A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples remains a serious challenge. In this context, we extensively investigated 20...
Saved in:
Published in | ACM computing surveys Vol. 55; no. 13s; pp. 1 - 40 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
ACM
31.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples remains a serious challenge. In this context, we extensively investigated 200+ FSL papers published in top journals and conferences in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL with a fresh perspective and to provide an impartial comparison of the strengths and weaknesses of existing work. To avoid conceptual confusion, we first elaborate and contrast a set of relevant concepts including few-shot learning, transfer learning, and meta-learning. Then, we inventively extract prior knowledge related to few-shot learning in the form of a pyramid, which summarizes and classifies previous work in detail from the perspective of challenges. Furthermore, to enrich this survey, we present in-depth analysis and insightful discussions of recent advances in each subsection. What is more, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into technology trends and potential future research opportunities to guide FSL follow-up research. |
---|---|
AbstractList | Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples remains a serious challenge. In this context, we extensively investigated 200+ FSL papers published in top journals and conferences in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL with a fresh perspective and to provide an impartial comparison of the strengths and weaknesses of existing work. To avoid conceptual confusion, we first elaborate and contrast a set of relevant concepts including few-shot learning, transfer learning, and meta-learning. Then, we inventively extract prior knowledge related to few-shot learning in the form of a pyramid, which summarizes and classifies previous work in detail from the perspective of challenges. Furthermore, to enrich this survey, we present in-depth analysis and insightful discussions of recent advances in each subsection. What is more, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into technology trends and potential future research opportunities to guide FSL follow-up research. |
ArticleNumber | 271 |
Author | Song, Yisheng Wang, Ting Mondal, Subrota K. Sahoo, Jyoti Prakash Cai, Puyu |
Author_xml | – sequence: 1 givenname: Yisheng orcidid: 0000-0001-9558-5547 surname: Song fullname: Song, Yisheng email: 71205902054@stu.ecnu.edu.cn organization: East China Normal University, China – sequence: 2 givenname: Ting orcidid: 0000-0002-7223-8849 surname: Wang fullname: Wang, Ting email: twang@sei.ecnu.edu.cn organization: East China Normal University, China – sequence: 3 givenname: Puyu orcidid: 0000-0002-1368-8145 surname: Cai fullname: Cai, Puyu email: caipuyu@msu.edu organization: Michigan State University, United States – sequence: 4 givenname: Subrota K. orcidid: 0000-0002-0008-7797 surname: Mondal fullname: Mondal, Subrota K. email: skmondal@must.edu.mo organization: Macau University of Science and Technology, China – sequence: 5 givenname: Jyoti Prakash orcidid: 0000-0002-6273-6174 surname: Sahoo fullname: Sahoo, Jyoti Prakash email: jpsahoo@ieee.org organization: Siksha “O” Anusandhan University, India |
BookMark | eNptkEFLAzEUhINUsFXx7ik3L40mm2R38VaWVoVCD-p5yWZf2sg2WZK00n9va6sH8TRvmI-BNyM0cN4BQjeM3jMm5AOXZZaX5RkaMikLUnDBBmhIeU4J5ZReoFGMH5TSTLB8iPQEV37dB1iBi3YL-HUTtrDD3uAZfJK48gnPQQVn3fIRT7e-2yTr3RhP-r6zWh1MHONqpboO3BL2t3ItXvS9D2njbLIQr9C5UV2E65NeovfZ9K16JvPF00s1mRPFGU1E6pKBVtrIQhjIDG3aQrGmbRoGrZYs0xkIZUraMt5oke0DKrUoTcul0jnjl-ju2KuDjzGAqftg1yrsakbrwzb1aZs9Sf6Q2qbvX1JQtvuHvz3ySq9_S3_CL_lscWk |
CitedBy_id | crossref_primary_10_1016_j_neunet_2023_08_026 crossref_primary_10_1109_JIOT_2024_3487989 crossref_primary_10_1109_TGRS_2024_3407812 crossref_primary_10_1007_s10489_023_05103_4 crossref_primary_10_1016_j_eswa_2024_124429 crossref_primary_10_1111_exsy_13654 crossref_primary_10_1049_ein2_12010 crossref_primary_10_1109_TIP_2024_3374222 crossref_primary_10_3390_app132413140 crossref_primary_10_1016_j_autcon_2024_105542 crossref_primary_10_1109_TIM_2023_3285994 crossref_primary_10_1039_D3LC01097J crossref_primary_10_1016_j_engappai_2024_108156 crossref_primary_10_1016_j_engappai_2024_109883 crossref_primary_10_1016_j_sasc_2024_200103 crossref_primary_10_3390_plants14030339 crossref_primary_10_1016_j_knosys_2024_112168 crossref_primary_10_1109_ACCESS_2024_3417344 crossref_primary_10_1007_s10489_024_05698_2 crossref_primary_10_1016_j_conengprac_2024_106199 crossref_primary_10_1007_s11042_023_17551_8 crossref_primary_10_1080_02188791_2023_2286920 crossref_primary_10_1016_j_cropro_2024_106981 crossref_primary_10_1016_j_knosys_2024_112845 crossref_primary_10_1109_TMC_2024_3357218 crossref_primary_10_1007_s10489_025_06391_8 crossref_primary_10_1007_s11760_023_02960_x crossref_primary_10_3390_app15020523 crossref_primary_10_1109_ACCESS_2024_3391815 crossref_primary_10_1109_JSTARS_2024_3432895 crossref_primary_10_1111_jfpe_14649 crossref_primary_10_1016_j_neucom_2025_129989 crossref_primary_10_1007_s10462_025_11108_x crossref_primary_10_1016_j_neunet_2025_107211 crossref_primary_10_1109_ACCESS_2024_3376441 crossref_primary_10_1007_s10489_024_05832_0 crossref_primary_10_1016_j_net_2024_01_005 crossref_primary_10_3390_plants14050760 crossref_primary_10_1016_j_aei_2024_102976 crossref_primary_10_1145_3711827 crossref_primary_10_1007_s00607_024_01366_y crossref_primary_10_1016_j_microc_2024_112229 crossref_primary_10_32604_cmc_2025_061263 crossref_primary_10_1109_ACCESS_2024_3462295 crossref_primary_10_3390_forensicsci4030021 crossref_primary_10_1016_j_imavis_2024_105337 crossref_primary_10_1109_ACCESS_2025_3541780 crossref_primary_10_1016_j_knosys_2025_113030 crossref_primary_10_1016_j_patcog_2024_111042 crossref_primary_10_3390_plants12183280 crossref_primary_10_3390_electronics12173623 crossref_primary_10_32604_cmc_2025_059472 crossref_primary_10_3390_s23208458 crossref_primary_10_1109_JBHI_2024_3386197 crossref_primary_10_1007_s13246_025_01535_z crossref_primary_10_1016_j_cma_2025_117852 crossref_primary_10_1109_TGRS_2024_3523578 crossref_primary_10_1016_j_compositesa_2024_108671 crossref_primary_10_3758_s13428_024_02404_5 crossref_primary_10_1016_j_coco_2025_102314 crossref_primary_10_1016_j_rineng_2024_103724 crossref_primary_10_1016_j_inffus_2023_102161 crossref_primary_10_1109_ACCESS_2024_3509918 crossref_primary_10_1007_s10845_024_02475_3 crossref_primary_10_1016_j_neucom_2024_128212 crossref_primary_10_1016_j_ins_2024_121046 crossref_primary_10_1364_OE_511019 crossref_primary_10_1109_JAS_2023_123207 crossref_primary_10_3390_app14166929 crossref_primary_10_1016_j_neucom_2024_128970 crossref_primary_10_1016_j_ymssp_2025_112379 crossref_primary_10_3390_math12020347 crossref_primary_10_1016_j_eswa_2024_125000 crossref_primary_10_1145_3609483 crossref_primary_10_1186_s42400_024_00314_9 crossref_primary_10_1016_j_inffus_2024_102672 crossref_primary_10_1109_TGRS_2024_3409637 crossref_primary_10_1145_3722107 crossref_primary_10_1016_j_eswa_2024_125713 crossref_primary_10_1016_j_eml_2024_102236 crossref_primary_10_1145_3700791 crossref_primary_10_1007_s10664_024_10441_z crossref_primary_10_1109_TCSS_2024_3403872 crossref_primary_10_1109_TIP_2024_3461472 crossref_primary_10_1016_j_bspc_2025_107588 crossref_primary_10_1038_s42256_024_00852_4 crossref_primary_10_1109_TGRS_2025_3544392 crossref_primary_10_3390_e26050352 crossref_primary_10_1016_j_imavis_2024_105113 crossref_primary_10_1016_j_neunet_2023_10_039 crossref_primary_10_1109_TASLPRO_2025_3537280 crossref_primary_10_1016_j_imavis_2024_105118 crossref_primary_10_1007_s10489_024_05440_y crossref_primary_10_1016_j_eswa_2025_127054 crossref_primary_10_1109_TGRS_2025_3543583 crossref_primary_10_11834_jig_230359 crossref_primary_10_1109_TPAMI_2024_3361862 crossref_primary_10_3390_f16030518 crossref_primary_10_1016_j_neunet_2024_106456 crossref_primary_10_26599_BDMA_2024_9020049 crossref_primary_10_1109_ACCESS_2024_3521407 crossref_primary_10_3390_fi17010033 crossref_primary_10_1117_1_JRS_18_036502 crossref_primary_10_1016_j_compag_2025_109908 crossref_primary_10_3390_electronics13204138 crossref_primary_10_1016_j_asoc_2024_112375 crossref_primary_10_1016_j_patcog_2024_110503 crossref_primary_10_1111_phn_13410 crossref_primary_10_1109_JBHI_2023_3298710 crossref_primary_10_1093_bib_bbae394 crossref_primary_10_1109_TIM_2023_3343775 crossref_primary_10_1016_j_srs_2025_100202 crossref_primary_10_1186_s13640_024_00620_9 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_1145_3696411 crossref_primary_10_3390_jimaging10080195 crossref_primary_10_1109_TGRS_2024_3476116 crossref_primary_10_1145_3649828 crossref_primary_10_1093_bib_bbae702 crossref_primary_10_1049_cvi2_12340 crossref_primary_10_1007_s44196_023_00287_6 crossref_primary_10_1109_TDSC_2024_3411014 crossref_primary_10_3390_electronics12132912 crossref_primary_10_1109_TETCI_2024_3377267 crossref_primary_10_3390_computers14010030 crossref_primary_10_1002_ima_70033 crossref_primary_10_1007_s11633_023_1470_4 crossref_primary_10_1109_LWC_2024_3510722 crossref_primary_10_1016_j_aei_2024_102538 crossref_primary_10_3390_app15031381 crossref_primary_10_1145_3691339 crossref_primary_10_1016_j_neucom_2024_128767 crossref_primary_10_3390_rs16030525 crossref_primary_10_1021_acs_est_4c03088 crossref_primary_10_1016_j_ijepes_2024_110146 crossref_primary_10_1016_j_compag_2024_109751 crossref_primary_10_1109_ACCESS_2024_3387314 crossref_primary_10_3390_s24061815 crossref_primary_10_1145_3605775 crossref_primary_10_3390_computers13120315 crossref_primary_10_1016_j_eswa_2024_125453 crossref_primary_10_3390_biomedicines12040741 crossref_primary_10_3390_s25061876 crossref_primary_10_1016_j_ins_2023_119796 crossref_primary_10_1016_j_ress_2025_110850 crossref_primary_10_3390_app142310776 crossref_primary_10_1587_transfun_2023EAP1038 crossref_primary_10_1007_s40684_025_00712_5 crossref_primary_10_1109_TPAMI_2025_3529038 crossref_primary_10_1007_s11263_025_02357_y crossref_primary_10_1088_1361_6501_ad34eb crossref_primary_10_3390_buildings15010021 crossref_primary_10_1109_ACCESS_2025_3529528 crossref_primary_10_1109_JSTARS_2024_3493606 crossref_primary_10_1002_adem_202401353 crossref_primary_10_1016_j_aei_2024_102786 crossref_primary_10_1007_s11263_024_02112_9 crossref_primary_10_1016_j_culher_2024_11_020 crossref_primary_10_1016_j_media_2025_103536 crossref_primary_10_1007_s11263_023_01904_9 crossref_primary_10_3389_fnbot_2024_1391247 crossref_primary_10_1109_TCSVT_2024_3367666 crossref_primary_10_1007_s10489_025_06239_1 |
Cites_doi | 10.1109/ICPR56361.2022.9955637 10.18653/v1/2020.emnlp-main.346 10.1016/j.patcog.2022.109108 10.1016/j.patcog.2022.109170 10.18653/v1/2020.acl-main.102 10.1016/j.neucom.2022.09.012 10.1007/978-3-030-86340-1_39 10.1109/TITS.2019.2931429 10.18653/v1/2021.acl-long.295 10.1109/TGRS.2022.3208897 10.1016/j.compag.2022.107406 10.1109/TPAMI.2022.3195735 10.18653/v1/D19-1250 10.1016/j.patcog.2020.107370 10.18653/v1/2021.findings-acl.161 10.1016/j.patcog.2022.109024 10.18653/v1/2022.acl-long.592 10.18653/v1/2022.acl-demo.10 10.18653/v1/2021.emnlp-main.243 10.1016/j.neucom.2022.11.082 10.1109/ICCV48922.2021.00893 10.18653/v1/d16-1264 10.18653/v1/2022.acl-long.38 10.18653/v1/2022.acl-long.576 10.1109/WACV51458.2022.00166 10.18653/v1/n19-1423 10.18653/v1/2021.acl-long.353 10.18653/v1/2021.eacl-main.20 10.18653/v1/D19-1670 10.1016/j.neucom.2022.10.012 10.1109/CVPR.2009.5206848 10.1109/CVPR52688.2022.01416 10.1109/ICCV48922.2021.00869 10.1109/CVPR.2019.00010 10.1109/CVPR.2018.00789 10.1007/s11263-015-0816-y 10.1145/3386252 10.1109/CVPR42600.2020.01222 10.1016/j.patrec.2022.06.012 10.1109/CVPR.2019.00844 10.1109/CVPR.2018.00353 10.1609/aaai.v33i01.33013558 10.1109/CVPR42600.2020.01348 10.5244/C.29.37 10.1109/CVPR42600.2020.01351 10.1109/ICCV.2019.00815 10.1037/0003-066X.40.4.385 10.1109/ICASSP39728.2021.9413582 10.1007/978-3-030-58574-7_8 10.1609/aaai.v35i9.17021 10.1109/ICCV48922.2021.00651 10.1609/aaai.v36i8.20885 10.1109/WACV48630.2021.00352 10.1109/CVPR.2000.855856 10.1109/TPAMI.2020.3032166 10.1109/CVPR.2019.00743 10.1109/CVPR.2019.01199 10.1609/aaai.v33i01.33016407 10.1109/CVPR46437.2021.00867 10.1007/978-3-030-58583-9_8 10.1007/978-3-030-58592-1_8 10.1007/978-3-030-01237-3_15 10.1109/CVPR46437.2021.00727 10.1109/CVPR.2018.00947 10.1109/ICCV.2019.00053 10.1162/tacl_a_00324 10.1109/ICCV48922.2021.00862 10.1109/CVPR52688.2022.00880 10.1109/CVPR52688.2022.00781 10.1109/CVPR.2019.00536 10.1109/LGRS.2022.3227055 10.1007/978-3-030-58548-8_26 10.1109/CVPR42600.2020.01340 10.1109/CVPR.2018.00131 10.1109/CVPR42600.2020.00883 