Resource Orchestration of Cloud-Edge–based Smart Grid Fault Detection

Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection systems integrating deep learning have been proposed recently to monitor the grid in real time. However, state-of-the-art cloud-based detectio...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on sensor networks Vol. 18; no. 3; pp. 1 - 26
Main Authors Li, Jie, Deng, Yuxing, Sun, Wei, Li, Weitao, Li, Ruidong, Li, Qiyue, Liu, Zhi
Format Journal Article
LanguageEnglish
Published New York, NY ACM 24.08.2022
Subjects
Online AccessGet full text
ISSN1550-4859
1550-4867
DOI10.1145/3529509

Cover

Abstract Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection systems integrating deep learning have been proposed recently to monitor the grid in real time. However, state-of-the-art cloud-based detection may require uploading a large amount of data and suffer from long network delay, while edge-based schemes do not adequately consider the detection requirement and thus cannot provide flexible and optimal performance. To solve these problems, we study a cloud-edge based hybrid smart grid fault detection system. Embedded devices are placed at the edge of the monitored equipment with several lightweight neural networks for fault detection. Considering limited communication resources, relatively low computation capabilities of edge devices, and different monitoring accuracies supported by these neural networks, we design an optimal communication and computational resource allocation method for this cloud-edge based smart grid fault detection system. Our method can maximize the processing throughput of the system and improve resource utilization while satisfying the data transmission and processing latency requirements. Extensive simulations are conducted and the results show the superiority of the proposed scheme over comparison schemes. We have also prototyped this system and verified its feasibility and performance in real-world scenarios.
AbstractList Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection systems integrating deep learning have been proposed recently to monitor the grid in real time. However, state-of-the-art cloud-based detection may require uploading a large amount of data and suffer from long network delay, while edge-based schemes do not adequately consider the detection requirement and thus cannot provide flexible and optimal performance. To solve these problems, we study a cloud-edge based hybrid smart grid fault detection system. Embedded devices are placed at the edge of the monitored equipment with several lightweight neural networks for fault detection. Considering limited communication resources, relatively low computation capabilities of edge devices, and different monitoring accuracies supported by these neural networks, we design an optimal communication and computational resource allocation method for this cloud-edge based smart grid fault detection system. Our method can maximize the processing throughput of the system and improve resource utilization while satisfying the data transmission and processing latency requirements. Extensive simulations are conducted and the results show the superiority of the proposed scheme over comparison schemes. We have also prototyped this system and verified its feasibility and performance in real-world scenarios.
ArticleNumber 46
Author Sun, Wei
Li, Ruidong
Li, Qiyue
Deng, Yuxing
Liu, Zhi
Li, Jie
Li, Weitao
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0001-8483-6240
  surname: Li
  fullname: Li, Jie
  email: lijie@hfut.edu.cn
  organization: School of Computer and Information, Hefei University of Technology, Hefei, Anhui, China
– sequence: 2
  givenname: Yuxing
  surname: Deng
  fullname: Deng, Yuxing
  email: yxdeng@mail.hfut.edu.cn
  organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China
– sequence: 3
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  email: wsun@hfut.edu.cn
  organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China
– sequence: 4
  givenname: Weitao
  surname: Li
  fullname: Li, Weitao
  email: wtli@hfut.edu.cn
  organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China
– sequence: 5
  givenname: Ruidong
  surname: Li
  fullname: Li, Ruidong
  email: lrd@se.kanazawa-u.ac.jp
  organization: Kanazawa University, Japan
– sequence: 6
  givenname: Qiyue
  orcidid: 0000-0002-9399-8759
  surname: Li
  fullname: Li, Qiyue
  email: liqiyue@mail.ustc.edu.cn
  organization: School of Electrical Engineering and Automation, Hefei University of Technology; Engineering Technology Research Center of Industrial Automation, Anhui Province, Hefei, Anhui, China
– sequence: 7
  givenname: Zhi
  surname: Liu
  fullname: Liu, Zhi
  email: liu@ieee.org
  organization: The University of Electro-Communications, Japan
BookMark eNptkL1OwzAUhS1UJNqC2Jm8MQXsOHbqEYU2IFWqxM8c-ecGgtIY2c7Axjvwhn0SUlo6IKZzpfPdq3PPBI061wFC55RcUZrxa8ZTyYk8QmPKOUmymchHh5nLEzQJ4Y0QxjJGxqh8gOB6bwCvvHmFEL2Kjeuwq3HRut4mc_sCm88vrQJY_LhWPuLSNxYvVN9GfAsRzHbhFB3Xqg1wttcpel7Mn4q7ZLkq74ubZaIYJTERhHKRg02VIbpWyhiRwcxqLRjQVA-e1JrXaWqFyHOmB60JM1xISUxmNZuiZHfXeBeCh7oyTfyJPCRv2oqSattCtW9h4C__8O--Gb74-Ie82JHKrA_Qr_kNlLxmow
CitedBy_id crossref_primary_10_1016_j_egyr_2023_09_049
crossref_primary_10_1007_s10723_023_09695_6
crossref_primary_10_1155_2023_9604454
crossref_primary_10_1016_j_seta_2023_103414
crossref_primary_10_1007_s10723_023_09715_5
crossref_primary_10_1007_s10723_023_09717_3
crossref_primary_10_1109_ACCESS_2023_3296254
crossref_primary_10_1007_s10723_023_09710_w
crossref_primary_10_1007_s11082_023_06063_2
crossref_primary_10_3390_en16031403
crossref_primary_10_1016_j_egyr_2024_01_016
crossref_primary_10_3390_en17010083
crossref_primary_10_1145_3652515
crossref_primary_10_1016_j_adhoc_2023_103322
crossref_primary_10_1016_j_suscom_2023_100925
crossref_primary_10_1109_TIM_2024_3366268
crossref_primary_10_1016_j_micpro_2024_105049
crossref_primary_10_1007_s11276_023_03488_1
crossref_primary_10_1016_j_asr_2023_09_057
crossref_primary_10_1016_j_est_2023_106746
crossref_primary_10_1049_rpg2_12854
crossref_primary_10_1109_MCE_2023_3264884
crossref_primary_10_1007_s00500_023_09210_9
crossref_primary_10_1016_j_suscom_2022_100826
crossref_primary_10_1155_2023_9960743
crossref_primary_10_1007_s10723_023_09701_x
crossref_primary_10_3389_fenrg_2023_1212304
crossref_primary_10_1109_ACCESS_2022_3231603
crossref_primary_10_1007_s10723_023_09706_6
crossref_primary_10_1007_s10723_023_09708_4
crossref_primary_10_1109_MCOMSTD_0001_2200019
crossref_primary_10_1155_2022_6002695
crossref_primary_10_1016_j_jksuci_2023_101870
crossref_primary_10_1109_ACCESS_2023_3263264
crossref_primary_10_3389_fenrg_2023_1148323
crossref_primary_10_1007_s10723_023_09712_8
crossref_primary_10_1155_2023_8198865
crossref_primary_10_1007_s11082_023_06062_3
crossref_primary_10_1007_s11082_023_06064_1
crossref_primary_10_1007_s11760_023_02761_2
crossref_primary_10_1049_rpg2_12902
crossref_primary_10_3390_su152416722
crossref_primary_10_1038_s41598_025_91897_x
crossref_primary_10_1016_j_suscom_2023_100945
crossref_primary_10_1016_j_cosrev_2024_100617
crossref_primary_10_1155_2022_9995478
crossref_primary_10_1109_MITP_2022_3217886
crossref_primary_10_1016_j_ijepes_2023_109663
crossref_primary_10_1109_JSYST_2023_3293043
crossref_primary_10_1155_2023_1702918
crossref_primary_10_1016_j_jksuci_2023_101841
crossref_primary_10_1016_j_egyr_2023_06_022
crossref_primary_10_1007_s10723_023_09688_5
crossref_primary_10_4218_etrij_2023_0443
crossref_primary_10_1002_cpe_7995
crossref_primary_10_1007_s10723_023_09702_w
crossref_primary_10_1007_s10723_023_09720_8
crossref_primary_10_1016_j_comcom_2023_02_016
crossref_primary_10_1002_ett_70102
crossref_primary_10_1007_s10723_024_09746_6
crossref_primary_10_1007_s10723_023_09705_7
crossref_primary_10_1007_s10723_023_09707_5
crossref_primary_10_1007_s10723_023_09709_3
crossref_primary_10_3233_JIFS_233418
crossref_primary_10_1109_ACCESS_2023_3263849
crossref_primary_10_1109_TCCN_2024_3417609
crossref_primary_10_1002_ett_4929
crossref_primary_10_1109_ACCESS_2024_3364400
crossref_primary_10_1007_s10723_023_09735_1
crossref_primary_10_1007_s11042_023_16517_0
crossref_primary_10_1109_TIM_2023_3250220
crossref_primary_10_1007_s11276_023_03604_1
Cites_doi 10.1109/JIOT.2018.2875917
10.1109/JSYST.2021.3110502
10.1109/ICC.2004.1312911
10.1109/MWC.121.2100041
10.1109/ICII.2018.00019
10.1109/WiMOB.2019.8923222
10.1109/UPEC.2015.7339938
10.1109/SURV.2014.052914.00130
10.1109/TSG.2020.2994637
10.1109/ICIT.2017.24
10.1109/TSG.2018.2890809
10.1109/TIE.2018.2833045
10.1109/MPE.2009.934876
10.1109/TSG.2017.2776310
10.1109/ICC.2017.7996858
10.1109/MCOM.2016.7588230
10.1109/TSG.2015.2492827
10.1109/CCWC.2019.8666493
10.1109/TSG.2018.2828414
10.1109/TSG.2017.2697440
10.1109/SEST.2019.8849012
10.1109/TVT.2019.2904244
10.1109/SmartGridComm47815.2020.9302930
10.1109/TPAMI.2018.2886192
10.1109/TC.2013.153
10.1109/ICECCT.2019.8868990
10.1007/s11036-020-01724-y
10.1109/TPWRS.2017.2737465
10.1109/SGC.2017.8308852
10.1109/CEEC.2013.6659451
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
DOI 10.1145/3529509
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1550-4867
EndPage 26
ExternalDocumentID 10_1145_3529509
3529509
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: PA2020GDJQ0027
– fundername: National Natural Science Foundation of China
  grantid: 52077049, 51877060
– fundername: Anhui Provincial Natural Science Foundation
  grantid: 2008085UD04
GroupedDBID -DZ
.4S
.DC
23M
4.4
5GY
5VS
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AEGXH
AENEX
AENSD
AFWIH
AFWXC
AIAGR
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
D0L
EBS
EDO
FEDTE
GUFHI
HGAVV
H~9
I07
LHSKQ
P1C
P2P
RNS
ROL
TUS
W7O
ZCA
AAYXX
AEFXT
AEJOY
AKRVB
CITATION
ID FETCH-LOGICAL-a310t-601567ed2ac0bfaacc64e8dbb63e12b5679bb5f22d66773b2d6f03c56990c4db3
ISSN 1550-4859
IngestDate Thu Apr 24 23:07:49 EDT 2025
Thu Jul 03 08:43:15 EDT 2025
Fri Feb 21 04:13:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords lightweight neural network
resource allocation
Smart grid
edge computing
fault detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a310t-601567ed2ac0bfaacc64e8dbb63e12b5679bb5f22d66773b2d6f03c56990c4db3
ORCID 0000-0001-8483-6240
0000-0002-9399-8759
PageCount 26
ParticipantIDs crossref_citationtrail_10_1145_3529509
crossref_primary_10_1145_3529509
acm_primary_3529509
PublicationCentury 2000
PublicationDate 2022-08-24
PublicationDateYYYYMMDD 2022-08-24
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-24
  day: 24
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM transactions on sensor networks
PublicationTitleAbbrev ACM TOSN
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
References (Bib0038) 2010; 20
(Bib0007) 2020; 7
(Bib0032) 2019; 3
(Bib0017) 2014; 16
(Bib0023) 2017; 8
(Bib0016) 2020
(Bib0030) 2019
(Bib0021) 2019; 10
(Bib0001) 2010; 8
(Bib0026) 2019; 10
(Bib0004) 2018
(Bib0027) 2019; 66
(Bib0042) 2014
(Bib0005) 2019; 10
(Bib0003) 2021
(Bib0015) 2019
(Bib0034) 2016; 521
(Bib0018) 2021
(Bib0031) 2020
(Bib0028) 2020
(Bib0002) 2018; 33
(Bib0014) 2016; 54
(Bib0025) 2017
(Bib0035) 2017
(Bib0022) 2017
(Bib0008) 2016; 3
(Bib0013) 2019; 6
(Bib0020) 2018; 9
(Bib0033) 2020; 42
(Bib0037) 2004
(Bib0040) 2020
(Bib0010) 2021
(Bib0036) 2014; 63
(Bib0024) 2019
(Bib0019) 2012
(Bib0039) 2013
(Bib0012) 2019; 6
(Bib0029) 2018
(Bib0009) 2021; 28
(Bib0011) 2019; 68
(Bib0006) 2015
(Bib0041) 2019
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
(e_1_3_2_20_2) 2012
Sun Wei (e_1_3_2_4_2) 2021
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_43_2
Kulkarni S. (e_1_3_2_14_2) 2019; 6
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Peng N. (e_1_3_2_29_2) 2020
Adhikari M. (e_1_3_2_8_2) 2020; 7
Shi Weisong (e_1_3_2_9_2) 2016; 3
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
Hussain Md. (e_1_3_2_33_2) 2019; 3
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
Kolpakov R. M. (e_1_3_2_39_2) 2010; 20
Urban Gregor (e_1_3_2_35_2) 2016; 521
Zhang Yang (e_1_3_2_5_2) 2018
References_xml – start-page: 1
  issue: 4
  year: 2021
  end-page: 14
  ident: Bib0010
  article-title: An optimal uplink scheduling in heterogeneous PLC and LTE communication for delay-aware smart grid applications
  publication-title: Mobile Netw. Appl.
