Detection of anomalies in smart meter data: A density-based approach publication-title: Proceedings of the Smart Grid Conference (SGC’17) – start-page: 178 year: 2017 end-page: 183 ident: Bib0025 article-title: Fault detection and classification of a transmission line using discrete wavelet transform artificial neural network publication-title: Proceedings of the International Conference on Information Technology (ICIT’17) – volume: 63 start-page: 59 issue: 1 year: 2014 end-page: 73 ident: Bib0036 article-title: Price competition in an oligopoly market with multiple IaaS cloud providers publication-title: IEEE Trans. Comput. – start-page: 0695 year: 2019 end-page: 0700 ident: Bib0041 article-title: Statistical analysis of packet delay time and variation on the internet publication-title: Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC’19) – volume: 521 year: 2016 ident: Bib0034 article-title: Do deep convolutional nets really need to be deep and convolutional? publication-title: Nature – volume: 42 start-page: 568 issue: 3 year: 2020 end-page: 579 ident: Bib0033 article-title: Deep neural network compression by in-parallel pruning-quantization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: Bib0004 article-title: Big data analytics in smart grids: A review publication-title: Energy Inf. – volume: 10 start-page: 3465 issue: 3 year: 2019 end-page: 3473 ident: Bib0021 article-title: Application of smart meters in high impedance fault detection on distribution systems publication-title: IEEE Trans. Smart Grid – year: 2013 ident: Bib0039 article-title: Constrained optimization applying decomposed unlimited point method based on KKT condition publication-title: Proceedings of the 5th Computer Science and Electronic Engineering Conference (CEEC’13) – volume: 6 start-page: 4283 issue: 3 year: 2019 end-page: 4294 ident: Bib0012 article-title: Joint resource allocation for latency-sensitive services over mobile edge computing networks with caching publication-title: IEEE IoT J. doi: 10.1109/JIOT.2018.2875917 – volume: 16 start-page: 1689 issue: 3 year: 2014 end-page: 1708 ident: Bib0017 article-title: Communication infrastructure design in cyber physical systems with applications in smart grids: A hybrid system framework publication-title: IEEE Commun. Surv. Tutor. – start-page: 1 year: 2017 end-page: 7 ident: Bib0035 article-title: Tasks scheduling and resource allocation in heterogeneous cloud for delay-bounded mobile edge computing publication-title: Proceedings of the IEEE International Conference on Communications (ICC’17) – year: 2004 ident: Bib0037 article-title: Psychometric analysis of the effect of end-to-end delay on user-level QoS in live audio-video transmission publication-title: Proceedings of the IEEE International Conference on Communications – year: 2012 ident: Bib0019 article-title: A survey of communication/networking in smart grids publication-title: Fut. Gener. Comput. Syst. – start-page: 1 year: 2019 end-page: 5 ident: Bib0024 article-title: Detection, classification and zone location of fault in transmission line using artificial neural network publication-title: Proceedings of the IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT’19) – start-page: 1 year: 2015 end-page: 5 ident: Bib0006 article-title: Cloud-based smart grid monitoring and controlling system publication-title: Proceedings of the 50th International Universities Power Engineering Conference (UPEC’15) – start-page: 1 year: 2021 end-page: 11 ident: Bib0018 article-title: Optimal resource allocation of 5G machine-type communications for situation awareness in active distribution networks publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2021.3110502 – volume: 54 start-page: 60 issue: 10 year: 2016 end-page: 66 ident: Bib0014 article-title: Vehicular delay-tolerant networks for smart grid data management using mobile edge computing publication-title: IEEE Commun. Mag. – volume: 3 start-page: 637 issue: 5 year: 2016 end-page: 646 ident: Bib0008 article-title: Edge computing: Vision and challenges publication-title: IEEE IoT J. – year: 2020 ident: Bib0016 article-title: Edge intelligence: Architectures, challenges, and applications – volume: 3 issue: 1 year: 2019 ident: Bib0032 article-title: Fog computing for internet of things (IoT)-aided smart grid architectures publication-title: Big Data Cogn. Comput. – volume: 7 start-page: 4317 issue: 5 year: 2020 end-page: 4328 ident: Bib0007 article-title: Application offloading strategy for hierarchical fog environment through swarm optimization publication-title: IEEE IoT J. – volume: 9 start-page: 5820 issue: 6 year: 2018 end-page: 5830 ident: Bib0020 article-title: A hierarchical framework for smart grid anomaly detection using large-scale smart meter data publication-title: IEEE Trans. Smart Grid – volume: 8 start-page: 1580 issue: 4 year: 2017 end-page: 1590 ident: Bib0023 article-title: Short-term state forecasting-aided method for detection of smart grid general false data injection attacks publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2019 end-page: 5 ident: Bib0015 article-title: Embedded edge computing for real-time smart meter data analytics publication-title: Proceedings of the International Conference on Smart Energy Systems and Technologies (SEST’19) – volume: 20 start-page: 95 issue: 1 year: 2010 end-page: 112 ident: Bib0038 article-title: Upper and lower bounds for the complexity of the branch and bound method for the knapsack problem publication-title: Discr. Math. Appl. – year: 2020 ident: Bib0040 article-title: Incipient fault identification in power distribution systems via human-level concept learning publication-title: IEEE Trans. Smart Grid – volume: 33 start-page: 1184 issue: 2 year: 2018 end-page: 1194 ident: Bib0002 article-title: A novel method to monitor and predict voltage collapse: The critical transitions approach publication-title: IEEE Trans. Power Syst. – volume: 10 start-page: 5724 issue: 5 year: 2019 end-page: 5734 ident: Bib0026 article-title: Machine learning-based anomaly detection for load forecasting under cyberattacks publication-title: IEEE Trans. Smart Grid – volume: 66 start-page: 8760 issue: 11 year: 2019 end-page: 8771 ident: Bib0027 article-title: Real-time fault detection and identification for mmc using 1-D convolutional neural networks publication-title: IEEE Trans. Industr. Electr. – start-page: 1 year: 2020 end-page: 1 ident: Bib0028 article-title: Edge computing based fault location in distribution networks by using asynchronous transient amplitudes at limited nodes publication-title: IEEE Trans. Smart Grid – volume: 10 start-page: 1694 issue: 2 year: 2019 end-page: 1703 ident: Bib0005 article-title: Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks publication-title: IEEE Trans. Smart Grid – start-page: 348 year: 2019 end-page: 353 ident: Bib0030 article-title: Fog computing solution for distributed anomaly detection in smart grids publication-title: Proceedings of the International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob’19) – volume: 68 start-page: 5031 issue: 5 year: 2019 end-page: 5044 ident: Bib0011 article-title: Collaborative cloud and edge computing for latency minimization publication-title: IEEE Trans. Vehic. Technol. – year: 2014 ident: Bib0042 article-title: RPV311, Digital Fault Recorder with Fault Location and PMU – ident: e_1_3_2_38_2 doi: 10.1109/ICC.2004.1312911 – ident: e_1_3_2_10_2 doi: 10.1109/MWC.121.2100041 – ident: e_1_3_2_30_2 doi: 10.1109/ICII.2018.00019 – volume: 6 start-page: 7406 issue: 5 year: 2019 ident: e_1_3_2_14_2 article-title: Enabling a decentralized smart grid using autonomous edge control devices publication-title: IEEE IoT J. – ident: e_1_3_2_43_2 – ident: e_1_3_2_31_2 doi: 10.1109/WiMOB.2019.8923222 – ident: e_1_3_2_7_2 doi: 10.1109/UPEC.2015.7339938 – ident: e_1_3_2_18_2 doi: 10.1109/SURV.2014.052914.00130 – ident: e_1_3_2_41_2 doi: 10.1109/TSG.2020.2994637 – volume: 3 issue: 1 year: 2019 ident: e_1_3_2_33_2 article-title: Fog computing for internet of things (IoT)-aided smart grid architectures publication-title: Big Data Cogn. Comput. – year: 2018 ident: e_1_3_2_5_2 article-title: Big data analytics in smart grids: A review publication-title: Energy Inf. – ident: e_1_3_2_26_2 doi: 10.1109/ICIT.2017.24 – ident: e_1_3_2_27_2 doi: 10.1109/TSG.2018.2890809 – volume: 20 start-page: 95 issue: 1 year: 2010 ident: e_1_3_2_39_2 article-title: Upper and lower bounds for the complexity of the branch and bound method for the knapsack problem publication-title: Discr. Math. Appl. – ident: e_1_3_2_28_2 doi: 10.1109/TIE.2018.2833045 – ident: e_1_3_2_2_2 doi: 10.1109/MPE.2009.934876 – ident: e_1_3_2_6_2 doi: 10.1109/TSG.2017.2776310 – year: 2012 ident: e_1_3_2_20_2 article-title: A survey of communication/networking in smart grids publication-title: Fut. Gener. Comput. Syst. – volume: 521 year: 2016 ident: e_1_3_2_35_2 article-title: Do deep convolutional nets really need to be deep and convolutional? publication-title: Nature – ident: e_1_3_2_36_2 doi: 10.1109/ICC.2017.7996858 – ident: e_1_3_2_15_2 doi: 10.1109/MCOM.2016.7588230 – ident: e_1_3_2_24_2 doi: 10.1109/TSG.2015.2492827 – ident: e_1_3_2_42_2 doi: 10.1109/CCWC.2019.8666493 – start-page: 1 year: 2020 ident: e_1_3_2_29_2 article-title: Edge computing based fault location in distribution networks by using asynchronous transient amplitudes at limited nodes publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 4317 issue: 5 year: 2020 ident: e_1_3_2_8_2 article-title: Application offloading strategy for hierarchical fog environment through swarm optimization publication-title: IEEE IoT J. – ident: e_1_3_2_13_2 doi: 10.1109/JIOT.2018.2875917 – ident: e_1_3_2_22_2 doi: 10.1109/TSG.2018.2828414 – ident: e_1_3_2_21_2 doi: 10.1109/TSG.2017.2697440 – ident: e_1_3_2_16_2 doi: 10.1109/SEST.2019.8849012 – ident: e_1_3_2_17_2 – ident: e_1_3_2_12_2 doi: 10.1109/TVT.2019.2904244 – volume: 3 start-page: 637 issue: 5 year: 2016 ident: e_1_3_2_9_2 article-title: Edge computing: Vision and challenges publication-title: IEEE IoT J. – ident: e_1_3_2_32_2 doi: 10.1109/SmartGridComm47815.2020.9302930 – ident: e_1_3_2_34_2 doi: 10.1109/TPAMI.2018.2886192 – ident: e_1_3_2_37_2 doi: 10.1109/TC.2013.153 – ident: e_1_3_2_25_2 doi: 10.1109/ICECCT.2019.8868990 – year: 2021 ident: e_1_3_2_4_2 article-title: Distributed controller design and stability criterion for microgrids with time-varying delay and rapid switching communication topology publication-title: Sust. Energy Grids Netw. – ident: e_1_3_2_11_2 doi: 10.1007/s11036-020-01724-y – ident: e_1_3_2_3_2 doi: 10.1109/TPWRS.2017.2737465 – ident: e_1_3_2_23_2 doi: 10.1109/SGC.2017.8308852 – ident: e_1_3_2_19_2 doi: 10.1109/JSYST.2021.3110502 – ident: e_1_3_2_40_2 doi: 10.1109/CEEC.2013.6659451 |
SSID | ssj0033430 |
Score | 2.578667 |
Snippet | Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Networks Sensor networks |
SubjectTermsDisplay | Networks -- Sensor networks |
Title | Resource Orchestration of Cloud-Edge–based Smart Grid Fault Detection |
URI | https://dl.acm.org/doi/10.1145/3529509 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdgu8Bhgg3EGCAfEJcqw4ntOD1W3T9NKxy2aeNU2Y4jVeqSKaTStBPfgW-4T7Jnx0k8tgNwcSvHcSr_3Pd-L35_EPqcgdWTqNhEouBgoBj4K2YcGgLcVceUC-3yzM6-pUfn7PiSXw7ljlx0SaN29e2TcSX_gyr0Aa42SvYfkO0nhQ74DvhCCwhD-1cYd-_eR99rV_eq7vnfdFmt8mjfFk733gzU6isgl1cwz-iwXuSjA7laNiBwGueNVYY0dTKd2eIRXSVxd6TwEwzeqh6Vrd94T8VPnDvA8aLfIHumFR8_VjedWnSHTk68XZjFwxuho5FV-O4BzFYCALBgt8xC0clJxDKf39uEfW3BjcfydjDHnfCMAy3chtE_lu_MpsKg9nSSjAcV1jsW-ivP0XoihD22X5_szU5OO91MKXPVZ_rf2oZR22m_-lstS9FXAUsJ6MbZK7Th7QQ8aUF_jZ6ZchO9DLJHbqHDDn78AH5cFXiA_-7Xbwc8dsBjCzx2wOMe-Dfo_GD_bHoU-boYkQQy3kSpDX8XJk-kJqqQUuuUmSxXKqUmThRcGyvFiyTJ01QIquCzIFTzFJiHZrmib9FaWZXmHcLaCCo1CHkuCYvlONNCkzhPjBKECSG20Sasxvy6zXwy92u0jb50qzPXPpW8rWiynLdh7nwYiPuB3Rx_DHn_5BN20Ithv31Aa029Mh-B_TXqk4f0HiPUV6k |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+Orchestration+of+Cloud-Edge%E2%80%93based+Smart+Grid+Fault+Detection&rft.jtitle=ACM+transactions+on+sensor+networks&rft.au=Li%2C+Jie&rft.au=Deng%2C+Yuxing&rft.au=Sun%2C+Wei&rft.au=Li%2C+Weitao&rft.date=2022-08-24&rft.pub=ACM&rft.issn=1550-4859&rft.eissn=1550-4867&rft.volume=18&rft.issue=3&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1145%2F3529509&rft.externalDocID=3529509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4859&client=summon |