10.1109/CVPR42600.2020.01285 10.1007/978-3-030-58520-4_12 10.1109/CVPR.2017.145 10.1109/ICCV.2019.00981 10.1109/CVPR42600.2020.01238 10.1016/j.wpi.2020.101983 10.1007/978-3-319-10602-1_48 10.24963/ijcai.2021/123 10.1109/ICCV.2019.00967 10.1109/WACV45572.2020.9093338 10.1109/ICCV.2015.169 10.1109/CVPR.2019.00874 10.1007/978-3-030-58545-7_9 10.1109/CVPR46437.2021.01095 10.24963/ijcai.2021/415 10.1109/CVPR46437.2021.00101 10.1109/WACV48630.2021.00332 10.1007/978-3-319-24261-3_7 10.1109/CVPR.2019.00671 10.1007/978-3-030-58604-1_15 10.1109/CVPR.2018.00581 10.1016/j.neucom.2020.04.040 10.1109/CVPR46437.2021.01069 10.5555/3524938.3525858 10.1007/978-3-030-58568-6_16 10.1109/ICCV48922.2021.00863 10.1609/aaai.v34i07.6764 10.1007/978-3-319-46487-9_40 10.1609/aaai.v34i04.6130 10.5244/C.31.167 10.1145/3404835.3462995 10.1109/TIM.2021.3053991 10.1109/ICCV.2019.01002 10.1109/CVPR46437.2021.00124 10.1109/JSTARS.2019.2918242 10.1109/CVPR46437.2021.01345 10.1109/ICCV.2019.00929 10.1109/CVPR42600.2020.00919 10.1109/CVPRW56347.2022.00154 10.1109/TIP.2020.3043128 10.24963/ijcai.2020/112 10.1109/WACV48630.2021.00269 10.1109/ICCV48922.2021.00855 10.1007/978-3-319-10599-4_52 10.1007/978-3-030-63833-7_34 10.1109/CVPR42600.2020.01259 10.1007/978-3-030-58571-6_38 10.1109/ICCVW54120.2021.00312 10.1609/aaai.v34i07.6628 10.1109/ICPR48806.2021.9412416 10.1109/CVPR.2014.461 10.1109/TNNLS.2020.2978386 10.1109/CVPR52688.2022.01415 10.1109/CVPR.2017.369 10.1609/aaai.v34i05.6281 10.1109/CVPR.2016.90 10.1109/WACV51458.2022.00334 10.1609/aaai.v35i11.17155 10.1109/CVPR52688.2022.00962 10.1109/ICCV.2017.328 10.1016/j.cobeha.2019.04.007 10.1007/978-3-030-58598-3_45 10.1007/978-3-030-58607-2_42 10.1007/978-3-030-58517-4_27 10.1109/TCYB.2020.2992433 10.1109/CVPR52688.2022.00886 10.1109/CVPR.2019.00738 10.1109/CVPR.2016.16 10.1109/CVPR.2018.00610 10.1109/ICCV48922.2021.00892 10.1109/ICCV.2019.00855 10.1109/CVPR.2018.00543 10.1109/ICASSP39728.2021.9413783 10.1109/ICCV.2019.00071 10.1109/CVPR52688.2022.00490 10.1109/CVPR52688.2022.01553 10.1109/CVPR.2019.00888 |
ContentType | Journal Article |
Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
DBID | AAYXX CITATION |
DOI | 10.1145/3582688 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | A Comprehensive Survey of FSL: Evolution, Applications, Challenges, and Opportunities |
EISSN | 1557-7341 |
EndPage | 40 |
ExternalDocumentID | 10_1145_3582688 3582688 |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2021ZD0114600 |
GroupedDBID | --Z -DZ -~X .4S .DC 23M 4.4 5GY 5VS 6J9 85S 8US 8VB AAIKC AAKMM AALFJ AAMNW AAYFX ABPPZ ACGFO ACGOD ACM ACNCT ADBCU ADL ADMLS ADPZR AEBYY AEGXH AEMOZ AENEX AENSD AFWIH AFWXC AGHSJ AHQJS AIAGR AIKLT AKVCP ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CS3 EBE EBR EBU EDO EMK FEDTE GUFHI HGAVV H~9 IAO ICD IEA IGS IOF K1G LHSKQ N95 P1C P2P PQQKQ QWB RNS ROL RXW TAE TH9 U5U UKR UPT VQA W7O WH7 X6Y XH6 XSW XZL YXB Z5M ZCA ZL0 AAYXX AEFXT AEJOY AETEA AKRVB CITATION |
ID | FETCH-LOGICAL-a310t-5c81ecacf574fe2f0bd7a1bdbb1edc512c2e4af80d13bc42dbb05c48fd35ac613 |
ISSN | 0360-0300 |
IngestDate | Thu Jul 03 08:43:59 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Fri Feb 21 01:28:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13s |
Keywords | one-shot learning Few-shot learning prior knowledge low-shot learning meta-learning zero-shot learning |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a310t-5c81ecacf574fe2f0bd7a1bdbb1edc512c2e4af80d13bc42dbb05c48fd35ac613 |
ORCID | 0000-0001-9558-5547 0000-0002-7223-8849 0000-0002-6273-6174 0000-0002-0008-7797 0000-0002-1368-8145 |
PageCount | 40 |
ParticipantIDs | crossref_primary_10_1145_3582688 crossref_citationtrail_10_1145_3582688 acm_primary_3582688 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | ACM computing surveys |
PublicationTitleAbbrev | ACM CSUR |
PublicationYear | 2023 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | (Bib0234) 2021; 12892 (Bib0016) 2021 (Bib0099) 2023; 135 (Bib0154) 2022 (Bib0036) 2022 (Bib0138) 2021; 34 (Bib0252) 2020 (Bib0147) 2018 (Bib0006) 2020; 53 (Bib0049) 2022 (Bib0074) 2017; abs/1710.08347 (Bib0089) 2020 (Bib0114) 2020 (Bib0127) 2019 (Bib0167) 2018 (Bib0003) 2022 (Bib0113) 2020; 8 (Bib0141) 2020 (Bib0096) 2021 (Bib0267) 2020; 50 (Bib0043) 2022 (Bib0161) 2021 (Bib0181) 2020 (Bib0245) 2015 (Bib0174) 2017 (Bib0083) 2021 (Bib0084) 2018 (Bib0194) 2019 (Bib0238) 2020 (Bib0258) 2021 (Bib0172) 2020; 406 (Bib0057) 2000 (Bib0218) 2022 (Bib0212) 2021 (Bib0232) 2020 (Bib0076) 2018 (Bib0037) 2019 (Bib0159) 2020 (Bib0064) 2020 (Bib0204) 2021 (Bib0070) 2019 (Bib0211) 2019; 32 (Bib0077) 2019 (Bib0257) 2021 (Bib0048) 2022 (Bib0142) 2019 (Bib0119) 2022 (Bib0008) 2020 (Bib0148) 2018 (Bib0251) 2020 (Bib0240) 2019 (Bib0146) 2020 (Bib0186) 2020 (Bib0205) 2021 (Bib0100) 2022 (Bib0065) 2019; 32 (Bib0233) 2022 (Bib0206) 2019 (Bib0217) 2021 (Bib0009) 1985; 40 (Bib0175) 2020 (Bib0107) 2021 (Bib0002) 2022 (Bib0042) 2020 (Bib0101) 2016 (Bib0032) 2015; 115 (Bib0085) 2019 (Bib0193) 2018 (Bib0249) 2021 (Bib0035) 2014 (Bib0120) 2015 (Bib0180) 2020 (Bib0108) 2021 (Bib0143) 2018 (Bib0173) 2017 (Bib0219) 2021; 34 (Bib0192) 2020; 32 (Bib0118) 2021 (Bib0123) 2018 (Bib0246) 2021 (Bib0256) 2021 (Bib0104) 2020; 62 (Bib0092) 2019 (Bib0226) 2022 (Bib0062) 2014 (Bib0199) 2021; 70 (Bib0200) 2022 (Bib0078) 2020 (Bib0055) 2021 (Bib0223) 2021 (Bib0168) 2022 (Bib0188) 2022 (Bib0203) 2022 (Bib0144) 2018; 31 (Bib0004) 2021 (Bib0260) 2020 (Bib0165) 2021 (Bib0027) 2021 (Bib0071) 2023; 134 (Bib0012) 2021 (Bib0189) 2018 (Bib0023) 2016; 29 (Bib0224) 2021 (Bib0187) 2022; 19 (Bib0007) 2018 (Bib0131) 2022; 512 (Bib0040) 2019 (Bib0011) 2020 (Bib0033) 2019; 29 (Bib0063) 2018 (Bib0247) 2022 (Bib0090) 2022 (Bib0166) 2020 (Bib0109) 2022 (Bib0145) 2018; 31 (Bib0087) 2019 (Bib0028) 2022 (Bib0061) 2022 (Bib0195) 2019 (Bib0253) 2019 (Bib0029) 2009 (Bib0116) 2022 (Bib0201) 2021 (Bib0196) 2020 (Bib0231) 2020 (Bib0115) 2021 (Bib0034) 2013 (Bib0091) 2020 (Bib0005) 2021 (Bib0248) 2021 (Bib0031); 1 (Bib0058) 2017 (Bib0139) 2019 (Bib0230) 2020 (Bib0086) 2018 (Bib0225) 2020 (Bib0254) 2019 (Bib0026) 2022 (Bib0150) 2020; 33 (Bib0209) 2022; 160 (Bib0255) 2017 (Bib0242) 2020 (Bib0202) 2019 (Bib0170) 2015; 2 (Bib0157) 2017 (Bib0079) 2021 (Bib0019) 2022 (Bib0121) 2017; 30 (Bib0013) 2021 (Bib0088) 2020; 33 (Bib0046) 2021 (Bib0208) 2019 (Bib0268) 2018 (Bib0135) 2022; 514 (Bib0111) 2019 (Bib0020) 2021 (Bib0197) 2019 (Bib0053) 2019 (Bib0059) 2019 (Bib0227) 2021 (Bib0039) 2019 (Bib0207) 2020 (Bib0191) 2019 (Bib0117) 2021 (Bib0235) 2020 (Bib0041) 2017 (Bib0215) 2021 (Bib0171) 2015 (Bib0210) 2019 (Bib0169) 2021 (Bib0068) 2020; 105 (Bib0106) 2021; 34 (Bib0001) 2021 (Bib0263) 2019 (Bib0014) 2020 (Bib0134) 2019; 32 (Bib0060) 2016 (Bib0094) 2022 (Bib0098) 2019; 32 (Bib0129) 2020 (Bib0221) 2021 (Bib0152) 2019 (Bib0130) 2023; 133 (Bib0081) 2021 (Bib0158) 2019 (Bib0125) 2018 (Bib0261) 2020 (Bib0176) 2020 (Bib0198) 2020 (Bib0025) 2022 (Bib0093) 2021 (Bib0164) 2018 (Bib0136) 2018 (Bib0054) 2019 (Bib0228) 2021 (Bib0038) 2014 (Bib0262) 2019 (Bib0112) 2021 (Bib0124) 2018 (Bib0250) 2020 (Bib0222) 2021 (Bib0066) 2018 (Bib0259) 2020 (Bib0075) 2018 (Bib0137) 2018; 2 (Bib0229) 2020 (Bib0239) 2020 (Bib0056) 2022; 202 (Bib0163) 2018 (Bib0133) 2017 (Bib0102) 2017; 30 (Bib0236) 2020 (Bib0015) 2018 (Bib0266) 2020 (Bib0052) 2018 (Bib0216) 2022 (Bib0082) 2016 (Bib0140) 2017 Bib0024 (Bib0153) 2021 (Bib0030) 2009 (Bib0122) 2018; 31 (Bib0105) 2021 (Bib0126) 2018 (Bib0103) 2019 (Bib0110) 2021 (Bib0010) 2022; 60 (Bib0067) 2021 (Bib0095) 2020 (Bib0185) 2022 (Bib0241) 2019 (Bib0072) 2020 (Bib0162) 2022 (Bib0220) 2022 Bib0151 (Bib0047) 2021 (Bib0149) 2019 (Bib0244) 2019 (Bib0182) 2020 (Bib0179) 2020 (Bib0044) 2021 (Bib0017) 2018 (Bib0214) 2021 (Bib0264) 2021 (Bib0021) 2020 (Bib0190) 2020; 30 (Bib0080) 2021 (Bib0018) 2021 (Bib0243) 2019 (Bib0184) 2019 (Bib0045) 2022 (Bib0073) 2020 (Bib0183) 2020 (Bib0213) 2021 (Bib0128) 2016 (Bib0178) 2021 (Bib0050) 2022 (Bib0160) 2021 (Bib0022) 2020 (Bib0237) 2020 (Bib0051) 2018 (Bib0097) 2020 (Bib0155) 2022 (Bib0156) 2016 (Bib0069) 2021; 34 (Bib0132) 2021 (Bib0177) 2023; 520 (Bib0265) 2021 e_1_3_1_81_2 Lee Dong Hoon (e_1_3_1_222_2) 2021 e_1_3_1_133_2 e_1_3_1_182_2 Codella Noel (e_1_3_1_41_2) 2019 e_1_3_1_110_2 Iqbal Ehtesham (e_1_3_1_26_2) 2022 e_1_3_1_156_2 Ravi Sachin (e_1_3_1_148_2) 2018 e_1_3_1_20_2 Nichol Alex (e_1_3_1_138_2) 2018; 2 e_1_3_1_231_2 e_1_3_1_254_2 Xu Jin (e_1_3_1_238_2) 2020 e_1_3_1_129_2 e_1_3_1_193_2 e_1_3_1_121_2 e_1_3_1_55_2 e_1_3_1_78_2 e_1_3_1_167_2 Sollami Michael (e_1_3_1_215_2) 2021 e_1_3_1_227_2 Finn C. (e_1_3_1_145_2) 2018; 31 Li Z. (e_1_3_1_141_2) 2017 e_1_3_1_17_2 Lu Jiang (e_1_3_1_9_2) 2020 e_1_3_1_204_2 e_1_3_1_265_2 Zhou You (e_1_3_1_170_2) 2021 Yang Shuo (e_1_3_1_13_2) 2021 Islam Ashraful (e_1_3_1_70_2) 2021; 34 Motiian Saeid (e_1_3_1_122_2) 2017; 30 Hou Yutai (e_1_3_1_4_2) 2022 e_1_3_1_111_2 e_1_3_1_160_2 e_1_3_1_183_2 Koch Gregory (e_1_3_1_171_2) 2015 e_1_3_1_65_2 e_1_3_1_88_2 Nguyen Cuong (e_1_3_1_237_2) 2020 Zheng Wenbo (e_1_3_1_2_2) 2021 e_1_3_1_217_2 Li Xinzhe (e_1_3_1_66_2) 2019; 32 e_1_3_1_42_2 Wang Yufei (e_1_3_1_50_2) 2022 Shu Jun (e_1_3_1_8_2) 2018 Kaiser Lukasz (e_1_3_1_158_2) 2017 e_1_3_1_255_2 e_1_3_1_27_2 Yoon Sung Whan (e_1_3_1_241_2) 2019 Esfandiarpoor Reza (e_1_3_1_226_2) 2020 Yao Yuan (e_1_3_1_218_2) 2021 e_1_3_1_54_2 Zhao Nanxuan (e_1_3_1_92_2) 2020 e_1_3_1_205_2 e_1_3_1_228_2 Vaswani Ashish (e_1_3_1_103_2) 2017; 30 Lee Yoonho (e_1_3_1_149_2) 2018 e_1_3_1_31_2 Yang Jiawei (e_1_3_1_46_2) 2022 e_1_3_1_16_2 Zhang Gengwei (e_1_3_1_258_2) 2021 e_1_3_1_266_2 e_1_3_1_39_2 e_1_3_1_243_2 Cui Wentao (e_1_3_1_80_2) 2021 Ramalho Tiago (e_1_3_1_159_2) 2019 e_1_3_1_60_2 Peters Matthew E. (e_1_3_1_85_2) 2018 Hu Zikun (e_1_3_1_126_2) 2018 e_1_3_1_161_2 e_1_3_1_184_2 Du Ying-Jun (e_1_3_1_163_2) 2022 e_1_3_1_45_2 e_1_3_1_68_2 Vanschoren Joaquin (e_1_3_1_18_2) 2018 e_1_3_1_83_2 Wang Mengmeng (e_1_3_1_216_2) 2021 e_1_3_1_256_2 Rajeswaran Aravind (e_1_3_1_135_2) 2019; 32 e_1_3_1_210_2 Wang Haoxiang (e_1_3_1_223_2) 2021 Rusu Andrei A. (e_1_3_1_143_2) 2019 e_1_3_1_108_2 Yoon Jaesik (e_1_3_1_146_2) 2018; 31 e_1_3_1_172_2 e_1_3_1_100_2 e_1_3_1_195_2 Chen Mark (e_1_3_1_90_2) 2020 e_1_3_1_34_2 e_1_3_1_57_2 e_1_3_1_169_2 e_1_3_1_11_2 e_1_3_1_72_2 Xu Ziyun (e_1_3_1_117_2) 2022 e_1_3_1_229_2 Doersch Carl (e_1_3_1_98_2) 2020 Oh Jaehoon (e_1_3_1_95_2) 2022 e_1_3_1_267_2 e_1_3_1_244_2 e_1_3_1_260_2 e_1_3_1_82_2 Liu Xiao (e_1_3_1_119_2) 2021 e_1_3_1_113_2 e_1_3_1_136_2 e_1_3_1_185_2 Xue Zhiyu (e_1_3_1_232_2) 2020 e_1_3_1_44_2 e_1_3_1_197_2 Bose Avishek Joey (e_1_3_1_196_2) 2019 e_1_3_1_234_2 e_1_3_1_5_2 e_1_3_1_257_2 e_1_3_1_211_2 e_1_3_1_109_2 Bohdal Ondrej (e_1_3_1_139_2) 2021; 34 e_1_3_1_71_2 e_1_3_1_124_2 e_1_3_1_147_2 Rajasegaran Jathushan (e_1_3_1_97_2) 2021 Petroni Fabio (e_1_3_1_112_2) 2019 Liu Jialin (e_1_3_1_239_2) 2020 e_1_3_1_101_2 e_1_3_1_173_2 e_1_3_1_33_2 e_1_3_1_79_2 Satorras Victor Garcia (e_1_3_1_194_2) 2018 e_1_3_1_207_2 e_1_3_1_150_2 e_1_3_1_56_2 e_1_3_1_10_2 e_1_3_1_94_2 e_1_3_1_268_2 Schick T. (e_1_3_1_43_2) 2020 e_1_3_1_261_2 Li Tianqin (e_1_3_1_162_2) 2021 Ren Mengye (e_1_3_1_32_2); 1 Jeong Taewon (e_1_3_1_151_2) 2020; 33 e_1_3_1_114_2 Wang Bowen (e_1_3_1_230_2) 2020 e_1_3_1_198_2 Finn Chelsea (e_1_3_1_134_2) 2017 Grant Erin (e_1_3_1_144_2) 2018 e_1_3_1_62_2 e_1_3_1_235_2 e_1_3_1_6_2 Park Eunbyung (e_1_3_1_245_2) 2019 Suzuki Atsushi (e_1_3_1_14_2) 2021 Gao Hang (e_1_3_1_67_2) 2018 e_1_3_1_102_2 e_1_3_1_125_2 Chamon Luiz F. O. (e_1_3_1_12_2) 2020 e_1_3_1_174_2 e_1_3_1_208_2 e_1_3_1_186_2 Xing Chen (e_1_3_1_212_2) 2019; 32 e_1_3_1_74_2 Cao Kaidi (e_1_3_1_179_2) 2021 e_1_3_1_200_2 Radford Alec (e_1_3_1_206_2) 2021 e_1_3_1_246_2 e_1_3_1_36_2 e_1_3_1_59_2 e_1_3_1_262_2 Song Xingyou (e_1_3_1_140_2) 2019 e_1_3_1_115_2 Vinyals Oriol (e_1_3_1_24_2) 2016; 29 Nichol Alex (e_1_3_1_137_2) 2018 e_1_3_1_176_2 e_1_3_1_23_2 e_1_3_1_199_2 e_1_3_1_7_2 e_1_3_1_61_2 Chen Wei-Yu (e_1_3_1_93_2) 2019 e_1_3_1_213_2 e_1_3_1_69_2 Shalam Daniel (e_1_3_1_221_2) 2022 e_1_3_1_250_2 Pham Hieu (e_1_3_1_164_2) 2018 e_1_3_1_190_2 e_1_3_1_152_2 e_1_3_1_187_2 Zhou Kaiyang (e_1_3_1_219_2) 2022 e_1_3_1_96_2 e_1_3_1_73_2 e_1_3_1_209_2 Michaelis Claudio (e_1_3_1_269_2) 2018 e_1_3_1_247_2 e_1_3_1_58_2 Zhong Zexuan (e_1_3_1_118_2) 2021 e_1_3_1_240_2 Min Juhong (e_1_3_1_259_2) 2021 Zhang Xiaosong (e_1_3_1_248_2) 2022 Xu Liang (e_1_3_1_28_2) 2021 Cubuk Ekin D. (e_1_3_1_53_2) 2018 Bellan Patrizio (e_1_3_1_29_2) 2022 e_1_3_1_116_2 e_1_3_1_180_2 e_1_3_1_131_2 e_1_3_1_154_2 e_1_3_1_87_2 e_1_3_1_177_2 Zhang Tianyi (e_1_3_1_106_2) 2021 Müller Thomas (e_1_3_1_201_2) 2022 e_1_3_1_64_2 Hu Shell Xu (e_1_3_1_236_2) 2020 e_1_3_1_214_2 e_1_3_1_252_2 e_1_3_1_49_2 e_1_3_1_251_2 Ziko Imtiaz (e_1_3_1_233_2) 2020 e_1_3_1_127_2 Santoro Adam (e_1_3_1_157_2) 2016 Afham Mohamed (e_1_3_1_224_2) 2021 e_1_3_1_91_2 e_1_3_1_191_2 e_1_3_1_142_2 Cheng Meng (e_1_3_1_21_2) 2021 e_1_3_1_130_2 Schwartz Eli (e_1_3_1_77_2) 2018 e_1_3_1_76_2 e_1_3_1_188_2 Hou Ruibing (e_1_3_1_99_2) 2019; 32 e_1_3_1_30_2 Zhao Yiyang (e_1_3_1_166_2) 2021 Aksu Ibrahim (e_1_3_1_51_2) 2022 Maji Subhransu (e_1_3_1_35_2) 2013 e_1_3_1_225_2 Tsai Yao-Hung Hubert (e_1_3_1_75_2) 2017; 1710 e_1_3_1_38_2 Flennerhag Sebastian (e_1_3_1_153_2) 2019 e_1_3_1_202_2 e_1_3_1_263_2 Benaim Sagie (e_1_3_1_123_2) 2018; 31 Cao Tianshi (e_1_3_1_15_2) 2020 Tsimpoukelli Maria (e_1_3_1_220_2) 2021; 34 Luo Xu (e_1_3_1_107_2) 2021; 34 Snell Jake (e_1_3_1_175_2) 2017 e_1_3_1_181_2 Brown Tom (e_1_3_1_89_2) 2020; 33 Liu Hanxiao (e_1_3_1_168_2) 2018 Triantafillou Eleni (e_1_3_1_22_2) 2020 Song Liang (e_1_3_1_242_2) 2019 e_1_3_1_132_2 Bender Gabriel (e_1_3_1_165_2) 2018 Li Kevin (e_1_3_1_19_2) 2021 Wang Alex (e_1_3_1_104_2) 2019 e_1_3_1_178_2 e_1_3_1_40_2 e_1_3_1_86_2 e_1_3_1_63_2 Dosovitskiy Alexey (e_1_3_1_84_2) 2021 e_1_3_1_25_2 e_1_3_1_48_2 e_1_3_1_253_2 Baz Adrian El (e_1_3_1_3_2) 2022 e_1_3_1_128_2 Phoo Cheng Perng (e_1_3_1_47_2) 2021 e_1_3_1_105_2 e_1_3_1_192_2 e_1_3_1_120_2 e_1_3_1_189_2 Ye Han-Jia (e_1_3_1_155_2) 2022 e_1_3_1_249_2 e_1_3_1_52_2 e_1_3_1_37_2 e_1_3_1_203_2 e_1_3_1_264_2 |
References_xml | – volume: 62 start-page: 101983 year: 2020 ident: Bib0104 article-title: Patent claim generation by fine-tuning OpenAI GPT-2 publication-title: World Patent Inf. – start-page: 10991 year: 2021 end-page: 11002 ident: Bib0222 article-title: Bridging multi-task learning and meta-learning: Towards efficient training and effective adaptation publication-title: Proceedings of the 38th International Conference on Machine Learning – year: 2022 ident: Bib0049 article-title: PromDA: Prompt-based data augmentation for low-resource NLU tasks publication-title: arXiv preprint arXiv:2202.12499 – start-page: 888 year: 2021 end-page: 894 ident: Bib0160 article-title: Learn from concepts: Towards the purified memory for few-shot learning publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – start-page: 4765 year: 2022 end-page: 4771 ident: Bib0226 article-title: Multi-scale adaptive task attention network for few-shot learning publication-title: Proceedings of the 26th International Conference on Pattern Recognition doi: 10.1109/ICPR56361.2022.9955637 – year: 2021 ident: Bib0027 article-title: FewCLUE: A Chinese few-shot learning evaluation benchmark publication-title: arXiv preprint arXiv:2107.07498 – start-page: 7212 year: 2019 end-page: 7220 ident: Bib0208 article-title: Large-scale few-shot learning: Knowledge transfer with class hierarchy publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2020 ident: Bib0229 article-title: Match them up: Visually explainable few-shot image classification publication-title: arXiv preprint arXiv:2011.12527 – start-page: 8460 year: 2019 end-page: 8469 ident: Bib0191 article-title: Collect and select: Semantic alignment metric learning for few-shot learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 3558 year: 2019 end-page: 3565 ident: Bib0197 article-title: Hypergraph neural networks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 770 year: 2016 end-page: 778 ident: Bib0082 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4222 year: 2020 end-page: 4235 ident: Bib0114 article-title: AutoPrompt: Eliciting knowledge from language models with automatically generated prompts publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing doi: 10.18653/v1/2020.emnlp-main.346 – start-page: 5217 year: 2019 end-page: 5226 ident: Bib0263 article-title: CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 7260 year: 2019 end-page: 7268 ident: Bib0243 article-title: Revisiting local descriptor based image-to-class measure for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 6346 year: 2021 end-page: 6356 ident: Bib0018 article-title: MURAL: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement learning publication-title: Proceedings of the International Conference on Machine Learning – year: 2020 ident: Bib0235 article-title: Empirical Bayes transductive meta-learning with synthetic gradients publication-title: Proceedings of the International Conference on Learning Representations – volume: 34 start-page: 22234 year: 2021 end-page: 22246 ident: Bib0138 article-title: EvoGrad: Efficient gradient-based meta-learning and hyperparameter optimization publication-title: Adv. Neural Inf. Process. Syst. – start-page: 456 year: 2020 end-page: 472 ident: Bib0251 article-title: Multi-scale positive sample refinement for few-shot object detection publication-title: Proceedings of the European Conference on Computer Vision – volume: 134 start-page: 109108 year: 2023 ident: Bib0071 article-title: PFEMed: Few-shot medical image classification using prior guided feature enhancement publication-title: Pattern Recog. doi: 10.1016/j.patcog.2022.109108 – start-page: 12707 year: 2021 end-page: 12718 ident: Bib0165 article-title: Few-shot neural architecture search publication-title: Proceedings of the International Conference on Machine Learning – start-page: 2677 year: 2021 end-page: 2684 ident: Bib0228 article-title: Complementing representation deficiency in few-shot image classification: A meta-learning approach publication-title: Proceedings of the 25th International Conference on Pattern Recognition (ICPR) – start-page: 11 year: 2019 end-page: 20 ident: Bib0194 article-title: Edge-labeling graph neural network for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 135 start-page: 109170 year: 2023 ident: Bib0099 article-title: SAPENet: Self-attention based prototype enhancement network for few-shot learning publication-title: Pattern Recog. doi: 10.1016/j.patcog.2022.109170 – year: 2021 ident: Bib0012 article-title: Free lunch for few-shot learning: Distribution calibration publication-title: Proceedings of the 9th International Conference on Learning Representations – start-page: 1087 year: 2020 end-page: 1094 ident: Bib0159 article-title: Dynamic memory induction networks for few-shot text classification publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics doi: 10.18653/v1/2020.acl-main.102 – start-page: 14564 year: 2022 end-page: 14573 ident: Bib0048 article-title: Semi-supervised few-shot learning via multi-factor clustering publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2018 ident: Bib0143 article-title: Recasting gradient-based meta-learning as hierarchical Bayes publication-title: Proceedings of the International Conference on Learning Representations – start-page: 9919 year: 2020 end-page: 9928 ident: Bib0252 article-title: Frustratingly simple few-shot object detection publication-title: Proceedings of the 37th International Conference on Machine Learning – volume: 33 start-page: 1877 year: 2020 end-page: 1901 ident: Bib0088 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – start-page: 8741 year: 2021 end-page: 8750 ident: Bib0256 article-title: Simpler is better: Few-shot semantic segmentation with classifier weight transformer publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 1 start-page: 3 issue: 2 ident: Bib0031 article-title: Meta-learning for semi-supervised few-shot classification publication-title: Training – start-page: 8808 year: 2020 end-page: 8817 ident: Bib0242 article-title: Few-shot learning via embedding adaptation with set-to-set functions publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 233 year: 2018 end-page: 248 ident: Bib0126 article-title: Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 403 year: 2017 end-page: 412 ident: Bib0173 article-title: Beyond triplet loss: A deep quadruplet network for person re-identification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: Bib0225 article-title: Extended few-shot learning: Exploiting existing resources for novel tasks publication-title: arXiv preprint arXiv:2012.07176 – start-page: 6577 year: 2021 end-page: 6586 ident: Bib0153 article-title: A lazy approach to long-horizon gradient-based meta-learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2019 ident: Bib0039 article-title: EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification publication-title: IEEE J. Select. Topics Appl. Earth Observ. and Remote Sensing – start-page: 3482 year: 2021 end-page: 3491 ident: Bib0067 article-title: AdarGCN: Adaptive aggregation GCN for few-shot learning publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 11660 year: 2020 end-page: 11670 ident: Bib0232 article-title: Laplacian regularized few-shot learning publication-title: Proceedings of the International Conference on Machine Learning – start-page: 1300 year: 2021 end-page: 1304 ident: Bib0005 article-title: Few-shot learning for decoding surface electromyography for hand gesture recognition publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 649 year: 2016 end-page: 666 ident: Bib0128 article-title: Colorful image colorization publication-title: Proceedings of the European Conference on Computer Vision – start-page: 1 year: 2021 end-page: 10 ident: Bib0169 article-title: Few-shot ship classification based on metric learning publication-title: Multim. Syst. – volume: 32 start-page: 4 issue: 1 year: 2020 end-page: 24 ident: Bib0192 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 512 start-page: 352 year: 2022 end-page: 362 ident: Bib0131 article-title: SelfNet: A semi-supervised local Fisher discriminant network for few-shot learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.09.012 – year: 2020 ident: Bib0014 article-title: A theoretical analysis of the number of shots in few-shot learning publication-title: Proceedings of the 8th International Conference on Learning Representations – start-page: 487 year: 2018 end-page: 498 ident: Bib0125 article-title: Few-shot charge prediction with discriminative legal attributes publication-title: Proceedings of the 27th International Conference on Computational Linguistics – volume: 34 start-page: 200 year: 2021 end-page: 212 ident: Bib0219 article-title: Multimodal few-shot learning with frozen language models publication-title: Adv. Neural Inf. Process. Syst. – start-page: 179 year: 2021 ident: Bib0096 article-title: Self-supervised knowledge distillation for few-shot learning publication-title: Proceedings of the 32nd British Machine Vision Conference – start-page: 5822 year: 2018 end-page: 5830 ident: Bib0051 article-title: Low-shot learning with imprinted weights publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4095 year: 2018 end-page: 4104 ident: Bib0163 article-title: Efficient neural architecture search via parameters sharing publication-title: Proceedings of the International Conference on Machine Learning – start-page: 12576 year: 2020 end-page: 12584 ident: Bib0175 article-title: Boosting few-shot learning with adaptive margin loss publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 32 start-page: 10276 year: 2019 end-page: 10286 ident: Bib0065 article-title: Learning to self-train for semi-supervised few-shot classification publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2005 year: 2021 end-page: 2009 ident: Bib0201 article-title: Pseudo siamese network for few-shot intent generation publication-title: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval – volume: 12892 start-page: 487 year: 2021 end-page: 499 ident: Bib0234 article-title: Leveraging the feature distribution in transfer-based few-shot learning publication-title: Artificial Neural Networks and Machine Learning - 30th International Conference on Artificial Neural Networks doi: 10.1007/978-3-030-86340-1_39 – start-page: 1 year: 2019 end-page: 11 ident: Bib0037 article-title: Traffic sign detection under challenging conditions: A deeper look into performance variations and spectral characteristics publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2019.2931429 – start-page: 6407 year: 2019 end-page: 6414 ident: Bib0184 article-title: Hybrid attention-based prototypical networks for noisy few-shot relation classification publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2022 ident: Bib0162 article-title: Hierarchical variational memory for few-shot learning across domains publication-title: Proceedings of the 10th International Conference on Learning Representations – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: Bib0187 article-title: Adap-EMD: Adaptive EMD for aircraft fine-grained classification in remote sensing publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 804 year: 2020 end-page: 810 ident: Bib0196 article-title: Transductive relation-propagation network for few-shot learning publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – start-page: 7352 year: 2021 end-page: 7362 ident: Bib0248 article-title: FSCE: Few-shot object detection via contrastive proposal encoding publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2020 ident: Bib0021 article-title: Meta-Dataset: A dataset of datasets for learning to learn from few examples publication-title: Proceedings of the 8th International Conference on Learning Representations – start-page: 1199 year: 2018 end-page: 1208 ident: Bib0189 article-title: Learning to compare: Relation network for few-shot learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: Bib0238 article-title: Task augmentation by rotating for meta-learning publication-title: arXiv preprint arXiv:2003.00804 – start-page: 192 year: 2020 end-page: 210 ident: Bib0250 article-title: Few-shot object detection and viewpoint estimation for objects in the wild publication-title: Proceedings of the European Conference on Computer Vision – start-page: 2850 year: 2018 end-page: 2860 ident: Bib0076 article-title: Delta-encoder: An effective sample synthesis method for few-shot object recognition publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – volume: 30 year: 2017 ident: Bib0121 article-title: Few-shot adversarial domain adaptation publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2644 year: 2021 end-page: 2653 ident: Bib0212 article-title: Multimodal prototypical networks for few-shot learning publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 622 year: 2019 end-page: 631 ident: Bib0262 article-title: Feature weighting and boosting for few-shot segmentation publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2022 ident: Bib0154 article-title: How to train your MAML to excel in few-shot classification publication-title: Proceedings of the 10th International Conference on Learning Representations – year: 2019 ident: Bib0142 article-title: Meta-learning with latent embedding optimization publication-title: Proceedings of the International Conference on Learning Representations – year: 2021 ident: Bib0161 article-title: Prototype memory and attention mechanisms for few shot image generation publication-title: Proceedings of the International Conference on Learning Representations – year: 2018 ident: Bib0193 article-title: Few-shot learning with graph neural networks publication-title: Proceedings of the 6th International Conference on Learning Representations – year: 2022 ident: Bib0247 article-title: Integral migrating pre-trained transformer encoder-decoders for visual object detection publication-title: arXiv preprint arXiv:2205.09613 – start-page: 3816 year: 2021 end-page: 3830 ident: Bib0115 article-title: Making pre-trained language models better few-shot learners publication-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing doi: 10.18653/v1/2021.acl-long.295 – volume: 60 start-page: 1 year: 2022 end-page: 15 ident: Bib0010 article-title: Spatial-spectral local domain adaption for cross domain few shot hyperspectral images classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3208897 – start-page: 1185 year: 2021 end-page: 1194 ident: Bib0264 article-title: Incremental few-shot instance segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1525 year: 2022 end-page: 1535 ident: Bib0036 article-title: Danish Fungi 2020—Not just another image recognition dataset publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 2212 year: 2021 end-page: 2221 ident: Bib0079 article-title: Parameterless transductive feature re-representation for few-shot learning publication-title: Proceedings of the International Conference on Machine Learning – start-page: 266 year: 2020 end-page: 282 ident: Bib0095 article-title: Rethinking few-shot image classification: A good embedding is all you need? publication-title: Proceedings of the 16th European Conference on Computer Vision – start-page: 2778 year: 2021 end-page: 2788 ident: Bib0246 article-title: TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 80 year: 2022 end-page: 96 ident: Bib0002 article-title: Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification publication-title: NeurIPS 2021 Competitions and Demonstrations Track – year: 2021 ident: Bib0118 article-title: GPT understands, too publication-title: arXiv preprint arXiv:2103.10385 – start-page: 121 year: 2020 end-page: 138 ident: Bib0179 article-title: Embedding propagation: Smoother manifold for few-shot classification publication-title: Proceedings of the European Conference on Computer Vision – volume: 202 start-page: 107406 year: 2022 ident: Bib0056 article-title: Few-shot learning based on Attn-CutMix and task-adaptive transformer for the recognition of cotton growth state publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107406 – start-page: 438 year: 2020 end-page: 455 ident: Bib0176 article-title: Negative margin matters: Understanding margin in few-shot classification publication-title: Proceedings of the European Conference on Computer Vision – start-page: 124 year: 2020 end-page: 141 ident: Bib0022 article-title: A broader study of cross-domain few-shot learning publication-title: Proceedings of the European Conference on Computer Vision – start-page: 763 year: 2020 end-page: 778 ident: Bib0259 article-title: Prototype mixture models for few-shot semantic segmentation publication-title: Proceedings of the European Conference on Computer Vision – start-page: 3309 year: 2019 end-page: 3319 ident: Bib0244 article-title: Meta-curvature publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – year: 2018 ident: Bib0167 article-title: DARTS: Differentiable architecture search publication-title: arXiv preprint arXiv:1806.09055 – start-page: 10836 year: 2021 end-page: 10846 ident: Bib0224 article-title: Exploring complementary strengths of invariant and equivariant representations for few-shot learning publication-title: Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference – year: 2022 ident: Bib0019 article-title: Meta-DETR: Image-level few-shot detection with inter-class correlation exploitation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3195735 – start-page: 9594 year: 2021 end-page: 9602 ident: Bib0093 article-title: Partial is better than all: Revisiting fine-tuning strategy for few-shot learning publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 5177 year: 2018 end-page: 5186 ident: Bib0063 article-title: Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2021 ident: Bib0221 article-title: Unsupervised embedding adaptation via early-stage feature reconstruction for few-shot classification publication-title: arXiv preprint arXiv:2106.11486 – start-page: 8680 year: 2019 end-page: 8689 ident: Bib0054 article-title: Image deformation meta-networks for one-shot learning publication-title: Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference – year: 2021 ident: Bib0020 article-title: Meta-learning based incremental few-shot object detection publication-title: IEEE Trans. Circ. Syst. Vid. Technol. – year: 2020 ident: Bib0097 article-title: CrossTransformers: Spatially-aware few-shot transfer publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – year: 2021 ident: Bib0178 article-title: Concept learners for few-shot learning publication-title: Proceedings of the 9th International Conference on Learning Representations – ident: Bib0024 – start-page: 2463 year: 2019 end-page: 2473 ident: Bib0087 article-title: Language models as knowledge bases? publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing doi: 10.18653/v1/D19-1250 – start-page: 5542 year: 2018 end-page: 5551 ident: Bib0015 article-title: Feature generating networks for zero-shot learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: arXiv–1810 year: 2018 ident: Bib0017 article-title: Meta-learning: A survey publication-title: arXiv e-prints – start-page: 1 year: 2022 end-page: 15 ident: Bib0003 article-title: FewJoint: Few-shot learning for joint dialogue understanding publication-title: Int. J. Mach. Learn. Cyber. – start-page: 8751 year: 2021 end-page: 8760 ident: Bib0047 article-title: Iterative label cleaning for transductive and semi-supervised few-shot learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 152 year: 2021 ident: Bib0223 article-title: Rich semantics improve few-shot learning publication-title: Proceedings of the 32nd British Machine Vision Conference – start-page: 404 year: 2020 end-page: 416 ident: Bib0230 article-title: GPU-based self-organizing maps for post-labeled few-shot unsupervised learning publication-title: Proceedings of the International Conference on Neural Information Processing – year: 2020 ident: Bib0236 article-title: PAC-Bayesian meta-learning with implicit prior and posterior publication-title: arXiv preprint arXiv:2003.02455 – start-page: 9577 year: 2019 end-page: 9586 ident: Bib0253 article-title: Meta R-CNN: Towards general solver for instance-level low-shot learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 31 year: 2018 ident: Bib0144 article-title: Probabilistic model-agnostic meta-learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: Bib0147 article-title: Amortized Bayesian meta-learning publication-title: Proceedings of the International Conference on Learning Representations – volume: 53 start-page: 1 issue: 3 year: 2020 end-page: 34 ident: Bib0006 article-title: Generalizing from a few examples: A survey on few-shot learning publication-title: ACM Comput. Surv. – start-page: 9851 year: 2022 end-page: 9860 ident: Bib0155 article-title: Dynamic kernel selection for improved generalization and memory efficiency in meta-learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: arXiv–2204 year: 2022 ident: Bib0220 article-title: The self-optimal-transport feature transform publication-title: arXiv e-prints – volume: 31 year: 2018 ident: Bib0145 article-title: Bayesian model-agnostic meta-learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 105 start-page: 107370 year: 2020 ident: Bib0068 article-title: Deep transductive network for generalized zero shot learning publication-title: Pattern Recog. doi: 10.1016/j.patcog.2020.107370 – volume: 160 start-page: 142 year: 2022 end-page: 147 ident: Bib0209 article-title: Baby steps towards few-shot learning with multiple semantics publication-title: Pattern Recog. Lett. – start-page: 441 year: 2019 end-page: 449 ident: Bib0210 article-title: Few-shot image recognition with knowledge transfer publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 10559 year: 2020 end-page: 10566 ident: Bib0072 article-title: Diversity transfer network for few-shot learning publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2019 ident: Bib0111 article-title: Language models as knowledge bases? publication-title: arXiv preprint arXiv:1909.01066 – start-page: 7115 year: 2019 end-page: 7123 ident: Bib0240 article-title: TapNet: Neural network augmented with task-adaptive projection for few-shot learning publication-title: Proceedings of the International Conference on Machine Learning – year: 2018 ident: Bib0084 article-title: Deep contextualized word representations publication-title: arXiv preprint arXiv:1802.05365 – start-page: 1835 year: 2021 end-page: 1845 ident: Bib0107 article-title: Template-based named entity recognition using BART publication-title: Findings of the Association for Computational Linguistics: ACL/IJCNLP (Findings of ACL) doi: 10.18653/v1/2021.findings-acl.161 – start-page: 12365 year: 2020 end-page: 12375 ident: Bib0166 article-title: Meta-learning of neural architectures for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3018 year: 2017 end-page: 3027 ident: Bib0058 article-title: Low-shot visual recognition by shrinking and hallucinating features publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 2927 year: 2018 end-page: 2936 ident: Bib0148 article-title: Gradient-based meta-learning with learned layerwise metric and subspace publication-title: Proceedings of the International Conference on Machine Learning – start-page: 8748 year: 2021 end-page: 8763 ident: Bib0205 article-title: Learning transferable visual models from natural language supervision publication-title: Proceedings of the International Conference on Machine Learning – start-page: 8543 year: 2019 end-page: 8553 ident: Bib0059 article-title: Data augmentation using learned transformations for one-shot medical image segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 8059 year: 2019 end-page: 8068 ident: Bib0127 article-title: Boosting few-shot visual learning with self-supervision publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 11719 year: 2019 end-page: 11727 ident: Bib0149 article-title: Task agnostic meta-learning for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 718 year: 2020 end-page: 734 ident: Bib0207 article-title: Large-scale few-shot learning via multi-modal knowledge discovery publication-title: Proceedings of the European Conference on Computer Vision – start-page: 1659 year: 2022 end-page: 1671 ident: Bib0050 article-title: N-shot learning for augmenting task-oriented dialogue state tracking publication-title: Findings of the Association for Computational Linguistics – volume: 133 start-page: 109024 year: 2023 ident: Bib0130 article-title: SaberNet: Self-attention based effective relation network for few-shot learning publication-title: Pattern Recog. doi: 10.1016/j.patcog.2022.109024 – start-page: 1842 year: 2016 end-page: 1850 ident: Bib0156 article-title: Meta-learning with memory-augmented neural networks publication-title: Proceedings of the International Conference on Machine Learning – year: 2020 ident: Bib0231 article-title: Region comparison network for interpretable few-shot image classification publication-title: arXiv preprint arXiv:2009.03558 – start-page: 8646 year: 2022 end-page: 8665 ident: Bib0061 article-title: FlipDA: Effective and robust data augmentation for few-shot learning publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics doi: 10.18653/v1/2022.acl-long.592 – start-page: 105 year: 2022 end-page: 113 ident: Bib0109 article-title: OpenPrompt: An open-source framework for prompt-learning publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics doi: 10.18653/v1/2022.acl-demo.10 – start-page: 14554 year: 2022 end-page: 14563 ident: Bib0185 article-title: CAD: Co-adapting discriminative features for improved few-shot classification publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 13390 year: 2020 end-page: 13399 ident: Bib0198 article-title: DPGN: Distribution propagation graph network for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3017 year: 2021 end-page: 3023 ident: Bib0004 article-title: MFNP: A meta-optimized model for few-shot next POI recommendation publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – start-page: 3045 year: 2021 end-page: 3059 ident: Bib0110 article-title: The power of scale for parameter-efficient prompt tuning publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing doi: 10.18653/v1/2021.emnlp-main.243 – year: 2020 ident: Bib0011 article-title: Probably approximately correct constrained learning publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – year: 2019 ident: Bib0092 article-title: A closer look at few-shot classification publication-title: Proceedings of the 7th International Conference on Learning Representations – volume: 34 start-page: 13073 year: 2021 end-page: 13085 ident: Bib0106 article-title: Rectifying the shortcut learning of background for few-shot learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 year: 2017 ident: Bib0102 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2021 ident: Bib0258 article-title: Hypercorrelation squeeze for few-shot segmentation publication-title: arXiv preprint arXiv:2104.01538 – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 ident: Bib0032 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – start-page: 9090 year: 2018 end-page: 9098 ident: Bib0124 article-title: Feature space transfer for data augmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2022 end-page: 12 ident: Bib0218 article-title: Learning to prompt for vision-language models publication-title: Int. J. Comput. Vis. – start-page: 142 year: 2020 end-page: 158 ident: Bib0261 article-title: Part-aware prototype network for few-shot semantic segmentation publication-title: Proceedings of the European Conference on Computer Vision – volume: 29 start-page: 3630 year: 2016 end-page: 3638 ident: Bib0023 article-title: Matching networks for one shot learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 40 start-page: 385 issue: 4 year: 1985 ident: Bib0009 article-title: How many memory systems are there? publication-title: Amer. Psychol. – start-page: 8671 year: 2021 end-page: 8680 ident: Bib0081 article-title: Pseudo-loss confidence metric for semi-supervised few-shot learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2022 ident: Bib0094 article-title: ReFine: Re-randomization before fine-tuning for cross-domain few-shot learning publication-title: arXiv preprint arXiv:2205.05282 – start-page: 7772 year: 2020 end-page: 7779 ident: Bib0078 article-title: Neural snowball for few-shot relation learning publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2019 ident: Bib0139 article-title: ES-MAML: Simple Hessian-free meta learning publication-title: arXiv preprint arXiv:1910.01215 – year: 2018 ident: Bib0136 article-title: On first-order meta-learning algorithms publication-title: arXiv preprint arXiv:1803.02999 – start-page: 814 year: 2014 end-page: 829 ident: Bib0062 article-title: Domain-adaptive discriminative one-shot learning of gestures publication-title: Proceedings of the European Conference on Computer Vision – start-page: 1 issue: 01 year: 2020 end-page: 1 ident: Bib0260 article-title: Prior guided feature enrichment network for few-shot segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: abs/1710.08347 year: 2017 ident: Bib0074 article-title: Improving one-shot learning through fusing side information publication-title: CoRR – volume: 520 start-page: 356 year: 2023 end-page: 364 ident: Bib0177 article-title: ReNAP: Relation network with adaptive prototypical learning for few-shot classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.11.082 – year: 2019 ident: Bib0195 article-title: Meta-graph: Few shot link prediction via meta learning publication-title: arXiv preprint arXiv:1912.09867 – year: 2019 ident: Bib0241 article-title: Generalized adaptation for few-shot learning publication-title: arXiv preprint arXiv:1911.10807 – start-page: 9042 year: 2021 end-page: 9051 ident: Bib0204 article-title: Meta-baseline: Exploring simple meta-learning for few-shot learning publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision doi: 10.1109/ICCV48922.2021.00893 – year: 2017 ident: Bib0255 article-title: One-shot learning for semantic segmentation publication-title: Proceedings of the British Machine Vision Conference – volume: 30 start-page: 1318 year: 2020 end-page: 1331 ident: Bib0190 article-title: BSNet: Bi-similarity network for few-shot fine-grained image classification publication-title: IEEE Trans. Image Process. – year: 2017 ident: Bib0157 article-title: Learning to remember rare events publication-title: Proceedings of the 5th International Conference on Learning Representations – start-page: 84 year: 2015 end-page: 92 ident: Bib0171 article-title: Deep metric learning using triplet network publication-title: Proceedings of the International Workshop on Similarity-based Pattern Recognition – year: 2019 ident: Bib0152 article-title: Meta-learning with warped gradient descent publication-title: arXiv preprint arXiv:1909.00025 – volume: 29 start-page: 97 year: 2019 end-page: 104 ident: Bib0033 article-title: The Omniglot challenge: A 3-year progress report publication-title: Curr. Opin. Behav. Sci.ences – year: 2019 ident: Bib0040 article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC) publication-title: arXiv preprint arXiv:1902.03368 – volume: 31 year: 2018 ident: Bib0122 article-title: One-shot unsupervised cross domain translation publication-title: Adv. Neural Inf. Process. Syst. – year: 2019 ident: Bib0158 article-title: Adaptive posterior learning: Few-shot learning with a surprise-based memory module publication-title: Proceedings of the 7th International Conference on Learning Representations – start-page: 9197 year: 2019 end-page: 9206 ident: Bib0202 article-title: PANet: Few-shot image semantic segmentation with prototype alignment publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2015 ident: Bib0120 article-title: Multi-task transfer methods to improve one-shot learning for multimedia event detection. publication-title: Proceedings of the British Machine Vision Conference – year: 2018 ident: Bib0007 article-title: Small sample learning in big data era publication-title: arXiv preprint arXiv:1808.04572 – year: 2020 ident: Bib0146 article-title: Bayesian meta-learning for the few-shot setting via deep kernels – start-page: 237 year: 2020 end-page: 253 ident: Bib0181 article-title: Attentive prototype few-shot learning with capsule network-based embedding publication-title: Proceedings of the European Conference on Computer Vision – start-page: 9003 year: 2022 end-page: 9013 ident: Bib0043 article-title: Generating representative samples for few-shot classification publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2009 ident: Bib0029 article-title: Learning multiple layers of features from tiny images – start-page: 8401 year: 2021 end-page: 8409 ident: Bib0055 article-title: Learning intact features by erasing-inpainting for few-shot classification publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 9052 year: 2021 end-page: 9061 ident: Bib0080 article-title: Coarsely-labeled data for better few-shot transfer publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2017 ident: Bib0140 article-title: Meta-SGD: Learning to learn quickly for few-shot learning publication-title: arXiv preprint arXiv:1707.09835 – start-page: 2383 year: 2016 end-page: 2392 ident: Bib0101 article-title: SQuAD: 100, 000+ questions for machine comprehension of text publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing doi: 10.18653/v1/d16-1264 – start-page: 3606 year: 2014 end-page: 3613 ident: Bib0035 article-title: Describing textures in the wild publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 464 year: 2000 end-page: 471 ident: Bib0057 article-title: Learning from one example through shared densities on transforms publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3349 year: 2018 end-page: 3358 ident: Bib0075 article-title: Low-shot learning with large-scale diffusion publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 645 year: 2020 end-page: 666 ident: Bib0129 article-title: When does self-supervision improve few-shot learning? publication-title: Proceedings of the European Conference on Computer Vision – year: 2022 ident: Bib0116 article-title: Making pre-trained language models end-to-end few-shot learners with contrastive prompt tuning publication-title: arXiv preprint arXiv:2204.00166 – start-page: 2218 year: 2020 end-page: 2227 ident: Bib0239 article-title: Charting the right manifold: Manifold mixup for few-shot learning publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – year: 2021 ident: Bib0215 article-title: ActionCLIP: A new paradigm for video action recognition publication-title: arXiv preprint arXiv:2109.08472 – start-page: 11085 year: 2020 end-page: 11092 ident: Bib0180 article-title: SGAP-Net: Semantic-guided attentive prototypes network for few-shot human-object interaction recognition publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2021 ident: Bib0217 article-title: CPT: Colorful prompt tuning for pre-trained vision-language models publication-title: arXiv preprint arXiv:2109.11797 – volume: 32 year: 2019 ident: Bib0098 article-title: Cross attention network for few-shot classification publication-title: Adv. Neural Inf. Process. Syst. – volume: 406 start-page: 49 year: 2020 end-page: 58 ident: Bib0172 article-title: Revisiting metric learning for few-shot image classification publication-title: Neurocomputing – year: 2021 ident: Bib0083 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: Proceedings of the 9th International Conference on Learning Representations – start-page: 118 year: 2020 end-page: 134 ident: Bib0182 article-title: SEN: A novel feature normalization dissimilarity measure for prototypical few-shot learning networks publication-title: Proceedings of the European Conference on Computer Vision – start-page: 740 year: 2014 end-page: 755 ident: Bib0038 article-title: Microsoft COCO: Common objects in context publication-title: Proceedings of the European Conference on Computer Vision – year: 2019 ident: Bib0103 article-title: GLUE: A multi-task benchmark and analysis platform for natural language understanding publication-title: Proceedings of the 7th International Conference on Learning Representations – start-page: 4077 year: 2017 end-page: 4087 ident: Bib0174 article-title: Prototypical networks for few-shot learning publication-title: Proceedings of the International Conference on Neural Information Processing Systems – start-page: 1691 year: 2020 end-page: 1703 ident: Bib0089 article-title: Generative pretraining from pixels publication-title: Proceedings of the International Conference on Machine Learning – start-page: 8247 year: 2019 end-page: 8255 ident: Bib0206 article-title: Generalized zero-and few-shot learning via aligned variational autoencoders publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 12836 year: 2020 end-page: 12845 ident: Bib0064 article-title: Instance credibility inference for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 13663 year: 2021 end-page: 13672 ident: Bib0132 article-title: Pareto self-supervised training for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 9715 year: 2019 end-page: 9724 ident: Bib0077 article-title: Few-shot learning with global class representations publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2018 ident: Bib0052 article-title: AutoAugment: Learning augmentation policies from data publication-title: arXiv preprint arXiv:1805.09501 – start-page: 6558 year: 2020 end-page: 6565 ident: Bib0183 article-title: One-shot image classification by learning to restore prototypes publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2022 ident: Bib0200 article-title: Few-shot learning with siamese networks and label tuning publication-title: arXiv preprint arXiv:2203.14655 – year: 2021 ident: Bib0117 article-title: Factual probing is [MASK]: Learning vs. learning to recall publication-title: arXiv preprint arXiv:2104.05240 – volume: 32 year: 2019 ident: Bib0134 article-title: Meta-learning with implicit gradients publication-title: Adv. Neural Inf. Process. Syst. – ident: Bib0151 article-title: Automated relational meta-learning – start-page: 501 year: 2022 end-page: 516 ident: Bib0026 article-title: FewNLU: Benchmarking state-of-the-art methods for few-shot natural language understanding publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics doi: 10.18653/v1/2022.acl-long.38 – year: 2020 ident: Bib0008 article-title: Learning from very few samples: A survey publication-title: arXiv preprint arXiv:2009.02653 – start-page: 9068 year: 2022 end-page: 9077 ident: Bib0100 article-title: Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 8410 year: 2022 end-page: 8423 ident: Bib0119 article-title: PPT: Pre-trained prompt tuning for few-shot learning publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics doi: 10.18653/v1/2022.acl-long.576 – volume: 2 start-page: 4 issue: 3 year: 2018 ident: Bib0137 article-title: Reptile: A scalable metalearning algorithm publication-title: arXiv preprint arXiv:1803.02999 – start-page: 12203 year: 2020 end-page: 12213 ident: Bib0186 article-title: DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2022 ident: Bib0045 article-title: Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning publication-title: arXiv preprint arXiv:2202.09059 – start-page: 248 year: 2009 end-page: 255 ident: Bib0030 article-title: ImageNet: A large-scale hierarchical image database publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: Bib0199 article-title: Few-shot learning for palmprint recognition via meta-Siamese network publication-title: IEEE Trans. Instrum. Measur. – year: 2013 ident: Bib0034 article-title: Fine-grained visual classification of aircraft publication-title: arXiv preprint arXiv:1306.5151 – start-page: 1481 year: 2022 end-page: 1489 ident: Bib0168 article-title: Guided deep metric learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 9925 year: 2019 end-page: 9934 ident: Bib0254 article-title: Meta-learning to detect rare objects publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 1597 year: 2022 end-page: 1606 ident: Bib0233 article-title: Enhancing few-shot image classification with unlabelled examples publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision doi: 10.1109/WACV51458.2022.00166 – start-page: 4654 year: 2021 end-page: 4660 ident: Bib0001 article-title: Federated meta-learning for fraudulent credit card detection publication-title: Proceedings of the 29th International Conference on International Joint Conference on Artificial Intelligence – start-page: 4171 year: 2019 end-page: 4186 ident: Bib0085 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies doi: 10.18653/v1/n19-1423 – start-page: 4582 year: 2021 end-page: 4597 ident: Bib0108 article-title: Prefix-tuning: Optimizing continuous prompts for generation publication-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing doi: 10.18653/v1/2021.acl-long.353 – start-page: 8782 year: 2021 end-page: 8791 ident: Bib0249 article-title: Semantic relation reasoning for shot-stable few-shot object detection publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 32 start-page: 4847 year: 2019 end-page: 4857 ident: Bib0211 article-title: Adaptive cross-modal few-shot learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 10617 year: 2020 end-page: 10627 ident: Bib0237 article-title: MetaFun: Meta-learning with iterative functional updates publication-title: Proceedings of the International Conference on Machine Learning – year: 2020 ident: Bib0091 article-title: What makes instance discrimination good for transfer learning? publication-title: arXiv preprint arXiv:2006.06606 – start-page: 4953 year: 2022 end-page: 4963 ident: Bib0216 article-title: Align and prompt: Video-and-language pre-training with entity prompts publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 21984 year: 2021 end-page: 21996 ident: Bib0257 article-title: Few-shot segmentation via cycle-consistent transformer publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – year: 2018 ident: Bib0086 article-title: Improving language understanding by generative pre-training – start-page: 9014 year: 2022 end-page: 9021 ident: Bib0203 article-title: MetaNODE: Prototype optimization as a neural ODE for few-shot learning publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 13470 year: 2020 end-page: 13479 ident: Bib0073 article-title: Adversarial feature hallucination networks for few-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 34 start-page: 3584 year: 2021 end-page: 3595 ident: Bib0069 article-title: Dynamic distillation network for cross-domain few-shot recognition with unlabeled data publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: Bib0268 article-title: One-shot instance segmentation publication-title: arXiv preprint arXiv:1811.11507 – start-page: arXiv–2203 year: 2022 ident: Bib0028 article-title: PET: A new dataset for process extraction from natural language text publication-title: arXiv e-prints – year: 2021 ident: Bib0214 article-title: Multimodal conditionality for natural language generation publication-title: arXiv preprint arXiv:2109.01229 – volume: 33 start-page: 3907 year: 2020 end-page: 3916 ident: Bib0150 article-title: OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification publication-title: Adv. Neural Inf. Process. Syst. – start-page: 3279 year: 2021 end-page: 3288 ident: Bib0213 article-title: Towards contextual learning in few-shot object classification publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – year: 2020 ident: Bib0042 article-title: It’s not just size that matters: Small language models are also few-shot learners publication-title: arXiv preprint arXiv:2009.07118 – start-page: 11099 year: 2021 end-page: 11108 ident: Bib0265 article-title: FAPIS: A few-shot anchor-free part-based instance segmenter publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 16000 year: 2022 end-page: 16009 ident: Bib0090 article-title: Masked autoencoders are scalable vision learners publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 2 year: 2015 ident: Bib0170 article-title: Siamese neural networks for one-shot image recognition publication-title: ICML Deep Learning Workshop – start-page: 6548 year: 2019 end-page: 6557 ident: Bib0070 article-title: LaSO: Label-set operations networks for multi-label few-shot learning publication-title: Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference – start-page: 255 year: 2021 end-page: 269 ident: Bib0112 article-title: Exploiting cloze-questions for few-shot text classification and natural language inference publication-title: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics doi: 10.18653/v1/2021.eacl-main.20 – start-page: 7972 year: 2022 end-page: 7981 ident: Bib0188 article-title: Joint distribution matters: Deep Brownian distance covariance for few-shot classification publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 78 year: 2016 end-page: 86 ident: Bib0060 article-title: One-shot learning of scene locations via feature trajectory transfer publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 550 year: 2018 end-page: 559 ident: Bib0164 article-title: Understanding and simplifying one-shot architecture search publication-title: Proceedings of the International Conference on Machine Learning – start-page: 10011 year: 2021 end-page: 10021 ident: Bib0013 article-title: Generalization error bound for hyperbolic ordinal embedding publication-title: Proceedings of the 38th International Conference on Machine Learning – year: 2021 ident: Bib0046 article-title: Self-training for few-shot transfer across extreme task differences publication-title: Proceedings of the 9th International Conference on Learning Representations – start-page: 983 year: 2018 end-page: 993 ident: Bib0066 article-title: Low-shot learning via covariance-preserving adversarial augmentation networks publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – volume: 50 start-page: 3855 issue: 9 year: 2020 end-page: 3865 ident: Bib0267 article-title: SG-One: Similarity guidance network for one-shot semantic segmentation publication-title: IEEE Trans. Cyber. – year: 2021 ident: Bib0105 article-title: Revisiting few-sample BERT fine-tuning publication-title: Proceedings of the 9th International Conference on Learning Representations – start-page: 1440 year: 2015 end-page: 1448 ident: Bib0245 article-title: Fast R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – year: 2022 ident: Bib0025 article-title: MSANet: Multi-similarity and attention guidance for boosting few-shot segmentation publication-title: arXiv preprint arXiv:2206.09667 – start-page: 6381 year: 2019 end-page: 6387 ident: Bib0053 article-title: EDA: Easy data augmentation techniques for boosting performance on text classification tasks publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing doi: 10.18653/v1/D19-1670 – volume: 514 start-page: 351 year: 2022 end-page: 361 ident: Bib0135 article-title: MGML: Momentum group meta-learning for few-shot image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.012 – start-page: 1745 year: 2021 end-page: 1749 ident: Bib0227 article-title: Self-supervised learning for few-shot image classification publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 1126 year: 2017 end-page: 1135 ident: Bib0133 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proceedings of the International Conference on Machine Learning – start-page: 13499 year: 2020 end-page: 13508 ident: Bib0141 article-title: Attentive weights generation for few shot learning via information maximization publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 2097 year: 2017 end-page: 2106 ident: Bib0041 article-title: ChestX-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference – start-page: 953 year: 2021 end-page: 962 ident: Bib0016 article-title: Learning graph embeddings for compositional zero-shot learning publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 8812 year: 2021 end-page: 8821 ident: Bib0044 article-title: Variational feature disentangling for fine-grained few-shot classification publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 8 start-page: 423 year: 2020 end-page: 438 ident: Bib0113 article-title: How can we know what language models know? publication-title: Trans. Assoc. Computat. Ling. – start-page: 7564 year: 2018 end-page: 7573 ident: Bib0123 article-title: Multi-content GAN for few-shot font style transfer publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 9172 year: 2020 end-page: 9181 ident: Bib0266 article-title: FGN: Fully guided network for few-shot instance segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – ident: e_1_3_1_31_2 doi: 10.1109/CVPR.2009.5206848 – volume-title: ICML Deep Learning Workshop year: 2015 ident: e_1_3_1_171_2 – year: 2018 ident: e_1_3_1_8_2 article-title: Small sample learning in big data era publication-title: arXiv preprint arXiv:1808.04572 – ident: e_1_3_1_49_2 doi: 10.1109/CVPR52688.2022.01416 – ident: e_1_3_1_45_2 doi: 10.1109/ICCV48922.2021.00869 – year: 2018 ident: e_1_3_1_53_2 article-title: AutoAugment: Learning augmentation policies from data publication-title: arXiv preprint arXiv:1805.09501 – ident: e_1_3_1_195_2 doi: 10.1109/CVPR.2019.00010 – ident: e_1_3_1_124_2 doi: 10.1109/CVPR.2018.00789 – start-page: 80 volume-title: NeurIPS 2021 Competitions and Demonstrations Track year: 2022 ident: e_1_3_1_3_2 – ident: e_1_3_1_132_2 doi: 10.1016/j.neucom.2022.09.012 – ident: e_1_3_1_33_2 doi: 10.1007/s11263-015-0816-y – ident: e_1_3_1_7_2 doi: 10.1145/3386252 – ident: e_1_3_1_187_2 doi: 10.1109/CVPR42600.2020.01222 – ident: e_1_3_1_210_2 doi: 10.1016/j.patrec.2022.06.012 – start-page: 10617 volume-title: Proceedings of the International Conference on Machine Learning year: 2020 ident: e_1_3_1_238_2 – ident: e_1_3_1_102_2 doi: 10.18653/v1/d16-1264 – ident: e_1_3_1_207_2 doi: 10.1109/CVPR.2019.00844 – start-page: 11660 volume-title: Proceedings of the International Conference on Machine Learning year: 2020 ident: e_1_3_1_233_2 – ident: e_1_3_1_76_2 doi: 10.1109/CVPR.2018.00353 – ident: e_1_3_1_198_2 doi: 10.1609/aaai.v33i01.33013558 – ident: e_1_3_1_74_2 doi: 10.1109/CVPR42600.2020.01348 – ident: e_1_3_1_121_2 doi: 10.5244/C.29.37 – ident: e_1_3_1_142_2 doi: 10.1109/CVPR42600.2020.01351 – ident: e_1_3_1_120_2 doi: 10.18653/v1/2022.acl-long.576 – ident: e_1_3_1_128_2 doi: 10.1109/ICCV.2019.00815 – ident: e_1_3_1_10_2 doi: 10.1037/0003-066X.40.4.385 – year: 2019 ident: e_1_3_1_140_2 article-title: ES-MAML: Simple Hessian-free meta learning publication-title: arXiv preprint arXiv:1910.01215 – ident: e_1_3_1_6_2 doi: 10.1109/ICASSP39728.2021.9413582 – start-page: 10991 volume-title: Proceedings of the 38th International Conference on Machine Learning year: 2021 ident: e_1_3_1_223_2 – volume: 30 year: 2017 ident: e_1_3_1_103_2 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_180_2 doi: 10.1007/978-3-030-58574-7_8 – volume: 32 year: 2019 ident: e_1_3_1_135_2 article-title: Meta-learning with implicit gradients publication-title: Adv. Neural Inf. Process. Syst. – start-page: 4654 volume-title: Proceedings of the 29th International Conference on International Joint Conference on Artificial Intelligence year: 2021 ident: e_1_3_1_2_2 – volume-title: Proceedings of the International Conference on Learning Representations year: 2018 ident: e_1_3_1_144_2 – start-page: arXiv–1810 year: 2018 ident: e_1_3_1_18_2 article-title: Meta-learning: A survey publication-title: arXiv e-prints – ident: e_1_3_1_56_2 doi: 10.1609/aaai.v35i9.17021 – year: 2019 ident: e_1_3_1_112_2 article-title: Language models as knowledge bases? publication-title: arXiv preprint arXiv:1909.01066 – start-page: 487 volume-title: Proceedings of the 27th International Conference on Computational Linguistics year: 2018 ident: e_1_3_1_126_2 – ident: e_1_3_1_154_2 doi: 10.1109/ICCV48922.2021.00651 – volume-title: Proceedings of the International Conference on Learning Representations year: 2020 ident: e_1_3_1_236_2 – ident: e_1_3_1_205_2 doi: 10.1109/ICCV48922.2021.00893 – ident: e_1_3_1_204_2 doi: 10.1609/aaai.v36i8.20885 – ident: e_1_3_1_68_2 doi: 10.1109/WACV48630.2021.00352 – volume-title: Proceedings of the 8th International Conference on Learning Representations year: 2020 ident: e_1_3_1_22_2 – ident: e_1_3_1_25_2 – start-page: 1691 volume-title: Proceedings of the International Conference on Machine Learning year: 2020 ident: e_1_3_1_90_2 – volume-title: Proceedings of the 8th International Conference on Learning Representations year: 2020 ident: e_1_3_1_15_2 – year: 2019 ident: e_1_3_1_153_2 article-title: Meta-learning with warped gradient descent publication-title: arXiv preprint arXiv:1909.00025 – volume-title: Proceedings of the 9th International Conference on Learning Representations year: 2021 ident: e_1_3_1_84_2 – ident: e_1_3_1_111_2 doi: 10.18653/v1/2021.emnlp-main.243 – ident: e_1_3_1_178_2 doi: 10.1016/j.neucom.2022.11.082 – start-page: 2850 volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems year: 2018 ident: e_1_3_1_77_2 – ident: e_1_3_1_58_2 doi: 10.1109/CVPR.2000.855856 – ident: e_1_3_1_261_2 doi: 10.1109/TPAMI.2020.3032166 – ident: e_1_3_1_62_2 doi: 10.18653/v1/2022.acl-long.592 – start-page: 1 year: 2022 ident: e_1_3_1_219_2 article-title: Learning to prompt for vision-language models publication-title: Int. J. Comput. Vis. – ident: e_1_3_1_244_2 doi: 10.1109/CVPR.2019.00743 – ident: e_1_3_1_150_2 doi: 10.1109/CVPR.2019.01199 – ident: e_1_3_1_185_2 doi: 10.1609/aaai.v33i01.33016407 – year: 2021 ident: e_1_3_1_222_2 article-title: Unsupervised embedding adaptation via early-stage feature reconstruction for few-shot classification publication-title: arXiv preprint arXiv:2106.11486 – start-page: 1659 volume-title: Findings of the Association for Computational Linguistics year: 2022 ident: e_1_3_1_51_2 – ident: e_1_3_1_86_2 doi: 10.18653/v1/n19-1423 – ident: e_1_3_1_250_2 doi: 10.1109/CVPR46437.2021.00867 – ident: e_1_3_1_131_2 doi: 10.1016/j.patcog.2022.109024 – ident: e_1_3_1_23_2 doi: 10.1007/978-3-030-58583-9_8 – year: 2022 ident: e_1_3_1_95_2 article-title: ReFine: Re-randomization before fine-tuning for cross-domain few-shot learning publication-title: arXiv preprint arXiv:2205.05282 – volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems year: 2020 ident: e_1_3_1_98_2 – ident: e_1_3_1_183_2 doi: 10.1007/978-3-030-58592-1_8 – ident: e_1_3_1_127_2 doi: 10.1007/978-3-030-01237-3_15 – volume: 34 start-page: 200 year: 2021 ident: e_1_3_1_220_2 article-title: Multimodal few-shot learning with frozen language models publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: e_1_3_1_226_2 article-title: Extended few-shot learning: Exploiting existing resources for novel tasks publication-title: arXiv preprint arXiv:2012.07176 – ident: e_1_3_1_249_2 doi: 10.1109/CVPR46437.2021.00727 – year: 2021 ident: e_1_3_1_28_2 article-title: FewCLUE: A Chinese few-shot learning evaluation benchmark publication-title: arXiv preprint arXiv:2107.07498 – ident: e_1_3_1_125_2 doi: 10.1109/CVPR.2018.00947 – ident: e_1_3_1_211_2 doi: 10.1109/ICCV.2019.00053 – ident: e_1_3_1_114_2 doi: 10.1162/tacl_a_00324 – ident: e_1_3_1_257_2 doi: 10.1109/ICCV48922.2021.00862 – ident: e_1_3_1_44_2 doi: 10.1109/CVPR52688.2022.00880 – ident: e_1_3_1_227_2 doi: 10.1109/ICPR56361.2022.9955637 – start-page: 179 volume-title: Proceedings of the 32nd British Machine Vision Conference year: 2021 ident: e_1_3_1_97_2 – ident: e_1_3_1_189_2 doi: 10.1109/CVPR52688.2022.00781 – year: 2017 ident: e_1_3_1_141_2 article-title: Meta-SGD: Learning to learn quickly for few-shot learning publication-title: arXiv preprint arXiv:1707.09835 – ident: e_1_3_1_264_2 doi: 10.1109/CVPR.2019.00536 – volume: 1 start-page: 3 issue: 2 ident: e_1_3_1_32_2 article-title: Meta-learning for semi-supervised few-shot classification publication-title: Training – ident: e_1_3_1_188_2 doi: 10.1109/LGRS.2022.3227055 – ident: e_1_3_1_177_2 doi: 10.1007/978-3-030-58548-8_26 – ident: e_1_3_1_199_2 doi: 10.1109/CVPR42600.2020.01340 – ident: e_1_3_1_190_2 doi: 10.1109/CVPR.2018.00131 – ident: e_1_3_1_243_2 doi: 10.1109/CVPR42600.2020.00883 – ident: e_1_3_1_65_2 doi: 10.1109/CVPR42600.2020.01285 – ident: e_1_3_1_251_2 doi: 10.1007/978-3-030-58520-4_12 – volume-title: Proceedings of the International Conference on Learning Representations year: 2021 ident: e_1_3_1_162_2 – volume: 32 start-page: 10276 year: 2019 ident: e_1_3_1_66_2 article-title: Learning to self-train for semi-supervised few-shot classification publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_174_2 doi: 10.1109/CVPR.2017.145 – volume: 32 start-page: 4847 year: 2019 ident: e_1_3_1_212_2 article-title: Adaptive cross-modal few-shot learning publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_78_2 doi: 10.1109/ICCV.2019.00981 – volume-title: Proceedings of the 7th International Conference on Learning Representations year: 2019 ident: e_1_3_1_159_2 – ident: e_1_3_1_109_2 doi: 10.18653/v1/2021.acl-long.353 – year: 2021 ident: e_1_3_1_119_2 article-title: GPT understands, too publication-title: arXiv preprint arXiv:2103.10385 – ident: e_1_3_1_167_2 doi: 10.1109/CVPR42600.2020.01238 – ident: e_1_3_1_105_2 doi: 10.1016/j.wpi.2020.101983 – year: 2019 ident: e_1_3_1_196_2 article-title: Meta-graph: Few shot link prediction via meta learning publication-title: arXiv preprint arXiv:1912.09867 – start-page: 2927 volume-title: Proceedings of the International Conference on Machine Learning year: 2018 ident: e_1_3_1_149_2 – volume: 34 start-page: 22234 year: 2021 ident: e_1_3_1_139_2 article-title: EvoGrad: Efficient gradient-based meta-learning and hyperparameter optimization publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_39_2 doi: 10.1007/978-3-319-10602-1_48 – volume-title: Proceedings of the International Conference on Learning Representations year: 2019 ident: e_1_3_1_143_2 – ident: e_1_3_1_87_2 – ident: e_1_3_1_161_2 doi: 10.24963/ijcai.2021/123 – ident: e_1_3_1_100_2 doi: 10.1016/j.patcog.2022.109170 – ident: e_1_3_1_254_2 doi: 10.1109/ICCV.2019.00967 – ident: e_1_3_1_240_2 doi: 10.1109/WACV45572.2020.9093338 – year: 2022 ident: e_1_3_1_50_2 article-title: PromDA: Prompt-based data augmentation for low-resource NLU tasks publication-title: arXiv preprint arXiv:2202.12499 – volume-title: Proceedings of the 9th International Conference on Learning Representations year: 2021 ident: e_1_3_1_13_2 – volume: 29 start-page: 3630 year: 2016 ident: e_1_3_1_24_2 article-title: Matching networks for one shot learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: e_1_3_1_230_2 article-title: Match them up: Visually explainable few-shot image classification publication-title: arXiv preprint arXiv:2011.12527 – ident: e_1_3_1_246_2 doi: 10.1109/ICCV.2015.169 – ident: e_1_3_1_60_2 doi: 10.1109/CVPR.2019.00874 – ident: e_1_3_1_88_2 doi: 10.18653/v1/D19-1250 – start-page: arXiv–2204 year: 2022 ident: e_1_3_1_221_2 article-title: The self-optimal-transport feature transform publication-title: arXiv e-prints – ident: e_1_3_1_262_2 doi: 10.1007/978-3-030-58545-7_9 – ident: e_1_3_1_266_2 doi: 10.1109/CVPR46437.2021.01095 – ident: e_1_3_1_5_2 doi: 10.24963/ijcai.2021/415 – ident: e_1_3_1_108_2 doi: 10.18653/v1/2021.findings-acl.161 – ident: e_1_3_1_17_2 doi: 10.1109/CVPR46437.2021.00101 – ident: e_1_3_1_214_2 doi: 10.1109/WACV48630.2021.00332 – volume: 34 start-page: 13073 year: 2021 ident: e_1_3_1_107_2 article-title: Rectifying the shortcut learning of background for few-shot learning publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_172_2 doi: 10.1007/978-3-319-24261-3_7 – ident: e_1_3_1_71_2 doi: 10.1109/CVPR.2019.00671 – ident: e_1_3_1_182_2 doi: 10.1007/978-3-030-58604-1_15 – ident: e_1_3_1_16_2 doi: 10.1109/CVPR.2018.00581 – year: 2022 ident: e_1_3_1_46_2 article-title: Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning publication-title: arXiv preprint arXiv:2202.09059 – ident: e_1_3_1_173_2 doi: 10.1016/j.neucom.2020.04.040 – volume: 31 year: 2018 ident: e_1_3_1_146_2 article-title: Bayesian model-agnostic meta-learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 6346 volume-title: Proceedings of the International Conference on Machine Learning year: 2021 ident: e_1_3_1_19_2 – year: 2020 ident: e_1_3_1_232_2 article-title: Region comparison network for interpretable few-shot image classification publication-title: arXiv preprint arXiv:2009.03558 – year: 2018 ident: e_1_3_1_85_2 article-title: Deep contextualized word representations publication-title: arXiv preprint arXiv:1802.05365 – volume-title: Proceedings of the International Conference on Learning Representations year: 2018 ident: e_1_3_1_148_2 – volume: 31 year: 2018 ident: e_1_3_1_145_2 article-title: Probabilistic model-agnostic meta-learning publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_225_2 doi: 10.1109/CVPR46437.2021.01069 – ident: e_1_3_1_253_2 doi: 10.5555/3524938.3525858 – year: 2022 ident: e_1_3_1_117_2 article-title: Making pre-trained language models end-to-end few-shot learners with contrastive prompt tuning publication-title: arXiv preprint arXiv:2204.00166 – volume-title: Proceedings of the 7th International Conference on Learning Representations year: 2019 ident: e_1_3_1_104_2 – year: 2021 ident: e_1_3_1_218_2 article-title: CPT: Colorful prompt tuning for pre-trained vision-language models publication-title: arXiv preprint arXiv:2109.11797 – ident: e_1_3_1_96_2 doi: 10.1007/978-3-030-58568-6_16 – ident: e_1_3_1_48_2 doi: 10.1109/ICCV48922.2021.00863 – ident: e_1_3_1_181_2 doi: 10.1609/aaai.v34i07.6764 – start-page: 1842 volume-title: Proceedings of the International Conference on Machine Learning year: 2016 ident: e_1_3_1_157_2 – volume: 34 start-page: 3584 year: 2021 ident: e_1_3_1_70_2 article-title: Dynamic distillation network for cross-domain few-shot recognition with unlabeled data publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_129_2 doi: 10.1007/978-3-319-46487-9_40 – ident: e_1_3_1_184_2 doi: 10.1609/aaai.v34i04.6130 – start-page: 550 volume-title: Proceedings of the International Conference on Machine Learning year: 2018 ident: e_1_3_1_165_2 – ident: e_1_3_1_256_2 doi: 10.5244/C.31.167 – start-page: 8748 volume-title: Proceedings of the International Conference on Machine Learning year: 2021 ident: e_1_3_1_206_2 – volume: 2 start-page: 4 issue: 3 year: 2018 ident: e_1_3_1_138_2 article-title: Reptile: A scalable metalearning algorithm publication-title: arXiv preprint arXiv:1803.02999 – start-page: 12707 volume-title: Proceedings of the International Conference on Machine Learning year: 2021 ident: e_1_3_1_166_2 – year: 2021 ident: e_1_3_1_259_2 article-title: Hypercorrelation squeeze for few-shot segmentation publication-title: arXiv preprint arXiv:2104.01538 – year: 2022 ident: e_1_3_1_26_2 article-title: MSANet: Multi-similarity and attention guidance for boosting few-shot segmentation publication-title: arXiv preprint arXiv:2206.09667 – ident: e_1_3_1_202_2 doi: 10.1145/3404835.3462995 – ident: e_1_3_1_200_2 doi: 10.1109/TIM.2021.3053991 – ident: e_1_3_1_255_2 doi: 10.1109/ICCV.2019.01002 – ident: e_1_3_1_265_2 doi: 10.1109/CVPR46437.2021.00124 – ident: e_1_3_1_40_2 doi: 10.1109/JSTARS.2019.2918242 – year: 2020 ident: e_1_3_1_92_2 article-title: What makes instance discrimination good for transfer learning? publication-title: arXiv preprint arXiv:2006.06606 – ident: e_1_3_1_133_2 doi: 10.1109/CVPR46437.2021.01345 – volume-title: Proceedings of the 9th International Conference on Learning Representations year: 2021 ident: e_1_3_1_179_2 – volume-title: Proceedings of the 6th International Conference on Learning Representations year: 2018 ident: e_1_3_1_194_2 – ident: e_1_3_1_203_2 doi: 10.1109/ICCV.2019.00929 – start-page: 10011 volume-title: Proceedings of the 38th International Conference on Machine Learning year: 2021 ident: e_1_3_1_14_2 – start-page: 1126 volume-title: Proceedings of the International Conference on Machine Learning year: 2017 ident: e_1_3_1_134_2 – ident: e_1_3_1_20_2 doi: 10.1109/TPAMI.2022.3195735 – year: 2013 ident: e_1_3_1_35_2 article-title: Fine-grained visual classification of aircraft publication-title: arXiv preprint arXiv:1306.5151 – ident: e_1_3_1_267_2 doi: 10.1109/CVPR42600.2020.00919 – ident: e_1_3_1_110_2 doi: 10.18653/v1/2022.acl-demo.10 – ident: e_1_3_1_57_2 doi: 10.1016/j.compag.2022.107406 – year: 2018 ident: e_1_3_1_168_2 article-title: DARTS: Differentiable architecture search publication-title: arXiv preprint arXiv:1806.09055 – ident: e_1_3_1_169_2 doi: 10.1109/CVPRW56347.2022.00154 – ident: e_1_3_1_147_2 – ident: e_1_3_1_191_2 doi: 10.1109/TIP.2020.3043128 – ident: e_1_3_1_116_2 doi: 10.18653/v1/2021.acl-long.295 – ident: e_1_3_1_197_2 doi: 10.24963/ijcai.2020/112 – year: 2020 ident: e_1_3_1_239_2 article-title: Task augmentation by rotating for meta-learning publication-title: arXiv preprint arXiv:2003.00804 – ident: e_1_3_1_213_2 doi: 10.1109/WACV48630.2021.00269 – year: 2020 ident: e_1_3_1_43_2 article-title: It’s not just size that matters: Small language models are also few-shot learners publication-title: arXiv preprint arXiv:2009.07118 – ident: e_1_3_1_82_2 doi: 10.1109/ICCV48922.2021.00855 – ident: e_1_3_1_63_2 doi: 10.1007/978-3-319-10599-4_52 – volume: 1710 year: 2017 ident: e_1_3_1_75_2 article-title: Improving one-shot learning through fusing side information publication-title: CoRR – ident: e_1_3_1_27_2 doi: 10.18653/v1/2022.acl-long.38 – volume-title: Proceedings of the 10th International Conference on Learning Representations year: 2022 ident: e_1_3_1_163_2 – ident: e_1_3_1_231_2 doi: 10.1007/978-3-030-63833-7_34 – volume: 33 start-page: 1877 year: 2020 ident: e_1_3_1_89_2 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_176_2 doi: 10.1109/CVPR42600.2020.01259 – ident: e_1_3_1_136_2 doi: 10.1016/j.neucom.2022.10.012 – ident: e_1_3_1_130_2 doi: 10.1007/978-3-030-58571-6_38 – start-page: 4095 volume-title: Proceedings of the International Conference on Machine Learning year: 2018 ident: e_1_3_1_164_2 – start-page: 2212 volume-title: Proceedings of the International Conference on Machine Learning year: 2021 ident: e_1_3_1_80_2 – volume: 31 year: 2018 ident: e_1_3_1_123_2 article-title: One-shot unsupervised cross domain translation publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_247_2 doi: 10.1109/ICCVW54120.2021.00312 – ident: e_1_3_1_73_2 doi: 10.1609/aaai.v34i07.6628 – ident: e_1_3_1_229_2 doi: 10.1109/ICPR48806.2021.9412416 – ident: e_1_3_1_36_2 doi: 10.1109/CVPR.2014.461 – ident: e_1_3_1_235_2 doi: 10.1007/978-3-030-86340-1_39 – ident: e_1_3_1_193_2 doi: 10.1109/TNNLS.2020.2978386 – start-page: 4077 volume-title: Proceedings of the International Conference on Neural Information Processing Systems year: 2017 ident: e_1_3_1_175_2 – ident: e_1_3_1_186_2 doi: 10.1109/CVPR52688.2022.01415 – ident: e_1_3_1_42_2 doi: 10.1109/CVPR.2017.369 – ident: e_1_3_1_79_2 doi: 10.1609/aaai.v34i05.6281 – ident: e_1_3_1_83_2 doi: 10.1109/CVPR.2016.90 – year: 2018 ident: e_1_3_1_269_2 article-title: One-shot instance segmentation publication-title: arXiv preprint arXiv:1811.11507 – volume: 32 year: 2019 ident: e_1_3_1_99_2 article-title: Cross attention network for few-shot classification publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_1_37_2 doi: 10.1109/WACV51458.2022.00334 – start-page: 152 volume-title: Proceedings of the 32nd British Machine Vision Conference year: 2021 ident: e_1_3_1_224_2 – year: 2019 ident: e_1_3_1_242_2 article-title: Generalized adaptation for few-shot learning publication-title: arXiv preprint arXiv:1911.10807 – ident: e_1_3_1_152_2 – ident: e_1_3_1_94_2 doi: 10.1609/aaai.v35i11.17155 – volume: 33 start-page: 3907 year: 2020 ident: e_1_3_1_151_2 article-title: OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification publication-title: Adv. Neural Inf. Process. Syst. – volume-title: Proceedings of the 5th International Conference on Learning Representations year: 2017 ident: e_1_3_1_158_2 – ident: e_1_3_1_156_2 doi: 10.1109/CVPR52688.2022.00962 – ident: e_1_3_1_59_2 doi: 10.1109/ICCV.2017.328 – ident: e_1_3_1_115_2 doi: 10.18653/v1/2020.emnlp-main.346 – volume-title: Proceedings of the 7th International Conference on Learning Representations year: 2019 ident: e_1_3_1_93_2 – ident: e_1_3_1_34_2 doi: 10.1016/j.cobeha.2019.04.007 – ident: e_1_3_1_260_2 doi: 10.1007/978-3-030-58598-3_45 – ident: e_1_3_1_113_2 doi: 10.18653/v1/2021.eacl-main.20 – ident: e_1_3_1_208_2 doi: 10.1007/978-3-030-58607-2_42 – start-page: arXiv–2203 year: 2022 ident: e_1_3_1_29_2 article-title: PET: A new dataset for process extraction from natural language text publication-title: arXiv e-prints – ident: e_1_3_1_252_2 doi: 10.1007/978-3-030-58517-4_27 – ident: e_1_3_1_268_2 doi: 10.1109/TCYB.2020.2992433 – start-page: 983 volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems year: 2018 ident: e_1_3_1_67_2 – ident: e_1_3_1_101_2 doi: 10.1109/CVPR52688.2022.00886 – ident: e_1_3_1_54_2 doi: 10.18653/v1/D19-1670 – ident: e_1_3_1_209_2 doi: 10.1109/CVPR.2019.00738 – start-page: 3309 volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems year: 2019 ident: e_1_3_1_245_2 – volume-title: Proceedings of the 9th International Conference on Learning Representations year: 2021 ident: e_1_3_1_47_2 – year: 2021 ident: e_1_3_1_215_2 article-title: Multimodal conditionality for natural language generation publication-title: arXiv preprint arXiv:2109.01229 – ident: e_1_3_1_61_2 doi: 10.1109/CVPR.2016.16 – volume-title: Proceedings of the 9th International Conference on Learning Representations year: 2021 ident: e_1_3_1_106_2 – ident: e_1_3_1_69_2 doi: 10.1016/j.patcog.2020.107370 – ident: e_1_3_1_234_2 doi: 10.1109/WACV51458.2022.00166 – start-page: 21984 volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems year: 2021 ident: e_1_3_1_258_2 – ident: e_1_3_1_52_2 doi: 10.1109/CVPR.2018.00610 – year: 2020 ident: e_1_3_1_237_2 article-title: PAC-Bayesian meta-learning with implicit prior and posterior publication-title: arXiv preprint arXiv:2003.02455 – year: 2019 ident: e_1_3_1_41_2 article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC) publication-title: arXiv preprint arXiv:1902.03368 – ident: e_1_3_1_81_2 doi: 10.1109/ICCV48922.2021.00892 – ident: e_1_3_1_38_2 doi: 10.1109/TITS.2019.2931429 – ident: e_1_3_1_72_2 doi: 10.1016/j.patcog.2022.109108 – volume: 30 year: 2017 ident: e_1_3_1_122_2 article-title: Few-shot adversarial domain adaptation publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: e_1_3_1_137_2 article-title: On first-order meta-learning algorithms publication-title: arXiv preprint arXiv:1803.02999 – year: 2022 ident: e_1_3_1_248_2 article-title: Integral migrating pre-trained transformer encoder-decoders for visual object detection publication-title: arXiv preprint arXiv:2205.09613 – ident: e_1_3_1_11_2 doi: 10.1109/TGRS.2022.3208897 – year: 2021 ident: e_1_3_1_118_2 article-title: Factual probing is [MASK]: Learning vs. learning to recall publication-title: arXiv preprint arXiv:2104.05240 – volume-title: Proceedings of the 10th International Conference on Learning Representations year: 2022 ident: e_1_3_1_155_2 – ident: e_1_3_1_160_2 doi: 10.18653/v1/2020.acl-main.102 – year: 2021 ident: e_1_3_1_216_2 article-title: ActionCLIP: A new paradigm for video action recognition publication-title: arXiv preprint arXiv:2109.08472 – ident: e_1_3_1_192_2 doi: 10.1109/ICCV.2019.00855 – ident: e_1_3_1_64_2 doi: 10.1109/CVPR.2018.00543 – start-page: 7115 volume-title: Proceedings of the International Conference on Machine Learning year: 2019 ident: e_1_3_1_241_2 – year: 2020 ident: e_1_3_1_9_2 article-title: Learning from very few samples: A survey publication-title: arXiv preprint arXiv:2009.02653 – volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems year: 2020 ident: e_1_3_1_12_2 – ident: e_1_3_1_30_2 – ident: e_1_3_1_228_2 doi: 10.1109/ICASSP39728.2021.9413783 – ident: e_1_3_1_263_2 doi: 10.1109/ICCV.2019.00071 – year: 2022 ident: e_1_3_1_201_2 article-title: Few-shot learning with siamese networks and label tuning publication-title: arXiv preprint arXiv:2203.14655 – start-page: 1 year: 2022 ident: e_1_3_1_4_2 article-title: FewJoint: Few-shot learning for joint dialogue understanding publication-title: Int. J. Mach. Learn. Cyber. – ident: e_1_3_1_217_2 doi: 10.1109/CVPR52688.2022.00490 – start-page: 1 year: 2021 ident: e_1_3_1_170_2 article-title: Few-shot ship classification based on metric learning publication-title: Multim. Syst. – ident: e_1_3_1_91_2 doi: 10.1109/CVPR52688.2022.01553 – year: 2021 ident: e_1_3_1_21_2 article-title: Meta-learning based incremental few-shot object detection publication-title: IEEE Trans. Circ. Syst. Vid. Technol. – ident: e_1_3_1_55_2 doi: 10.1109/CVPR.2019.00888 |
SSID | ssj0002416 |
Score | 2.733315 |
Snippet | Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks,... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial intelligence Computing methodologies Learning paradigms Machine learning |
SubjectTermsDisplay | Computing methodologies -- Artificial intelligence Computing methodologies -- Learning paradigms Computing methodologies -- Machine learning |
Title | A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities |
URI | https://dl.acm.org/doi/10.1145/3582688 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagvXABWkC0LPIBcWFcstiZGW7R0KoCBpBmKpXTyPGiItGkmkmK4NfzvCXucgAuUeQ4TuT35flz3obQKyqBVMvJlKRimhGqU0644gmRsiiUyhIurEV3_rk4PqEfTtnpYIqx0SVtdSB-3xpX8j9ShTaQq4mS_QfJ9oNCA5yDfOEIEobjX8m4tJ_zWp15L_RFt75U1mR-pH6SzVnThvypNqj58NK_jVUIkeXa291dVZVNcOj8cmG4eVfbnKsxiS1nc-uK3lmX6Y19aE_NF97H95txtvfLov1h75qX34e2mSuF_bX71fVyb2ppSxAYjbZuWv7m40H8YyLLQ_rDHkrzSJflRUJAnzgTjPK6lo3JOHd5r4Iydjl7A-jyTaRb02iRdimebqp_ajJlmODfwhULvJZL21-5i7Yz2FWAWtwu388_LfqlG-iMN267t3VR1mbYt_5WQ2LEeURiIjayfIju-20ELh0mdtAdVe-iB6FEB_Ya-xESJb4CEewgghuNA0RwgMg73ANkhGN4jPAAjhEGaOAr0HiMTo4Ol7Nj4utqEA5kviVMTFIluNBsTLXKdFLJMU8rWVWpkgIYoMgU5XqSyDSvBM3gQsIEnWiZMy6A_z1BW3VTq6cIM0lhR84FVZTSooLtc55rPuVMmSRAWu2hXZiu1YXLnLLyk7iHXofpWwmfit5URPmxcmHybOiI-45hjGtd9m99wjN0b4Dkc7TVrjv1AthjW730Mv8DkAFxUg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+of+Few-shot+Learning%3A+Evolution%2C+Applications%2C+Challenges%2C+and+Opportunities&rft.jtitle=ACM+computing+surveys&rft.au=Song%2C+Yisheng&rft.au=Wang%2C+Ting&rft.au=Cai%2C+Puyu&rft.au=Mondal%2C+Subrota+K.&rft.date=2023-12-31&rft.pub=ACM&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=55&rft.issue=13s&rft.spage=1&rft.epage=40&rft_id=info:doi/10.1145%2F3582688&rft.externalDocID=3582688 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon |