Toward Dendrite-Free Metallic Lithium Anodes: From Structural Design to Optimal Electrochemical Diffusion Kinetics

Lithium metal anodes are ideal for realizing high-energy-density batteries owing to their advantages, namely high capacity and low reduction potentials. However, the utilization of lithium anodes is restricted by the detrimental lithium dendrite formation, repeated formation and fracturing of the so...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 11; pp. 17729 - 17760
Main Authors Wang, Jian, Li, Linge, Hu, Huimin, Hu, Hongfei, Guan, Qinghua, Huang, Min, Jia, Lujie, Adenusi, Henry, Tian, Kun V., Zhang, Jing, Passerini, Stefano, Lin, Hongzhen
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium metal anodes are ideal for realizing high-energy-density batteries owing to their advantages, namely high capacity and low reduction potentials. However, the utilization of lithium anodes is restricted by the detrimental lithium dendrite formation, repeated formation and fracturing of the solid electrolyte interphase (SEI), and large volume expansion, resulting in severe “dead lithium” and subsequent short circuiting. Currently, the researches are principally focused on inhibition of dendrite formation toward extending and maintaining battery lifespans. Herein, we summarize the strategies employed in interfacial engineering and current-collector host designs as well as the emerging electrochemical catalytic methods for evolving-accelerating-ameliorating lithium ion/atom diffusion processes. First, strategies based on the fabrication of robust SEIs are reviewed from the aspects of compositional constituents including inorganic, organic, and hybrid SEI layers derived from electrolyte additives or artificial pretreatments. Second, the summary and discussion are presented for metallic and carbon-based three-dimensional current collectors serving as lithium hosts, including their functionality in decreasing local deposition current density and the effect of introducing lithiophilic sites. Third, we assess the recent advances in exploring alloy compounds and atomic metal catalysts to accelerate the lateral lithium ion/atom diffusion kinetics to average the spatial lithium distribution for smooth plating. Finally, the opportunities and challenges of metallic lithium anodes are presented, providing insights into the modulation of diffusion kinetics toward achieving dendrite-free lithium metal batteries.
AbstractList Lithium metal anodes are ideal for realizing high-energy-density batteries owing to their advantages, namely high capacity and low reduction potentials. However, the utilization of lithium anodes is restricted by the detrimental lithium dendrite formation, repeated formation and fracturing of the solid electrolyte interphase (SEI), and large volume expansion, resulting in severe “dead lithium” and subsequent short circuiting. Currently, the researches are principally focused on inhibition of dendrite formation toward extending and maintaining battery lifespans. Herein, we summarize the strategies employed in interfacial engineering and current-collector host designs as well as the emerging electrochemical catalytic methods for evolving-accelerating-ameliorating lithium ion/atom diffusion processes. First, strategies based on the fabrication of robust SEIs are reviewed from the aspects of compositional constituents including inorganic, organic, and hybrid SEI layers derived from electrolyte additives or artificial pretreatments. Second, the summary and discussion are presented for metallic and carbon-based three-dimensional current collectors serving as lithium hosts, including their functionality in decreasing local deposition current density and the effect of introducing lithiophilic sites. Third, we assess the recent advances in exploring alloy compounds and atomic metal catalysts to accelerate the lateral lithium ion/atom diffusion kinetics to average the spatial lithium distribution for smooth plating. Finally, the opportunities and challenges of metallic lithium anodes are presented, providing insights into the modulation of diffusion kinetics toward achieving dendrite-free lithium metal batteries.
Author Wang, Jian
Zhang, Jing
Adenusi, Henry
Passerini, Stefano
Jia, Lujie
Tian, Kun V.
Li, Linge
Lin, Hongzhen
Hu, Hongfei
Huang, Min
Guan, Qinghua
Hu, Huimin
AuthorAffiliation Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
Department of Chemistry and Biological Chemistry
McMaster University
School of Materials Science and Engineering
Helmholtz Institute Ulm (HIU)
Hong Kong Quantum AI Lab (HKQAI)
Department of Chemistry and Chemical Sciences of Pharmacy
The University of British Columbia
Faculty of Land and Food Systems
AuthorAffiliation_xml – name: Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
– name:
– name: Hong Kong Quantum AI Lab (HKQAI)
– name: McMaster University
– name: The University of British Columbia
– name: School of Materials Science and Engineering
– name: Department of Chemistry and Chemical Sciences of Pharmacy
– name: Faculty of Land and Food Systems
– name: Helmholtz Institute Ulm (HIU)
– name: Department of Chemistry and Biological Chemistry
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-7945-0826
  surname: Wang
  fullname: Wang, Jian
  email: jian.wang@kit.edu, wangjian2014@sinano.ac.cn
  organization: Helmholtz Institute Ulm (HIU)
– sequence: 2
  givenname: Linge
  surname: Li
  fullname: Li, Linge
  organization: i-Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
– sequence: 3
  givenname: Huimin
  surname: Hu
  fullname: Hu, Huimin
  organization: i-Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
– sequence: 4
  givenname: Hongfei
  surname: Hu
  fullname: Hu, Hongfei
  organization: i-Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
– sequence: 5
  givenname: Qinghua
  surname: Guan
  fullname: Guan, Qinghua
  organization: i-Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
– sequence: 6
  givenname: Min
  surname: Huang
  fullname: Huang, Min
  organization: i-Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
– sequence: 7
  givenname: Lujie
  surname: Jia
  fullname: Jia, Lujie
  organization: i-Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
– sequence: 8
  givenname: Henry
  surname: Adenusi
  fullname: Adenusi, Henry
  organization: Hong Kong Quantum AI Lab (HKQAI)
– sequence: 9
  givenname: Kun V.
  orcidid: 0000-0003-0102-0620
  surname: Tian
  fullname: Tian, Kun V.
  organization: The University of British Columbia
– sequence: 10
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  email: zhangjing2020@xaut.edu.cn
  organization: School of Materials Science and Engineering
– sequence: 11
  givenname: Stefano
  orcidid: 0000-0002-6606-5304
  surname: Passerini
  fullname: Passerini, Stefano
  email: stefano.passerini@kit.edu
  organization: Helmholtz Institute Ulm (HIU)
– sequence: 12
  givenname: Hongzhen
  surname: Lin
  fullname: Lin, Hongzhen
  email: hzlin2010@sinano.ac.cn
  organization: i-Lab and CAS Key Laboratory of Nanophotonic Materials and Devices
BookMark eNp1kM9LwzAUx4MouE3PXnMUpFt-tE3rTeam4mQHJ3gLafrqIm0ykxTxv7djw5un93jfz_fB9ztGp9ZZQOiKkikljM6UDlZZN2WaFGlBTtCIljxPSJG_n_7tGT1H4xA-CclEIfIR8hv3rXyN78HW3kRIlh4Av0BUbWs0Xpm4NX2H76yrIdzipXcdfo2-17H3qh1swXxYHB1e76LphsuiBR2901vojN4Tpmn6YJzFz8ZCNDpcoLNGtQEuj3OC3paLzfwxWa0fnuZ3q0RxSmKS1TQvQWUNpKQqBPCUEKKEYhnTTGjViFxUdaU5aFbzsiIk1TWrq6zKWVmA4hN0ffi78-6rhxBlZ4KGtlUWXB8kE5xwWooiHdDZAdXeheChkTs_pPE_khK5b1ce25XHdgfHzcExCPLT9d4OUf6lfwHnj4F1
CitedBy_id crossref_primary_10_1007_s12274_023_5478_4
crossref_primary_10_1039_D3QM01115A
crossref_primary_10_1016_j_carbon_2024_118999
crossref_primary_10_1016_j_electacta_2024_143880
crossref_primary_10_1016_j_cej_2023_147847
crossref_primary_10_1002_adma_202402792
crossref_primary_10_1016_j_cej_2023_144698
crossref_primary_10_1002_smll_202311393
crossref_primary_10_1021_acsnano_3c09849
crossref_primary_10_1002_adma_202302828
crossref_primary_10_1021_acsnano_3c04684
crossref_primary_10_1039_D3TA07229K
crossref_primary_10_1002_aenm_202304010
crossref_primary_10_1016_j_jechem_2023_06_008
crossref_primary_10_1002_adfm_202315201
crossref_primary_10_1002_adfm_202310593
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1002_anie_202219318
crossref_primary_10_1002_batt_202300246
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1016_j_ensm_2024_103289
crossref_primary_10_1039_D3EE04028C
crossref_primary_10_1002_aenm_202203912
crossref_primary_10_1002_anie_202311693
crossref_primary_10_1002_smll_202401567
crossref_primary_10_1021_acsami_3c00175
crossref_primary_10_1002_adfm_202305674
crossref_primary_10_1016_j_jpowsour_2023_233459
crossref_primary_10_1007_s12598_023_02537_0
crossref_primary_10_1016_j_jpowsour_2024_234960
crossref_primary_10_1002_ange_202307459
crossref_primary_10_1002_asia_202300453
crossref_primary_10_1039_D3MH00403A
crossref_primary_10_1002_idm2_12078
crossref_primary_10_1021_acsami_3c18071
crossref_primary_10_1021_acs_nanolett_4c00154
crossref_primary_10_1016_j_nxmate_2024_100188
crossref_primary_10_1021_acsaem_3c01657
crossref_primary_10_1039_D4QM00159A
crossref_primary_10_1002_ange_202311693
crossref_primary_10_1021_acs_inorgchem_3c02631
crossref_primary_10_1021_acsnano_2c11663
crossref_primary_10_1016_j_esci_2024_100281
crossref_primary_10_1002_aenm_202302174
crossref_primary_10_1007_s12274_024_6682_6
crossref_primary_10_1016_j_electacta_2024_144080
crossref_primary_10_1039_D4QI01111B
crossref_primary_10_1002_advs_202401629
crossref_primary_10_1002_smll_202308352
crossref_primary_10_1016_j_ensm_2024_103463
crossref_primary_10_1002_anie_202307459
crossref_primary_10_1016_j_cej_2023_142004
crossref_primary_10_1016_j_est_2024_110805
crossref_primary_10_1016_j_cej_2023_141875
crossref_primary_10_1016_S1872_5805_23_60745_0
crossref_primary_10_1039_D4QI00632A
crossref_primary_10_1002_celc_202400353
crossref_primary_10_1002_ange_202219318
crossref_primary_10_1007_s40843_023_2575_3
crossref_primary_10_1002_adfm_202302624
crossref_primary_10_1016_j_apcatb_2024_124012
crossref_primary_10_1002_aenm_202300129
crossref_primary_10_1016_j_cej_2023_145593
Cites_doi 10.1039/C4CS00266K
10.1021/acs.nanolett.2c02611
10.1002/anie.201805456
10.1002/aenm.201804019
10.1021/acsami.8b00989
10.1038/s41467-021-27841-0
10.1038/ncomms11203
10.1021/acsnano.1c05585
10.1126/sciadv.aat5168
10.1021/acsanm.7b00057
10.1021/acs.nanolett.1c00534
10.1016/j.nanoen.2017.08.020
10.1002/cssc.202000702
10.1039/C7TA03116E
10.1002/aelm.201500246
10.1016/j.ensm.2021.10.034
10.1039/b914650d
10.1016/j.ensm.2018.09.006
10.1021/acs.nanolett.8b04906
10.1021/jacs.6b13314
10.1002/anie.201811955
10.1016/j.nanoen.2016.12.020
10.1038/s41560-022-01001-0
10.1002/adma.201804165
10.1002/aenm.201703152
10.1002/adfm.201907717
10.1038/nenergy.2017.119
10.1002/adma.201905658
10.1002/adfm.202007434
10.1021/acs.nanolett.9b04719
10.1002/aenm.202002647
10.1016/j.ensm.2020.01.020
10.1002/anie.202000375
10.1038/s41467-022-29118-6
10.1016/j.ensm.2017.08.001
10.1016/j.jpowsour.2019.03.032
10.1039/D1EE00508A
10.1002/smll.202102454
10.1038/ncomms9058
10.1016/j.joule.2018.03.008
10.1016/j.nanoen.2020.104763
10.1038/s41560-018-0096-1
10.1002/adfm.202001607
10.1039/C9TA06401J
10.1016/j.jechem.2021.05.014
10.1016/j.ensm.2019.06.019
10.1021/jacs.5b10333
10.1002/aenm.201500481
10.1016/j.cej.2021.132352
10.1021/acsenergylett.6b00456
10.1039/D1TA09575G
10.1038/s41565-020-00797-w
10.1002/adma.201702714
10.1002/adma.201904991
10.1021/acsami.9b21509
10.1038/nchem.2085
10.1016/j.ensm.2020.03.023
10.1002/adma.201706216
10.1039/C6EE01295G
10.1002/adma.201801213
10.1002/aenm.201600811
10.1039/D0TA04038J
10.1002/adma.202007428
10.1038/nenergy.2016.10
10.1021/acsami.8b04573
10.1002/advs.201600168
10.1002/aenm.202103480
10.1002/adfm.202110468
10.1016/j.nanoen.2020.104914
10.1039/D0TA02410D
10.1039/C8NR01995A
10.1002/adma.201902724
10.1016/j.cej.2019.02.171
10.1016/j.cej.2021.132698
10.1002/eem2.12152
10.1002/adfm.202106740
10.1016/j.joule.2017.06.002
10.1002/adma.201903955
10.1016/j.matlet.2022.132636
10.1021/acsnano.1c04864
10.1002/adfm.201700348
10.1021/acsami.7b13604
10.1016/j.ensm.2019.03.025
10.1038/s41565-019-0427-9
10.1016/j.nanoen.2021.106836
10.1021/acs.nanolett.0c02167
10.1002/eem2.12250
10.1038/s41565-018-0061-y
10.1021/acs.energyfuels.1c02008
10.1002/aenm.202003004
10.1016/j.cej.2022.137291
10.1021/acsami.9b14819
10.1039/C6EE02888H
10.1002/aenm.202000093
10.1002/aenm.201701482
10.1039/D0TA10541D
10.1002/aesr.202100187
10.1002/advs.201500213
10.1021/acsnano.0c08627
10.1039/D0NR03833D
10.1039/C9TA00466A
10.1016/j.ensm.2019.02.006
10.1002/advs.201901120
10.1016/j.electacta.2017.08.057
10.1002/adma.201606187
10.1002/anie.201704324
10.1016/j.joule.2020.06.011
10.1021/acsami.9b10613
10.1016/j.mtener.2020.100465
10.1002/adma.201400578
10.1016/j.joule.2018.02.001
10.1038/nature25984
10.1002/adfm.202010602
10.1002/adma.202003920
10.1016/j.jechem.2020.09.030
10.1016/j.nanoen.2022.107131
10.1002/adfm.202002471
10.1021/acsami.6b11188
10.1002/adma.201601357
10.1021/acsenergylett.1c02719
10.1002/aenm.202102454
10.1002/adma.202105178
10.1002/advs.202202244
10.1021/acsami.9b21993
10.1002/anie.202110441
10.1002/aenm.202002271
10.1002/advs.202002212