– year: 2020
  ident: Bib0031
  article-title: Communication and computation resource allocation and offloading for edge intelligence enabled fault detection system in smart grid
  publication-title: Proceedings of the IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm’20)
– volume: 8
  start-page: 18
  issue: 1
  year: 2010
  end-page: 28
  ident: Bib0001
  article-title: The path of the smart grid
  publication-title: IEEE Power Energy Mag.
– year: 2021
  ident: Bib0003
  article-title: Distributed controller design and stability criterion for microgrids with time-varying delay and rapid switching communication topology
  publication-title: Sust. Energy Grids Netw.
– volume: 28
  start-page: 36
  issue: 5
  year: 2021
  end-page: 42
  ident: Bib0009
  article-title: Robust edge computing in uav systems via scalable computing and cooperative computing
  publication-title: IEEE Wireless Commun.
– volume: 6
  start-page: 7406
  issue: 5
  year: 2019
  end-page: 7419
  ident: Bib0013
  article-title: Enabling a decentralized smart grid using autonomous edge control devices
  publication-title: IEEE IoT J.
– start-page: 99
  year: 2018
  end-page: 108
  ident: Bib0029
  article-title: An edge computing framework for real-time monitoring in smart grid
  publication-title: Proceedings of the IEEE International Conference on Industrial Internet (ICII’18)
– start-page: 1
  year: 2017
  end-page: 6
  ident: Bib0022
  article-title: Detection of anomalies in smart meter data: A density-based approach
  publication-title: Proceedings of the Smart Grid Conference (SGC’17)
– start-page: 178
  year: 2017
  end-page: 183
  ident: Bib0025
  article-title: Fault detection and classification of a transmission line using discrete wavelet transform artificial neural network
  publication-title: Proceedings of the International Conference on Information Technology (ICIT’17)
– volume: 63
  start-page: 59
  issue: 1
  year: 2014
  end-page: 73
  ident: Bib0036
  article-title: Price competition in an oligopoly market with multiple IaaS cloud providers
  publication-title: IEEE Trans. Comput.
– start-page: 0695
  year: 2019
  end-page: 0700
  ident: Bib0041
  article-title: Statistical analysis of packet delay time and variation on the internet
  publication-title: Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC’19)
– volume: 521
  year: 2016
  ident: Bib0034
  article-title: Do deep convolutional nets really need to be deep and convolutional?
  publication-title: Nature
– volume: 42
  start-page: 568
  issue: 3
  year: 2020
  end-page: 579
  ident: Bib0033
  article-title: Deep neural network compression by in-parallel pruning-quantization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: Bib0004
  article-title: Big data analytics in smart grids: A review
  publication-title: Energy Inf.
– volume: 10
  start-page: 3465
  issue: 3
  year: 2019
  end-page: 3473
  ident: Bib0021
  article-title: Application of smart meters in high impedance fault detection on distribution systems
  publication-title: IEEE Trans. Smart Grid
– year: 2013
  ident: Bib0039
  article-title: Constrained optimization applying decomposed unlimited point method based on KKT condition
  publication-title: Proceedings of the 5th Computer Science and Electronic Engineering Conference (CEEC’13)
– volume: 6
  start-page: 4283
  issue: 3
  year: 2019
  end-page: 4294
  ident: Bib0012
  article-title: Joint resource allocation for latency-sensitive services over mobile edge computing networks with caching
  publication-title: IEEE IoT J.
  doi: 10.1109/JIOT.2018.2875917
– volume: 16
  start-page: 1689
  issue: 3
  year: 2014
  end-page: 1708
  ident: Bib0017
  article-title: Communication infrastructure design in cyber physical systems with applications in smart grids: A hybrid system framework
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1
  year: 2017
  end-page: 7
  ident: Bib0035
  article-title: Tasks scheduling and resource allocation in heterogeneous cloud for delay-bounded mobile edge computing
  publication-title: Proceedings of the IEEE International Conference on Communications (ICC’17)
– year: 2004
  ident: Bib0037
  article-title: Psychometric analysis of the effect of end-to-end delay on user-level QoS in live audio-video transmission
  publication-title: Proceedings of the IEEE International Conference on Communications
– year: 2012
  ident: Bib0019
  article-title: A survey of communication/networking in smart grids
  publication-title: Fut. Gener. Comput. Syst.
– start-page: 1
  year: 2019
  end-page: 5
  ident: Bib0024
  article-title: Detection, classification and zone location of fault in transmission line using artificial neural network
  publication-title: Proceedings of the IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT’19)
– start-page: 1
  year: 2015
  end-page: 5
  ident: Bib0006
  article-title: Cloud-based smart grid monitoring and controlling system
  publication-title: Proceedings of the 50th International Universities Power Engineering Conference (UPEC’15)
– start-page: 1
  year: 2021
  end-page: 11
  ident: Bib0018
  article-title: Optimal resource allocation of 5G machine-type communications for situation awareness in active distribution networks
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2021.3110502
– volume: 54
  start-page: 60
  issue: 10
  year: 2016
  end-page: 66
  ident: Bib0014
  article-title: Vehicular delay-tolerant networks for smart grid data management using mobile edge computing
  publication-title: IEEE Commun. Mag.
– volume: 3
  start-page: 637
  issue: 5
  year: 2016
  end-page: 646
  ident: Bib0008
  article-title: Edge computing: Vision and challenges
  publication-title: IEEE IoT J.
– year: 2020
  ident: Bib0016
  article-title: Edge intelligence: Architectures, challenges, and applications
– volume: 3
  issue: 1
  year: 2019
  ident: Bib0032
  article-title: Fog computing for internet of things (IoT)-aided smart grid architectures
  publication-title: Big Data Cogn. Comput.
– volume: 7
  start-page: 4317
  issue: 5
  year: 2020
  end-page: 4328
  ident: Bib0007
  article-title: Application offloading strategy for hierarchical fog environment through swarm optimization
  publication-title: IEEE IoT J.
– volume: 9
  start-page: 5820
  issue: 6
  year: 2018
  end-page: 5830
  ident: Bib0020
  article-title: A hierarchical framework for smart grid anomaly detection using large-scale smart meter data
  publication-title: IEEE Trans. Smart Grid
– volume: 8
  start-page: 1580
  issue: 4
  year: 2017
  end-page: 1590
  ident: Bib0023
  article-title: Short-term state forecasting-aided method for detection of smart grid general false data injection attacks
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2019
  end-page: 5
  ident: Bib0015
  article-title: Embedded edge computing for real-time smart meter data analytics
  publication-title: Proceedings of the International Conference on Smart Energy Systems and Technologies (SEST’19)
– volume: 20
  start-page: 95
  issue: 1
  year: 2010
  end-page: 112
  ident: Bib0038
  article-title: Upper and lower bounds for the complexity of the branch and bound method for the knapsack problem
  publication-title: Discr. Math. Appl.
– year: 2020
  ident: Bib0040
  article-title: Incipient fault identification in power distribution systems via human-level concept learning
  publication-title: IEEE Trans. Smart Grid
– volume: 33
  start-page: 1184
  issue: 2
  year: 2018
  end-page: 1194
  ident: Bib0002
  article-title: A novel method to monitor and predict voltage collapse: The critical transitions approach
  publication-title: IEEE Trans. Power Syst.
– volume: 10
  start-page: 5724
  issue: 5
  year: 2019
  end-page: 5734
  ident: Bib0026
  article-title: Machine learning-based anomaly detection for load forecasting under cyberattacks
  publication-title: IEEE Trans. Smart Grid
– volume: 66
  start-page: 8760
  issue: 11
  year: 2019
  end-page: 8771
  ident: Bib0027
  article-title: Real-time fault detection and identification for mmc using 1-D convolutional neural networks
  publication-title: IEEE Trans. Industr. Electr.
– start-page: 1
  year: 2020
  end-page: 1
  ident: Bib0028
  article-title: Edge computing based fault location in distribution networks by using asynchronous transient amplitudes at limited nodes
  publication-title: IEEE Trans. Smart Grid
– volume: 10
  start-page: 1694
  issue: 2
  year: 2019
  end-page: 1703
  ident: Bib0005
  article-title: Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks
  publication-title: IEEE Trans. Smart Grid
– start-page: 348
  year: 2019
  end-page: 353
  ident: Bib0030
  article-title: Fog computing solution for distributed anomaly detection in smart grids
  publication-title: Proceedings of the International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob’19)
– volume: 68
  start-page: 5031
  issue: 5
  year: 2019
  end-page: 5044
  ident: Bib0011
  article-title: Collaborative cloud and edge computing for latency minimization
  publication-title: IEEE Trans. Vehic. Technol.
– year: 2014
  ident: Bib0042
  article-title: RPV311, Digital Fault Recorder with Fault Location and PMU
– ident: e_1_3_2_38_2
  doi: 10.1109/ICC.2004.1312911
– ident: e_1_3_2_10_2
  doi: 10.1109/MWC.121.2100041
– ident: e_1_3_2_30_2
  doi: 10.1109/ICII.2018.00019
– volume: 6
  start-page: 7406
  issue: 5
  year: 2019
  ident: e_1_3_2_14_2
  article-title: Enabling a decentralized smart grid using autonomous edge control devices
  publication-title: IEEE IoT J.
– ident: e_1_3_2_43_2
– ident: e_1_3_2_31_2
  doi: 10.1109/WiMOB.2019.8923222
– ident: e_1_3_2_7_2
  doi: 10.1109/UPEC.2015.7339938
– ident: e_1_3_2_18_2
  doi: 10.1109/SURV.2014.052914.00130
– ident: e_1_3_2_41_2
  doi: 10.1109/TSG.2020.2994637
– volume: 3
  issue: 1
  year: 2019
  ident: e_1_3_2_33_2
  article-title: Fog computing for internet of things (IoT)-aided smart grid architectures
  publication-title: Big Data Cogn. Comput.
– year: 2018
  ident: e_1_3_2_5_2
  article-title: Big data analytics in smart grids: A review
  publication-title: Energy Inf.
– ident: e_1_3_2_26_2
  doi: 10.1109/ICIT.2017.24
– ident: e_1_3_2_27_2
  doi: 10.1109/TSG.2018.2890809
– volume: 20
  start-page: 95
  issue: 1
  year: 2010
  ident: e_1_3_2_39_2
  article-title: Upper and lower bounds for the complexity of the branch and bound method for the knapsack problem
  publication-title: Discr. Math. Appl.
– ident: e_1_3_2_28_2
  doi: 10.1109/TIE.2018.2833045
– ident: e_1_3_2_2_2
  doi: 10.1109/MPE.2009.934876
– ident: e_1_3_2_6_2
  doi: 10.1109/TSG.2017.2776310
– year: 2012
  ident: e_1_3_2_20_2
  article-title: A survey of communication/networking in smart grids
  publication-title: Fut. Gener. Comput. Syst.
– volume: 521
  year: 2016
  ident: e_1_3_2_35_2
  article-title: Do deep convolutional nets really need to be deep and convolutional?
  publication-title: Nature
– ident: e_1_3_2_36_2
  doi: 10.1109/ICC.2017.7996858
– ident: e_1_3_2_15_2
  doi: 10.1109/MCOM.2016.7588230
– ident: e_1_3_2_24_2
  doi: 10.1109/TSG.2015.2492827
– ident: e_1_3_2_42_2
  doi: 10.1109/CCWC.2019.8666493
– start-page: 1
  year: 2020
  ident: e_1_3_2_29_2
  article-title: Edge computing based fault location in distribution networks by using asynchronous transient amplitudes at limited nodes
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 4317
  issue: 5
  year: 2020
  ident: e_1_3_2_8_2
  article-title: Application offloading strategy for hierarchical fog environment through swarm optimization
  publication-title: IEEE IoT J.
– ident: e_1_3_2_13_2
  doi: 10.1109/JIOT.2018.2875917
– ident: e_1_3_2_22_2
  doi: 10.1109/TSG.2018.2828414
– ident: e_1_3_2_21_2
  doi: 10.1109/TSG.2017.2697440
– ident: e_1_3_2_16_2
  doi: 10.1109/SEST.2019.8849012
– ident: e_1_3_2_17_2
– ident: e_1_3_2_12_2
  doi: 10.1109/TVT.2019.2904244
– volume: 3
  start-page: 637
  issue: 5
  year: 2016
  ident: e_1_3_2_9_2
  article-title: Edge computing: Vision and challenges
  publication-title: IEEE IoT J.
– ident: e_1_3_2_32_2
  doi: 10.1109/SmartGridComm47815.2020.9302930
– ident: e_1_3_2_34_2
  doi: 10.1109/TPAMI.2018.2886192
– ident: e_1_3_2_37_2
  doi: 10.1109/TC.2013.153
– ident: e_1_3_2_25_2
  doi: 10.1109/ICECCT.2019.8868990
– year: 2021
  ident: e_1_3_2_4_2
  article-title: Distributed controller design and stability criterion for microgrids with time-varying delay and rapid switching communication topology
  publication-title: Sust. Energy Grids Netw.
– ident: e_1_3_2_11_2
  doi: 10.1007/s11036-020-01724-y
– ident: e_1_3_2_3_2
  doi: 10.1109/TPWRS.2017.2737465
– ident: e_1_3_2_23_2
  doi: 10.1109/SGC.2017.8308852
– ident: e_1_3_2_19_2
  doi: 10.1109/JSYST.2021.3110502
– ident: e_1_3_2_40_2
  doi: 10.1109/CEEC.2013.6659451
SSID ssj0033430
Score 2.578667
Snippet Real-time smart grid monitoring is critical to enhancing resiliency and operational efficiency of power equipment. Cloud-based and edge-based fault detection...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Networks
Sensor networks
SubjectTermsDisplay Networks -- Sensor networks
Title Resource Orchestration of Cloud-Edge–based Smart Grid Fault Detection
URI https://dl.acm.org/doi/10.1145/3529509
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdgu8Bhgg3EGCAfEJcqw4ntOD1W3T9NKxy2aeNU2Y4jVeqSKaTStBPfgW-4T7Jnx0k8tgNwcSvHcSr_3Pd-L35_EPqcgdWTqNhEouBgoBj4K2YcGgLcVceUC-3yzM6-pUfn7PiSXw7ljlx0SaN29e2TcSX_gyr0Aa42SvYfkO0nhQ74DvhCCwhD-1cYd-_eR99rV_eq7vnfdFmt8mjfFk733gzU6isgl1cwz-iwXuSjA7laNiBwGueNVYY0dTKd2eIRXSVxd6TwEwzeqh6Vrd94T8VPnDvA8aLfIHumFR8_VjedWnSHTk68XZjFwxuho5FV-O4BzFYCALBgt8xC0clJxDKf39uEfW3BjcfydjDHnfCMAy3chtE_lu_MpsKg9nSSjAcV1jsW-ivP0XoihD22X5_szU5OO91MKXPVZ_rf2oZR22m_-lstS9FXAUsJ6MbZK7Th7QQ8aUF_jZ6ZchO9DLJHbqHDDn78AH5cFXiA_-7Xbwc8dsBjCzx2wOMe-Dfo_GD_bHoU-boYkQQy3kSpDX8XJk-kJqqQUuuUmSxXKqUmThRcGyvFiyTJ01QIquCzIFTzFJiHZrmib9FaWZXmHcLaCCo1CHkuCYvlONNCkzhPjBKECSG20Sasxvy6zXwy92u0jb50qzPXPpW8rWiynLdh7nwYiPuB3Rx_DHn_5BN20Ithv31Aa029Mh-B_TXqk4f0HiPUV6k
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+Orchestration+of+Cloud-Edge%E2%80%93based+Smart+Grid+Fault+Detection&rft.jtitle=ACM+transactions+on+sensor+networks&rft.au=Li%2C+Jie&rft.au=Deng%2C+Yuxing&rft.au=Sun%2C+Wei&rft.au=Li%2C+Weitao&rft.date=2022-08-24&rft.pub=ACM&rft.issn=1550-4859&rft.eissn=1550-4867&rft.volume=18&rft.issue=3&rft.spage=1&rft.epage=26&rft_id=info:doi/10.1145%2F3529509&rft.externalDocID=3529509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4859&client=summon