10.1039/D0TA01883J
10.1021/acsenergylett.8b02483
10.1016/j.nanoen.2020.104451
10.1002/anie.202201406
10.1002/celc.201901360
10.1002/anie.201707754
10.1002/anie.201911800
10.1002/adfm.202203336
10.1002/adfm.202110110
10.1016/j.joule.2017.11.004
10.1002/advs.201600445
10.1002/adfm.201606422
10.1038/s41578-021-00345-5
10.1002/adma.201700007
10.1016/j.ensm.2018.09.022
10.1016/j.ensm.2018.08.010
10.1021/acs.nanolett.6b01581
10.1093/nsr/nwy148
10.1002/aenm.201800650
10.1002/adfm.202009694
10.1021/acsnano.9b08141
10.1016/j.matt.2019.05.016
10.1021/jacs.8b12973
10.1002/adma.201605531
10.1002/aenm.202103368
10.1016/j.ensm.2022.08.004
10.1002/adfm.201602353
10.1039/D1EE01341F
10.1038/s41560-018-0097-0
10.1038/nenergy.2017.83
10.1002/aenm.201700260
10.1002/adma.201700542
10.1002/adma.201707629
10.1016/j.ensm.2021.01.012
10.1039/D0EE02769C
10.1039/D1EE00767J
10.1002/aenm.201800635
10.1021/acssuschemeng.2c00316
10.1038/ncomms8436
10.1016/j.jechem.2022.01.008
10.1016/j.cej.2021.128661
10.1021/nl503125u
10.1038/s41560-021-00783-z
10.1002/cey2.94
10.1021/acsnano.1c04642
10.1002/adfm.202106676
10.1021/acsami.9b10551
10.1021/acsenergylett.1c00551
10.1002/adfm.202107249
10.1021/acs.nanolett.9b03548
10.1002/adma.201906427
10.1021/acsenergylett.1c00943
10.1039/D0TA07464K
10.1002/adfm.201705838
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.2c08480
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 17760
ExternalDocumentID 10_1021_acsnano_2c08480
c557775218
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABJNI
ACBEA
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a310t-5d169ea5fe40b87e34000a7a252c27caf767bdbc3ec2d39b004cd2db5b6298ea3
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Fri Aug 16 23:48:36 EDT 2024
Fri Aug 23 02:51:59 EDT 2024
Thu Nov 24 04:02:03 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords lithium dendrite
artificial SEI layer
single atomic catalyst
lithium metal battery
electrochemical diffusion modulation
lithiophilic site
kinetics enhancement
lithium ion/atom diffusion
lateral plating/deposition
3D current collector
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a310t-5d169ea5fe40b87e34000a7a252c27caf767bdbc3ec2d39b004cd2db5b6298ea3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-6606-5304
0000-0002-7945-0826
0000-0003-0102-0620
PQID 2730319784
PQPubID 23479
PageCount 32
ParticipantIDs proquest_miscellaneous_2730319784
crossref_primary_10_1021_acsnano_2c08480
acs_journals_10_1021_acsnano_2c08480
PublicationCentury 2000
PublicationDate 20221122
2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 20221122
  day: 22
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref181/cit181
ref111/cit111
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref178/cit178
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref176/cit176
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref76/cit76
ref86/cit86
ref170/cit170
ref32/cit32
ref39/cit39
ref168/cit168
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref167/cit167
ref163/cit163
ref66/cit66
ref179/cit179
ref22/cit22
ref121/cit121
ref175/cit175
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref159/cit159
ref92/cit92
ref155/cit155
ref156/cit156
ref157/cit157
ref158/cit158
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref160/cit160
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref166/cit166
ref149/cit149
ref162/cit162
ref46/cit46
ref164/cit164
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref172/cit172
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref169/cit169
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref161/cit161
ref142/cit142
ref73/cit73
ref69/cit69
ref165/cit165
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref177/cit177
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1039/C4CS00266K
– ident: ref83/cit83
  doi: 10.1021/acs.nanolett.2c02611
– ident: ref162/cit162
  doi: 10.1002/anie.201805456
– ident: ref172/cit172
  doi: 10.1002/aenm.201804019
– ident: ref163/cit163
  doi: 10.1021/acsami.8b00989
– ident: ref91/cit91
  doi: 10.1038/s41467-021-27841-0
– ident: ref44/cit44
  doi: 10.1038/ncomms11203
– ident: ref107/cit107
  doi: 10.1021/acsnano.1c05585
– ident: ref67/cit67
  doi: 10.1126/sciadv.aat5168
– ident: ref123/cit123
  doi: 10.1021/acsanm.7b00057
– ident: ref76/cit76
  doi: 10.1021/acs.nanolett.1c00534
– ident: ref105/cit105
  doi: 10.1016/j.nanoen.2017.08.020
– ident: ref85/cit85
  doi: 10.1002/cssc.202000702
– ident: ref102/cit102
  doi: 10.1039/C7TA03116E
– ident: ref71/cit71
  doi: 10.1002/aelm.201500246
– ident: ref52/cit52
  doi: 10.1016/j.ensm.2021.10.034
– ident: ref159/cit159
  doi: 10.1039/b914650d
– ident: ref87/cit87
  doi: 10.1016/j.ensm.2018.09.006
– ident: ref143/cit143
  doi: 10.1021/acs.nanolett.8b04906
– ident: ref116/cit116
  doi: 10.1021/jacs.6b13314
– ident: ref158/cit158
  doi: 10.1002/anie.201811955
– ident: ref12/cit12
  doi: 10.1016/j.nanoen.2016.12.020
– ident: ref26/cit26
  doi: 10.1038/s41560-022-01001-0
– ident: ref135/cit135
  doi: 10.1002/adma.201804165
– ident: ref140/cit140
  doi: 10.1002/aenm.201703152
– ident: ref124/cit124
  doi: 10.1002/adfm.201907717
– ident: ref161/cit161
  doi: 10.1038/nenergy.2017.119
– ident: ref114/cit114
  doi: 10.1002/adma.201905658
– ident: ref48/cit48
  doi: 10.1002/adfm.202007434
– ident: ref170/cit170
  doi: 10.1021/acs.nanolett.9b04719
– ident: ref126/cit126
  doi: 10.1002/aenm.202002647
– ident: ref57/cit57
  doi: 10.1016/j.ensm.2020.01.020
– ident: ref79/cit79
  doi: 10.1002/anie.202000375
– ident: ref46/cit46
  doi: 10.1038/s41467-022-29118-6
– ident: ref100/cit100
  doi: 10.1016/j.ensm.2017.08.001
– ident: ref121/cit121
  doi: 10.1016/j.jpowsour.2019.03.032
– ident: ref41/cit41
  doi: 10.1039/D1EE00508A
– ident: ref127/cit127
  doi: 10.1002/smll.202102454
– ident: ref130/cit130
  doi: 10.1038/ncomms9058
– ident: ref2/cit2
  doi: 10.1016/j.joule.2018.03.008
– ident: ref28/cit28
  doi: 10.1016/j.nanoen.2020.104763
– ident: ref82/cit82
  doi: 10.1038/s41560-018-0096-1
– ident: ref115/cit115
  doi: 10.1002/adfm.202001607
– ident: ref151/cit151
  doi: 10.1039/C9TA06401J
– ident: ref117/cit117
  doi: 10.1016/j.jechem.2021.05.014
– ident: ref136/cit136
  doi: 10.1016/j.ensm.2019.06.019
– ident: ref160/cit160
  doi: 10.1021/jacs.5b10333
– ident: ref20/cit20
  doi: 10.1002/aenm.201500481
– ident: ref21/cit21
  doi: 10.1016/j.cej.2021.132352
– ident: ref118/cit118
  doi: 10.1021/acsenergylett.6b00456
– ident: ref142/cit142
  doi: 10.1039/D1TA09575G
– ident: ref27/cit27
  doi: 10.1038/s41565-020-00797-w
– ident: ref149/cit149
  doi: 10.1002/adma.201702714
– ident: ref74/cit74
  doi: 10.1002/adma.201904991
– ident: ref178/cit178
  doi: 10.1021/acsami.9b21509
– ident: ref3/cit3
  doi: 10.1038/nchem.2085
– ident: ref86/cit86
  doi: 10.1016/j.ensm.2020.03.023
– ident: ref139/cit139
  doi: 10.1002/adma.201706216
– ident: ref10/cit10
  doi: 10.1039/C6EE01295G
– ident: ref73/cit73
  doi: 10.1002/adma.201801213
– ident: ref32/cit32
  doi: 10.1002/aenm.201600811
– ident: ref180/cit180
  doi: 10.1039/D0TA04038J
– ident: ref55/cit55
  doi: 10.1002/adma.202007428
– ident: ref145/cit145
  doi: 10.1038/nenergy.2016.10
– ident: ref111/cit111
  doi: 10.1021/acsami.8b04573
– ident: ref29/cit29
  doi: 10.1002/advs.201600168
– ident: ref51/cit51
  doi: 10.1002/aenm.202103480
– ident: ref77/cit77
  doi: 10.1002/adfm.202110468
– ident: ref62/cit62
  doi: 10.1016/j.nanoen.2020.104914
– ident: ref165/cit165
  doi: 10.1039/D0TA02410D
– ident: ref68/cit68
  doi: 10.1039/C8NR01995A
– ident: ref49/cit49
  doi: 10.1002/adma.201902724
– ident: ref146/cit146
  doi: 10.1016/j.cej.2019.02.171
– ident: ref50/cit50
  doi: 10.1016/j.cej.2021.132698
– ident: ref182/cit182
  doi: 10.1002/eem2.12152
– ident: ref36/cit36
  doi: 10.1002/adfm.202106740
– ident: ref84/cit84
  doi: 10.1016/j.joule.2017.06.002
– ident: ref168/cit168
  doi: 10.1002/adma.201903955
– ident: ref179/cit179
  doi: 10.1016/j.matlet.2022.132636
– ident: ref98/cit98
  doi: 10.1021/acsnano.1c04864
– ident: ref133/cit133
  doi: 10.1002/adfm.201700348
– ident: ref155/cit155
  doi: 10.1021/acsami.7b13604
– ident: ref173/cit173
  doi: 10.1016/j.ensm.2019.03.025
– ident: ref129/cit129
  doi: 10.1038/s41565-019-0427-9
– ident: ref154/cit154
  doi: 10.1016/j.nanoen.2021.106836
– ident: ref169/cit169
  doi: 10.1021/acs.nanolett.0c02167
– ident: ref6/cit6
  doi: 10.1002/eem2.12250
– ident: ref99/cit99
  doi: 10.1038/s41565-018-0061-y
– ident: ref43/cit43
  doi: 10.1021/acs.energyfuels.1c02008
– ident: ref97/cit97
  doi: 10.1002/aenm.202003004
– ident: ref94/cit94
  doi: 10.1016/j.cej.2022.137291
– ident: ref11/cit11
  doi: 10.1021/acsami.9b14819
– ident: ref7/cit7
  doi: 10.1039/C6EE02888H
– ident: ref58/cit58
  doi: 10.1002/aenm.202000093
– ident: ref119/cit119
  doi: 10.1002/aenm.201701482
– ident: ref181/cit181
  doi: 10.1039/D0TA10541D
– ident: ref17/cit17
  doi: 10.1002/aesr.202100187
– ident: ref19/cit19
  doi: 10.1002/advs.201500213
– ident: ref141/cit141
  doi: 10.1021/acsnano.0c08627
– ident: ref24/cit24
  doi: 10.1039/D0NR03833D
– ident: ref134/cit134
  doi: 10.1039/C9TA00466A
– ident: ref109/cit109
  doi: 10.1016/j.ensm.2019.02.006
– ident: ref120/cit120
  doi: 10.1002/advs.201901120
– ident: ref22/cit22
  doi: 10.1016/j.electacta.2017.08.057
– ident: ref69/cit69
  doi: 10.1002/adma.201606187
– ident: ref89/cit89
  doi: 10.1002/anie.201704324
– ident: ref34/cit34
  doi: 10.1016/j.joule.2020.06.011
– ident: ref147/cit147
  doi: 10.1021/acsami.9b10613
– ident: ref90/cit90
  doi: 10.1016/j.mtener.2020.100465
– ident: ref8/cit8
  doi: 10.1002/adma.201400578
– ident: ref137/cit137
  doi: 10.1016/j.joule.2018.02.001
– ident: ref14/cit14
  doi: 10.1038/nature25984
– ident: ref56/cit56
  doi: 10.1002/adfm.202010602
– ident: ref101/cit101
  doi: 10.1002/adma.202003920
– ident: ref54/cit54
  doi: 10.1016/j.jechem.2020.09.030
– ident: ref61/cit61
  doi: 10.1016/j.nanoen.2022.107131
– ident: ref166/cit166
  doi: 10.1002/adfm.202002471
– ident: ref138/cit138
  doi: 10.1021/acsami.6b11188
– ident: ref4/cit4
  doi: 10.1002/adma.201601357
– ident: ref47/cit47
  doi: 10.1021/acsenergylett.1c02719
– ident: ref64/cit64
  doi: 10.1002/aenm.202102454
– ident: ref106/cit106
  doi: 10.1002/adma.202105178
– ident: ref16/cit16
  doi: 10.1002/advs.202202244
– ident: ref95/cit95
  doi: 10.1021/acsami.9b21993
– ident: ref128/cit128
  doi: 10.1002/anie.202110441
– ident: ref176/cit176
  doi: 10.1002/aenm.202002271
– ident: ref30/cit30
  doi: 10.1002/advs.202002212
– ident: ref80/cit80
  doi: 10.1039/D0TA01883J
– ident: ref122/cit122
  doi: 10.1021/acsenergylett.8b02483
– ident: ref13/cit13
  doi: 10.1016/j.nanoen.2020.104451
– ident: ref53/cit53
  doi: 10.1002/anie.202201406
– ident: ref131/cit131
  doi: 10.1002/celc.201901360
– ident: ref156/cit156
  doi: 10.1002/anie.201707754
– ident: ref157/cit157
  doi: 10.1002/anie.201911800
– ident: ref78/cit78
  doi: 10.1002/adfm.202203336
– ident: ref63/cit63
  doi: 10.1002/adfm.202110110
– ident: ref144/cit144
  doi: 10.1016/j.joule.2017.11.004
– ident: ref152/cit152
  doi: 10.1002/advs.201600445
– ident: ref75/cit75
  doi: 10.1002/adfm.201606422
– ident: ref1/cit1
  doi: 10.1038/s41578-021-00345-5
– ident: ref103/cit103
  doi: 10.1002/adma.201700007
– ident: ref96/cit96
  doi: 10.1016/j.ensm.2018.09.022
– ident: ref60/cit60
  doi: 10.1016/j.ensm.2018.08.010
– ident: ref164/cit164
  doi: 10.1002/anie.201707754
– ident: ref132/cit132
  doi: 10.1021/acs.nanolett.6b01581
– ident: ref153/cit153
  doi: 10.1093/nsr/nwy148
– ident: ref38/cit38
  doi: 10.1002/aenm.201800650
– ident: ref108/cit108
  doi: 10.1002/adfm.202009694
– ident: ref175/cit175
  doi: 10.1021/acsnano.9b08141
– ident: ref59/cit59
  doi: 10.1016/j.matt.2019.05.016
– ident: ref167/cit167
  doi: 10.1021/jacs.8b12973
– ident: ref72/cit72
  doi: 10.1002/adma.201605531
– ident: ref92/cit92
  doi: 10.1002/aenm.202103368
– ident: ref15/cit15
  doi: 10.1016/j.ensm.2022.08.004
– ident: ref33/cit33
  doi: 10.1002/adfm.201602353
– ident: ref40/cit40
  doi: 10.1039/D1EE01341F
– ident: ref5/cit5
  doi: 10.1038/s41560-018-0097-0
– ident: ref81/cit81
  doi: 10.1038/nenergy.2017.83
– ident: ref31/cit31
  doi: 10.1002/aenm.201700260
– ident: ref104/cit104
  doi: 10.1002/adma.201700542
– ident: ref70/cit70
  doi: 10.1002/adma.201707629
– ident: ref65/cit65
  doi: 10.1016/j.ensm.2021.01.012
– ident: ref39/cit39
  doi: 10.1039/D0EE02769C
– ident: ref42/cit42
  doi: 10.1039/D1EE00767J
– ident: ref66/cit66
  doi: 10.1002/aenm.201800635
– ident: ref9/cit9
  doi: 10.1021/acssuschemeng.2c00316
– ident: ref113/cit113
  doi: 10.1038/ncomms8436
– ident: ref35/cit35
  doi: 10.1016/j.jechem.2022.01.008
– ident: ref150/cit150
  doi: 10.1016/j.cej.2021.128661
– ident: ref171/cit171
  doi: 10.1021/nl503125u
– ident: ref45/cit45
  doi: 10.1038/s41560-021-00783-z
– ident: ref37/cit37
  doi: 10.1002/cey2.94
– ident: ref177/cit177
  doi: 10.1021/acsnano.1c04642
– ident: ref148/cit148
  doi: 10.1002/adfm.202106676
– ident: ref174/cit174
  doi: 10.1021/acsami.9b10551
– ident: ref93/cit93
  doi: 10.1021/acsenergylett.1c00551
– ident: ref110/cit110
  doi: 10.1002/adfm.202107249
– ident: ref88/cit88
  doi: 10.1021/acs.nanolett.9b03548
– ident: ref112/cit112
  doi: 10.1002/adma.201906427
– ident: ref18/cit18
  doi: 10.1021/acsenergylett.1c00943
– ident: ref25/cit25
  doi: 10.1039/D0TA07464K
– ident: ref125/cit125
  doi: 10.1002/adfm.201705838
SSID ssj0057876
Score 2.643498
SecondaryResourceType review_article
Snippet Lithium metal anodes are ideal for realizing high-energy-density batteries owing to their advantages, namely high capacity and low reduction potentials....
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 17729
Title Toward Dendrite-Free Metallic Lithium Anodes: From Structural Design to Optimal Electrochemical Diffusion Kinetics
URI http://dx.doi.org/10.1021/acsnano.2c08480
https://search.proquest.com/docview/2730319784
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLYQLDBwI8olI3VgcUmcwwlb1VIhzoFWYot8vIgKmqAmXfj1PCcppxCsUWJH7_zs9_yZkLZJvcABJZgJjWS-SQOmYidmsdahwRSTxtWe7s1teDHyLx-Chw-y6O8VfO6eSl1kMss7XFvqd1ydL3HbP2hRUO9-HnSt3YV1ARkXyIgi3ll8fgxg05Auvqahr1G4Si2Dtbopq6gYCW1HyVNnVqqOfv3J1_j3X6-T1QZg0m5tERtkAbJNsvKJdnCLTIdVryztQ2amCDnZYApAbwBx-PNY0-tx-TieTWg3yw0UZ3QwzSf0vuKZtRwd-Jlt-qBlTu8w3kzwyXl9l45uyAdof5ymM7sNR69wVksEvU1Gg_Nh74I1dy8wiYCvZIFxwxhkkILvqEiAh77uSCF5wDUXWqYiFMoo7YHmxrPEir423KhAhTyOQHo7ZDHLM9glFEcSgDDTDUD5oe_GkeeYyHAlwKC6RIu0UVpJ4ztFUpXFuZs0IkwaEbbIyVxjyUvNxPH7q8dzjSboLbYEIjPIZ0WCYM0e2xKRv_e_WffJMrcHHlyXcX5AFlHYcIgwpFRHlQG-AWov2jE
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcqeNh4AMZAK18zUh_24pI4cZzwhoCqG22nqUXiLfLHRaugCWrSF_56zmnKgAlpe7WS8-ns8_3OZ_9MSMdmgfBAS2Yjq1hoM8F04iUsMSayGGKypN7THY6i_k3441bctoi3uguDSpQoqayL-H_YBfxTbMtVXnS5cQzwmKSvC4nZuANDF-PV2uumX7SsI2OejGDimcznLwEuGpnydTR6vRjXEaa3RX4961YfLLnrLirdNY9vaBv_R_ltstnATXq-nB-fSAvyHbLxgoTwM5lP6pOz9BJyO0cAynpzADoEROX3U0MH0-r3dDGj53lhoTyjvXkxo-OaddYxduBv7ggIrQr6E1efGbZcLV_WMQ0VAb2cZtnCbcrRa-zV0ULvkpve1eSiz5qXGJhC-FcxYf0oASUyCD0dSwjQ8z0lFRfccGlUJiOprTYBGG4DR7MYGsutFjriSQwq2CNreZHDF0JRkgQEnb4AHUahn8SBZ2PLtQSLoybbpIPWShtPKtO6SM79tDFh2piwTb6tBi59WPJyvP_pyWpgU_QdVxBRORSLMkXo5i5xyTjc_7dev5IP_clwkA6-j64PyEfurkL4PuP8kKyh4eEIAUqlj-s5-QQ1G-Kc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQJiF4gPElOjYwUh94cUmcOE72VrWNBlsLUltpb5E_LloFTaomfdlfv3OaVisTErxaztk523c_-3w_E9K1eSA80JLZyCoW2lwwnXgJS4yJLLqYPGnOdMeT6HIefr8RN21SmMuFwU5UKKlqgvhuVa9s3jIM-F-xvFBF2ePGscDjRv1YuOe7HSAaTHf2103BaBtLxr0yAoo9oc8jAc4jmerQIx0a5MbLpC_JfN-_5nLJr96m1j1z9wd14__-wAl50cJO2t_Ok1fkCRSvyfMHZIRvyHrW3KClQyjsGoEoS9cAdAyIzn8vDL1e1LeLzZL2i9JCdUHTdbmk04Z91jF34GfuKgitS_oDrdASS0bbF3ZMS0lAh4s837jDOXqFrTp66Ldkno5mg0vWvsjAFMLAmgnrRwkokUPo6VhCgBbAU1JxwQ2XRuUyktpqE4DhNnB0i6Gx3GqhI57EoIJ35KgoC3hPKEqSgODTF6DDKPSTOPBsbLmWYHHkZId0UVtZu6KqrAmWcz9rVZi1KuyQL7vBy1Zbfo6_V_28G9wM15ALjKgCyk2VIYRzyVwyDk__rdVP5OnPYZpdf5tcfSDPuMuI8H3G-Rk5Qr3DOeKUWn9spuU9fO7lFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Dendrite-Free+Metallic+Lithium+Anodes%3A+From+Structural+Design+to+Optimal+Electrochemical+Diffusion+Kinetics&rft.jtitle=ACS+nano&rft.au=Wang%2C+Jian&rft.au=Li%2C+Linge&rft.au=Hu%2C+Huimin&rft.au=Hu%2C+Hongfei&rft.date=2022-11-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=11&rft.spage=17729&rft.epage=17760&rft_id=info:doi/10.1021%2Facsnano.2c08480&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_2c08480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon