A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples remains a serious challenge. In this context, we extensively investigated 20...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 55; no. 13s; pp. 1 - 40
Main Authors Song, Yisheng, Wang, Ting, Cai, Puyu, Mondal, Subrota K., Sahoo, Jyoti Prakash
Format Journal Article
LanguageEnglish
Published New York, NY ACM 31.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples remains a serious challenge. In this context, we extensively investigated 200+ FSL papers published in top journals and conferences in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL with a fresh perspective and to provide an impartial comparison of the strengths and weaknesses of existing work. To avoid conceptual confusion, we first elaborate and contrast a set of relevant concepts including few-shot learning, transfer learning, and meta-learning. Then, we inventively extract prior knowledge related to few-shot learning in the form of a pyramid, which summarizes and classifies previous work in detail from the perspective of challenges. Furthermore, to enrich this survey, we present in-depth analysis and insightful discussions of recent advances in each subsection. What is more, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into technology trends and potential future research opportunities to guide FSL follow-up research.
AbstractList Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples remains a serious challenge. In this context, we extensively investigated 200+ FSL papers published in top journals and conferences in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL with a fresh perspective and to provide an impartial comparison of the strengths and weaknesses of existing work. To avoid conceptual confusion, we first elaborate and contrast a set of relevant concepts including few-shot learning, transfer learning, and meta-learning. Then, we inventively extract prior knowledge related to few-shot learning in the form of a pyramid, which summarizes and classifies previous work in detail from the perspective of challenges. Furthermore, to enrich this survey, we present in-depth analysis and insightful discussions of recent advances in each subsection. What is more, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into technology trends and potential future research opportunities to guide FSL follow-up research.
ArticleNumber 271
Author Song, Yisheng
Wang, Ting
Mondal, Subrota K.
Sahoo, Jyoti Prakash
Cai, Puyu
Author_xml – sequence: 1
  givenname: Yisheng
  orcidid: 0000-0001-9558-5547
  surname: Song
  fullname: Song, Yisheng
  email: 71205902054@stu.ecnu.edu.cn
  organization: East China Normal University, China
– sequence: 2
  givenname: Ting
  orcidid: 0000-0002-7223-8849
  surname: Wang
  fullname: Wang, Ting
  email: twang@sei.ecnu.edu.cn
  organization: East China Normal University, China
– sequence: 3
  givenname: Puyu
  orcidid: 0000-0002-1368-8145
  surname: Cai
  fullname: Cai, Puyu
  email: caipuyu@msu.edu
  organization: Michigan State University, United States
– sequence: 4
  givenname: Subrota K.
  orcidid: 0000-0002-0008-7797
  surname: Mondal
  fullname: Mondal, Subrota K.
  email: skmondal@must.edu.mo
  organization: Macau University of Science and Technology, China
– sequence: 5
  givenname: Jyoti Prakash
  orcidid: 0000-0002-6273-6174
  surname: Sahoo
  fullname: Sahoo, Jyoti Prakash
  email: jpsahoo@ieee.org
  organization: Siksha “O” Anusandhan University, India
BookMark eNptkEFLAzEUhINUsFXx7ik3L40mm2R38VaWVoVCD-p5yWZf2sg2WZK00n9va6sH8TRvmI-BNyM0cN4BQjeM3jMm5AOXZZaX5RkaMikLUnDBBmhIeU4J5ZReoFGMH5TSTLB8iPQEV37dB1iBi3YL-HUTtrDD3uAZfJK48gnPQQVn3fIRT7e-2yTr3RhP-r6zWh1MHONqpboO3BL2t3ItXvS9D2njbLIQr9C5UV2E65NeovfZ9K16JvPF00s1mRPFGU1E6pKBVtrIQhjIDG3aQrGmbRoGrZYs0xkIZUraMt5oke0DKrUoTcul0jnjl-ju2KuDjzGAqftg1yrsakbrwzb1aZs9Sf6Q2qbvX1JQtvuHvz3ySq9_S3_CL_lscWk
CitedBy_id crossref_primary_10_1016_j_neunet_2023_08_026
crossref_primary_10_1109_JIOT_2024_3487989
crossref_primary_10_1109_TGRS_2024_3407812
crossref_primary_10_1007_s10489_023_05103_4
crossref_primary_10_1016_j_eswa_2024_124429
crossref_primary_10_1111_exsy_13654
crossref_primary_10_1049_ein2_12010
crossref_primary_10_1109_TIP_2024_3374222
crossref_primary_10_3390_app132413140
crossref_primary_10_1016_j_autcon_2024_105542
crossref_primary_10_1109_TIM_2023_3285994
crossref_primary_10_1039_D3LC01097J
crossref_primary_10_1016_j_engappai_2024_108156
crossref_primary_10_1016_j_engappai_2024_109883
crossref_primary_10_1016_j_sasc_2024_200103
crossref_primary_10_3390_plants14030339
crossref_primary_10_1016_j_knosys_2024_112168
crossref_primary_10_1109_ACCESS_2024_3417344
crossref_primary_10_1007_s10489_024_05698_2
crossref_primary_10_1016_j_conengprac_2024_106199
crossref_primary_10_1007_s11042_023_17551_8
crossref_primary_10_1080_02188791_2023_2286920
crossref_primary_10_1016_j_cropro_2024_106981
crossref_primary_10_1016_j_knosys_2024_112845
crossref_primary_10_1109_TMC_2024_3357218
crossref_primary_10_1007_s10489_025_06391_8
crossref_primary_10_1007_s11760_023_02960_x
crossref_primary_10_3390_app15020523
crossref_primary_10_1109_ACCESS_2024_3391815
crossref_primary_10_1109_JSTARS_2024_3432895
crossref_primary_10_1111_jfpe_14649
crossref_primary_10_1016_j_neucom_2025_129989
crossref_primary_10_1007_s10462_025_11108_x
crossref_primary_10_1016_j_neunet_2025_107211
crossref_primary_10_1109_ACCESS_2024_3376441
crossref_primary_10_1007_s10489_024_05832_0
crossref_primary_10_1016_j_net_2024_01_005
crossref_primary_10_3390_plants14050760
crossref_primary_10_1016_j_aei_2024_102976
crossref_primary_10_1145_3711827
crossref_primary_10_1007_s00607_024_01366_y
crossref_primary_10_1016_j_microc_2024_112229
crossref_primary_10_32604_cmc_2025_061263
crossref_primary_10_1109_ACCESS_2024_3462295
crossref_primary_10_3390_forensicsci4030021
crossref_primary_10_1016_j_imavis_2024_105337
crossref_primary_10_1109_ACCESS_2025_3541780
crossref_primary_10_1016_j_knosys_2025_113030
crossref_primary_10_1016_j_patcog_2024_111042
crossref_primary_10_3390_plants12183280
crossref_primary_10_3390_electronics12173623
crossref_primary_10_32604_cmc_2025_059472
crossref_primary_10_3390_s23208458
crossref_primary_10_1109_JBHI_2024_3386197
crossref_primary_10_1007_s13246_025_01535_z
crossref_primary_10_1016_j_cma_2025_117852
crossref_primary_10_1109_TGRS_2024_3523578
crossref_primary_10_1016_j_compositesa_2024_108671
crossref_primary_10_3758_s13428_024_02404_5
crossref_primary_10_1016_j_coco_2025_102314
crossref_primary_10_1016_j_rineng_2024_103724
crossref_primary_10_1016_j_inffus_2023_102161
crossref_primary_10_1109_ACCESS_2024_3509918
crossref_primary_10_1007_s10845_024_02475_3
crossref_primary_10_1016_j_neucom_2024_128212
crossref_primary_10_1016_j_ins_2024_121046
crossref_primary_10_1364_OE_511019
crossref_primary_10_1109_JAS_2023_123207
crossref_primary_10_3390_app14166929
crossref_primary_10_1016_j_neucom_2024_128970
crossref_primary_10_1016_j_ymssp_2025_112379
crossref_primary_10_3390_math12020347
crossref_primary_10_1016_j_eswa_2024_125000
crossref_primary_10_1145_3609483
crossref_primary_10_1186_s42400_024_00314_9
crossref_primary_10_1016_j_inffus_2024_102672
crossref_primary_10_1109_TGRS_2024_3409637
crossref_primary_10_1145_3722107
crossref_primary_10_1016_j_eswa_2024_125713
crossref_primary_10_1016_j_eml_2024_102236
crossref_primary_10_1145_3700791
crossref_primary_10_1007_s10664_024_10441_z
crossref_primary_10_1109_TCSS_2024_3403872
crossref_primary_10_1109_TIP_2024_3461472
crossref_primary_10_1016_j_bspc_2025_107588
crossref_primary_10_1038_s42256_024_00852_4
crossref_primary_10_1109_TGRS_2025_3544392
crossref_primary_10_3390_e26050352
crossref_primary_10_1016_j_imavis_2024_105113
crossref_primary_10_1016_j_neunet_2023_10_039
crossref_primary_10_1109_TASLPRO_2025_3537280
crossref_primary_10_1016_j_imavis_2024_105118
crossref_primary_10_1007_s10489_024_05440_y
crossref_primary_10_1016_j_eswa_2025_127054
crossref_primary_10_1109_TGRS_2025_3543583
crossref_primary_10_11834_jig_230359
crossref_primary_10_1109_TPAMI_2024_3361862
crossref_primary_10_3390_f16030518
crossref_primary_10_1016_j_neunet_2024_106456
crossref_primary_10_26599_BDMA_2024_9020049
crossref_primary_10_1109_ACCESS_2024_3521407
crossref_primary_10_3390_fi17010033
crossref_primary_10_1117_1_JRS_18_036502
crossref_primary_10_1016_j_compag_2025_109908
crossref_primary_10_3390_electronics13204138
crossref_primary_10_1016_j_asoc_2024_112375
crossref_primary_10_1016_j_patcog_2024_110503
crossref_primary_10_1111_phn_13410
crossref_primary_10_1109_JBHI_2023_3298710
crossref_primary_10_1093_bib_bbae394
crossref_primary_10_1109_TIM_2023_3343775
crossref_primary_10_1016_j_srs_2025_100202
crossref_primary_10_1186_s13640_024_00620_9
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_1145_3696411
crossref_primary_10_3390_jimaging10080195
crossref_primary_10_1109_TGRS_2024_3476116
crossref_primary_10_1145_3649828
crossref_primary_10_1093_bib_bbae702
crossref_primary_10_1049_cvi2_12340
crossref_primary_10_1007_s44196_023_00287_6
crossref_primary_10_1109_TDSC_2024_3411014
crossref_primary_10_3390_electronics12132912
crossref_primary_10_1109_TETCI_2024_3377267
crossref_primary_10_3390_computers14010030
crossref_primary_10_1002_ima_70033
crossref_primary_10_1007_s11633_023_1470_4
crossref_primary_10_1109_LWC_2024_3510722
crossref_primary_10_1016_j_aei_2024_102538
crossref_primary_10_3390_app15031381
crossref_primary_10_1145_3691339
crossref_primary_10_1016_j_neucom_2024_128767
crossref_primary_10_3390_rs16030525
crossref_primary_10_1021_acs_est_4c03088
crossref_primary_10_1016_j_ijepes_2024_110146
crossref_primary_10_1016_j_compag_2024_109751
crossref_primary_10_1109_ACCESS_2024_3387314
crossref_primary_10_3390_s24061815
crossref_primary_10_1145_3605775
crossref_primary_10_3390_computers13120315
crossref_primary_10_1016_j_eswa_2024_125453
crossref_primary_10_3390_biomedicines12040741
crossref_primary_10_3390_s25061876
crossref_primary_10_1016_j_ins_2023_119796
crossref_primary_10_1016_j_ress_2025_110850
crossref_primary_10_3390_app142310776
crossref_primary_10_1587_transfun_2023EAP1038
crossref_primary_10_1007_s40684_025_00712_5
crossref_primary_10_1109_TPAMI_2025_3529038
crossref_primary_10_1007_s11263_025_02357_y
crossref_primary_10_1088_1361_6501_ad34eb
crossref_primary_10_3390_buildings15010021
crossref_primary_10_1109_ACCESS_2025_3529528
crossref_primary_10_1109_JSTARS_2024_3493606
crossref_primary_10_1002_adem_202401353
crossref_primary_10_1016_j_aei_2024_102786
crossref_primary_10_1007_s11263_024_02112_9
crossref_primary_10_1016_j_culher_2024_11_020
crossref_primary_10_1016_j_media_2025_103536
crossref_primary_10_1007_s11263_023_01904_9
crossref_primary_10_3389_fnbot_2024_1391247
crossref_primary_10_1109_TCSVT_2024_3367666
crossref_primary_10_1007_s10489_025_06239_1
Cites_doi 10.1109/ICPR56361.2022.9955637
10.18653/v1/2020.emnlp-main.346
10.1016/j.patcog.2022.109108
10.1016/j.patcog.2022.109170
10.18653/v1/2020.acl-main.102
10.1016/j.neucom.2022.09.012
10.1007/978-3-030-86340-1_39
10.1109/TITS.2019.2931429
10.18653/v1/2021.acl-long.295
10.1109/TGRS.2022.3208897
10.1016/j.compag.2022.107406
10.1109/TPAMI.2022.3195735
10.18653/v1/D19-1250
10.1016/j.patcog.2020.107370
10.18653/v1/2021.findings-acl.161
10.1016/j.patcog.2022.109024
10.18653/v1/2022.acl-long.592
10.18653/v1/2022.acl-demo.10
10.18653/v1/2021.emnlp-main.243
10.1016/j.neucom.2022.11.082
10.1109/ICCV48922.2021.00893
10.18653/v1/d16-1264
10.18653/v1/2022.acl-long.38
10.18653/v1/2022.acl-long.576
10.1109/WACV51458.2022.00166
10.18653/v1/n19-1423
10.18653/v1/2021.acl-long.353
10.18653/v1/2021.eacl-main.20
10.18653/v1/D19-1670
10.1016/j.neucom.2022.10.012
10.1109/CVPR.2009.5206848
10.1109/CVPR52688.2022.01416
10.1109/ICCV48922.2021.00869
10.1109/CVPR.2019.00010
10.1109/CVPR.2018.00789
10.1007/s11263-015-0816-y
10.1145/3386252
10.1109/CVPR42600.2020.01222
10.1016/j.patrec.2022.06.012
10.1109/CVPR.2019.00844
10.1109/CVPR.2018.00353
10.1609/aaai.v33i01.33013558
10.1109/CVPR42600.2020.01348
10.5244/C.29.37
10.1109/CVPR42600.2020.01351
10.1109/ICCV.2019.00815
10.1037/0003-066X.40.4.385
10.1109/ICASSP39728.2021.9413582
10.1007/978-3-030-58574-7_8
10.1609/aaai.v35i9.17021
10.1109/ICCV48922.2021.00651
10.1609/aaai.v36i8.20885
10.1109/WACV48630.2021.00352
10.1109/CVPR.2000.855856
10.1109/TPAMI.2020.3032166
10.1109/CVPR.2019.00743
10.1109/CVPR.2019.01199
10.1609/aaai.v33i01.33016407
10.1109/CVPR46437.2021.00867
10.1007/978-3-030-58583-9_8
10.1007/978-3-030-58592-1_8
10.1007/978-3-030-01237-3_15
10.1109/CVPR46437.2021.00727
10.1109/CVPR.2018.00947
10.1109/ICCV.2019.00053
10.1162/tacl_a_00324
10.1109/ICCV48922.2021.00862
10.1109/CVPR52688.2022.00880
10.1109/CVPR52688.2022.00781
10.1109/CVPR.2019.00536
10.1109/LGRS.2022.3227055
10.1007/978-3-030-58548-8_26
10.1109/CVPR42600.2020.01340
10.1109/CVPR.2018.00131
10.1109/CVPR42600.2020.00883
10.1109/CVPR42600.2020.01285
10.1007/978-3-030-58520-4_12
10.1109/CVPR.2017.145
10.1109/ICCV.2019.00981
10.1109/CVPR42600.2020.01238
10.1016/j.wpi.2020.101983
10.1007/978-3-319-10602-1_48
10.24963/ijcai.2021/123
10.1109/ICCV.2019.00967
10.1109/WACV45572.2020.9093338
10.1109/ICCV.2015.169
10.1109/CVPR.2019.00874
10.1007/978-3-030-58545-7_9
10.1109/CVPR46437.2021.01095
10.24963/ijcai.2021/415
10.1109/CVPR46437.2021.00101
10.1109/WACV48630.2021.00332
10.1007/978-3-319-24261-3_7
10.1109/CVPR.2019.00671
10.1007/978-3-030-58604-1_15
10.1109/CVPR.2018.00581
10.1016/j.neucom.2020.04.040
10.1109/CVPR46437.2021.01069
10.5555/3524938.3525858
10.1007/978-3-030-58568-6_16
10.1109/ICCV48922.2021.00863
10.1609/aaai.v34i07.6764
10.1007/978-3-319-46487-9_40
10.1609/aaai.v34i04.6130
10.5244/C.31.167
10.1145/3404835.3462995
10.1109/TIM.2021.3053991
10.1109/ICCV.2019.01002
10.1109/CVPR46437.2021.00124
10.1109/JSTARS.2019.2918242
10.1109/CVPR46437.2021.01345
10.1109/ICCV.2019.00929
10.1109/CVPR42600.2020.00919
10.1109/CVPRW56347.2022.00154
10.1109/TIP.2020.3043128
10.24963/ijcai.2020/112
10.1109/WACV48630.2021.00269
10.1109/ICCV48922.2021.00855
10.1007/978-3-319-10599-4_52
10.1007/978-3-030-63833-7_34
10.1109/CVPR42600.2020.01259
10.1007/978-3-030-58571-6_38
10.1109/ICCVW54120.2021.00312
10.1609/aaai.v34i07.6628
10.1109/ICPR48806.2021.9412416
10.1109/CVPR.2014.461
10.1109/TNNLS.2020.2978386
10.1109/CVPR52688.2022.01415
10.1109/CVPR.2017.369
10.1609/aaai.v34i05.6281
10.1109/CVPR.2016.90
10.1109/WACV51458.2022.00334
10.1609/aaai.v35i11.17155
10.1109/CVPR52688.2022.00962
10.1109/ICCV.2017.328
10.1016/j.cobeha.2019.04.007
10.1007/978-3-030-58598-3_45
10.1007/978-3-030-58607-2_42
10.1007/978-3-030-58517-4_27
10.1109/TCYB.2020.2992433
10.1109/CVPR52688.2022.00886
10.1109/CVPR.2019.00738
10.1109/CVPR.2016.16
10.1109/CVPR.2018.00610
10.1109/ICCV48922.2021.00892
10.1109/ICCV.2019.00855
10.1109/CVPR.2018.00543
10.1109/ICASSP39728.2021.9413783
10.1109/ICCV.2019.00071
10.1109/CVPR52688.2022.00490
10.1109/CVPR52688.2022.01553
10.1109/CVPR.2019.00888
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
DOI 10.1145/3582688
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate A Comprehensive Survey of FSL: Evolution, Applications, Challenges, and Opportunities
EISSN 1557-7341
EndPage 40
ExternalDocumentID 10_1145_3582688
3582688
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2021ZD0114600
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
8VB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AEGXH
AEMOZ
AENEX
AENSD
AFWIH
AFWXC
AGHSJ
AHQJS
AIAGR
AIKLT
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
EBE
EBR
EBU
EDO
EMK
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UKR
UPT
VQA
W7O
WH7
X6Y
XH6
XSW
XZL
YXB
Z5M
ZCA
ZL0
AAYXX
AEFXT
AEJOY
AETEA
AKRVB
CITATION
ID FETCH-LOGICAL-a310t-5c81ecacf574fe2f0bd7a1bdbb1edc512c2e4af80d13bc42dbb05c48fd35ac613
ISSN 0360-0300
IngestDate Thu Jul 03 08:43:59 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Fri Feb 21 01:28:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13s
Keywords one-shot learning
Few-shot learning
prior knowledge
low-shot learning
meta-learning
zero-shot learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a310t-5c81ecacf574fe2f0bd7a1bdbb1edc512c2e4af80d13bc42dbb05c48fd35ac613
ORCID 0000-0001-9558-5547
0000-0002-7223-8849
0000-0002-6273-6174
0000-0002-0008-7797
0000-0002-1368-8145
PageCount 40
ParticipantIDs crossref_primary_10_1145_3582688
crossref_citationtrail_10_1145_3582688
acm_primary_3582688
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM computing surveys
PublicationTitleAbbrev ACM CSUR
PublicationYear 2023
Publisher ACM
Publisher_xml – name: ACM
References (Bib0234) 2021; 12892
(Bib0016) 2021
(Bib0099) 2023; 135
(Bib0154) 2022
(Bib0036) 2022
(Bib0138) 2021; 34
(Bib0252) 2020
(Bib0147) 2018
(Bib0006) 2020; 53
(Bib0049) 2022
(Bib0074) 2017; abs/1710.08347
(Bib0089) 2020
(Bib0114) 2020
(Bib0127) 2019
(Bib0167) 2018
(Bib0003) 2022
(Bib0113) 2020; 8
(Bib0141) 2020
(Bib0096) 2021
(Bib0267) 2020; 50
(Bib0043) 2022
(Bib0161) 2021
(Bib0181) 2020
(Bib0245) 2015
(Bib0174) 2017
(Bib0083) 2021
(Bib0084) 2018
(Bib0194) 2019
(Bib0238) 2020
(Bib0258) 2021
(Bib0172) 2020; 406
(Bib0057) 2000
(Bib0218) 2022
(Bib0212) 2021
(Bib0232) 2020
(Bib0076) 2018
(Bib0037) 2019
(Bib0159) 2020
(Bib0064) 2020
(Bib0204) 2021
(Bib0070) 2019
(Bib0211) 2019; 32
(Bib0077) 2019
(Bib0257) 2021
(Bib0048) 2022
(Bib0142) 2019
(Bib0119) 2022
(Bib0008) 2020
(Bib0148) 2018
(Bib0251) 2020
(Bib0240) 2019
(Bib0146) 2020
(Bib0186) 2020
(Bib0205) 2021
(Bib0100) 2022
(Bib0065) 2019; 32
(Bib0233) 2022
(Bib0206) 2019
(Bib0217) 2021
(Bib0009) 1985; 40
(Bib0175) 2020
(Bib0107) 2021
(Bib0002) 2022
(Bib0042) 2020
(Bib0101) 2016
(Bib0032) 2015; 115
(Bib0085) 2019
(Bib0193) 2018
(Bib0249) 2021
(Bib0035) 2014
(Bib0120) 2015
(Bib0180) 2020
(Bib0108) 2021
(Bib0143) 2018
(Bib0173) 2017
(Bib0219) 2021; 34
(Bib0192) 2020; 32
(Bib0118) 2021
(Bib0123) 2018
(Bib0246) 2021
(Bib0256) 2021
(Bib0104) 2020; 62
(Bib0092) 2019
(Bib0226) 2022
(Bib0062) 2014
(Bib0199) 2021; 70
(Bib0200) 2022
(Bib0078) 2020
(Bib0055) 2021
(Bib0223) 2021
(Bib0168) 2022
(Bib0188) 2022
(Bib0203) 2022
(Bib0144) 2018; 31
(Bib0004) 2021
(Bib0260) 2020
(Bib0165) 2021
(Bib0027) 2021
(Bib0071) 2023; 134
(Bib0012) 2021
(Bib0189) 2018
(Bib0023) 2016; 29
(Bib0224) 2021
(Bib0187) 2022; 19
(Bib0007) 2018
(Bib0131) 2022; 512
(Bib0040) 2019
(Bib0011) 2020
(Bib0033) 2019; 29
(Bib0063) 2018
(Bib0247) 2022
(Bib0090) 2022
(Bib0166) 2020
(Bib0109) 2022
(Bib0145) 2018; 31
(Bib0087) 2019
(Bib0028) 2022
(Bib0061) 2022
(Bib0195) 2019
(Bib0253) 2019
(Bib0029) 2009
(Bib0116) 2022
(Bib0201) 2021
(Bib0196) 2020
(Bib0231) 2020
(Bib0115) 2021
(Bib0034) 2013
(Bib0091) 2020
(Bib0005) 2021
(Bib0248) 2021
(Bib0031); 1
(Bib0058) 2017
(Bib0139) 2019
(Bib0230) 2020
(Bib0086) 2018
(Bib0225) 2020
(Bib0254) 2019
(Bib0026) 2022
(Bib0150) 2020; 33
(Bib0209) 2022; 160
(Bib0255) 2017
(Bib0242) 2020
(Bib0202) 2019
(Bib0170) 2015; 2
(Bib0157) 2017
(Bib0079) 2021
(Bib0019) 2022
(Bib0121) 2017; 30
(Bib0013) 2021
(Bib0088) 2020; 33
(Bib0046) 2021
(Bib0208) 2019
(Bib0268) 2018
(Bib0135) 2022; 514
(Bib0111) 2019
(Bib0020) 2021
(Bib0197) 2019
(Bib0053) 2019
(Bib0059) 2019
(Bib0227) 2021
(Bib0039) 2019
(Bib0207) 2020
(Bib0191) 2019
(Bib0117) 2021
(Bib0235) 2020
(Bib0041) 2017
(Bib0215) 2021
(Bib0171) 2015
(Bib0210) 2019
(Bib0169) 2021
(Bib0068) 2020; 105
(Bib0106) 2021; 34
(Bib0001) 2021
(Bib0263) 2019
(Bib0014) 2020
(Bib0134) 2019; 32
(Bib0060) 2016
(Bib0094) 2022
(Bib0098) 2019; 32
(Bib0129) 2020
(Bib0221) 2021
(Bib0152) 2019
(Bib0130) 2023; 133
(Bib0081) 2021
(Bib0158) 2019
(Bib0125) 2018
(Bib0261) 2020
(Bib0176) 2020
(Bib0198) 2020
(Bib0025) 2022
(Bib0093) 2021
(Bib0164) 2018
(Bib0136) 2018
(Bib0054) 2019
(Bib0228) 2021
(Bib0038) 2014
(Bib0262) 2019
(Bib0112) 2021
(Bib0124) 2018
(Bib0250) 2020
(Bib0222) 2021
(Bib0066) 2018
(Bib0259) 2020
(Bib0075) 2018
(Bib0137) 2018; 2
(Bib0229) 2020
(Bib0239) 2020
(Bib0056) 2022; 202
(Bib0163) 2018
(Bib0133) 2017
(Bib0102) 2017; 30
(Bib0236) 2020
(Bib0015) 2018
(Bib0266) 2020
(Bib0052) 2018
(Bib0216) 2022
(Bib0082) 2016
(Bib0140) 2017
Bib0024
(Bib0153) 2021
(Bib0030) 2009
(Bib0122) 2018; 31
(Bib0105) 2021
(Bib0126) 2018
(Bib0103) 2019
(Bib0110) 2021
(Bib0010) 2022; 60
(Bib0067) 2021
(Bib0095) 2020
(Bib0185) 2022
(Bib0241) 2019
(Bib0072) 2020
(Bib0162) 2022
(Bib0220) 2022
Bib0151
(Bib0047) 2021
(Bib0149) 2019
(Bib0244) 2019
(Bib0182) 2020
(Bib0179) 2020
(Bib0044) 2021
(Bib0017) 2018
(Bib0214) 2021
(Bib0264) 2021
(Bib0021) 2020
(Bib0190) 2020; 30
(Bib0080) 2021
(Bib0018) 2021
(Bib0243) 2019
(Bib0184) 2019
(Bib0045) 2022
(Bib0073) 2020
(Bib0183) 2020
(Bib0213) 2021
(Bib0128) 2016
(Bib0178) 2021
(Bib0050) 2022
(Bib0160) 2021
(Bib0022) 2020
(Bib0237) 2020
(Bib0051) 2018
(Bib0097) 2020
(Bib0155) 2022
(Bib0156) 2016
(Bib0069) 2021; 34
(Bib0132) 2021
(Bib0177) 2023; 520
(Bib0265) 2021
e_1_3_1_81_2
Lee Dong Hoon (e_1_3_1_222_2) 2021
e_1_3_1_133_2
e_1_3_1_182_2
Codella Noel (e_1_3_1_41_2) 2019
e_1_3_1_110_2
Iqbal Ehtesham (e_1_3_1_26_2) 2022
e_1_3_1_156_2
Ravi Sachin (e_1_3_1_148_2) 2018
e_1_3_1_20_2
Nichol Alex (e_1_3_1_138_2) 2018; 2
e_1_3_1_231_2
e_1_3_1_254_2
Xu Jin (e_1_3_1_238_2) 2020
e_1_3_1_129_2
e_1_3_1_193_2
e_1_3_1_121_2
e_1_3_1_55_2
e_1_3_1_78_2
e_1_3_1_167_2
Sollami Michael (e_1_3_1_215_2) 2021
e_1_3_1_227_2
Finn C. (e_1_3_1_145_2) 2018; 31
Li Z. (e_1_3_1_141_2) 2017
e_1_3_1_17_2
Lu Jiang (e_1_3_1_9_2) 2020
e_1_3_1_204_2
e_1_3_1_265_2
Zhou You (e_1_3_1_170_2) 2021
Yang Shuo (e_1_3_1_13_2) 2021
Islam Ashraful (e_1_3_1_70_2) 2021; 34
Motiian Saeid (e_1_3_1_122_2) 2017; 30
Hou Yutai (e_1_3_1_4_2) 2022
e_1_3_1_111_2
e_1_3_1_160_2
e_1_3_1_183_2
Koch Gregory (e_1_3_1_171_2) 2015
e_1_3_1_65_2
e_1_3_1_88_2
Nguyen Cuong (e_1_3_1_237_2) 2020
Zheng Wenbo (e_1_3_1_2_2) 2021
e_1_3_1_217_2
Li Xinzhe (e_1_3_1_66_2) 2019; 32
e_1_3_1_42_2
Wang Yufei (e_1_3_1_50_2) 2022
Shu Jun (e_1_3_1_8_2) 2018
Kaiser Lukasz (e_1_3_1_158_2) 2017
e_1_3_1_255_2
e_1_3_1_27_2
Yoon Sung Whan (e_1_3_1_241_2) 2019
Esfandiarpoor Reza (e_1_3_1_226_2) 2020
Yao Yuan (e_1_3_1_218_2) 2021
e_1_3_1_54_2
Zhao Nanxuan (e_1_3_1_92_2) 2020
e_1_3_1_205_2
e_1_3_1_228_2
Vaswani Ashish (e_1_3_1_103_2) 2017; 30
Lee Yoonho (e_1_3_1_149_2) 2018
e_1_3_1_31_2
Yang Jiawei (e_1_3_1_46_2) 2022
e_1_3_1_16_2
Zhang Gengwei (e_1_3_1_258_2) 2021
e_1_3_1_266_2
e_1_3_1_39_2
e_1_3_1_243_2
Cui Wentao (e_1_3_1_80_2) 2021
Ramalho Tiago (e_1_3_1_159_2) 2019
e_1_3_1_60_2
Peters Matthew E. (e_1_3_1_85_2) 2018
Hu Zikun (e_1_3_1_126_2) 2018
e_1_3_1_161_2
e_1_3_1_184_2
Du Ying-Jun (e_1_3_1_163_2) 2022
e_1_3_1_45_2
e_1_3_1_68_2
Vanschoren Joaquin (e_1_3_1_18_2) 2018
e_1_3_1_83_2
Wang Mengmeng (e_1_3_1_216_2) 2021
e_1_3_1_256_2
Rajeswaran Aravind (e_1_3_1_135_2) 2019; 32
e_1_3_1_210_2
Wang Haoxiang (e_1_3_1_223_2) 2021
Rusu Andrei A. (e_1_3_1_143_2) 2019
e_1_3_1_108_2
Yoon Jaesik (e_1_3_1_146_2) 2018; 31
e_1_3_1_172_2
e_1_3_1_100_2
e_1_3_1_195_2
Chen Mark (e_1_3_1_90_2) 2020
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_169_2
e_1_3_1_11_2
e_1_3_1_72_2
Xu Ziyun (e_1_3_1_117_2) 2022
e_1_3_1_229_2
Doersch Carl (e_1_3_1_98_2) 2020
Oh Jaehoon (e_1_3_1_95_2) 2022
e_1_3_1_267_2
e_1_3_1_244_2
e_1_3_1_260_2
e_1_3_1_82_2
Liu Xiao (e_1_3_1_119_2) 2021
e_1_3_1_113_2
e_1_3_1_136_2
e_1_3_1_185_2
Xue Zhiyu (e_1_3_1_232_2) 2020
e_1_3_1_44_2
e_1_3_1_197_2
Bose Avishek Joey (e_1_3_1_196_2) 2019
e_1_3_1_234_2
e_1_3_1_5_2
e_1_3_1_257_2
e_1_3_1_211_2
e_1_3_1_109_2
Bohdal Ondrej (e_1_3_1_139_2) 2021; 34
e_1_3_1_71_2
e_1_3_1_124_2
e_1_3_1_147_2
Rajasegaran Jathushan (e_1_3_1_97_2) 2021
Petroni Fabio (e_1_3_1_112_2) 2019
Liu Jialin (e_1_3_1_239_2) 2020
e_1_3_1_101_2
e_1_3_1_173_2
e_1_3_1_33_2
e_1_3_1_79_2
Satorras Victor Garcia (e_1_3_1_194_2) 2018
e_1_3_1_207_2
e_1_3_1_150_2
e_1_3_1_56_2
e_1_3_1_10_2
e_1_3_1_94_2
e_1_3_1_268_2
Schick T. (e_1_3_1_43_2) 2020
e_1_3_1_261_2
Li Tianqin (e_1_3_1_162_2) 2021
Ren Mengye (e_1_3_1_32_2); 1
Jeong Taewon (e_1_3_1_151_2) 2020; 33
e_1_3_1_114_2
Wang Bowen (e_1_3_1_230_2) 2020
e_1_3_1_198_2
Finn Chelsea (e_1_3_1_134_2) 2017
Grant Erin (e_1_3_1_144_2) 2018
e_1_3_1_62_2
e_1_3_1_235_2
e_1_3_1_6_2
Park Eunbyung (e_1_3_1_245_2) 2019
Suzuki Atsushi (e_1_3_1_14_2) 2021
Gao Hang (e_1_3_1_67_2) 2018
e_1_3_1_102_2
e_1_3_1_125_2
Chamon Luiz F. O. (e_1_3_1_12_2) 2020
e_1_3_1_174_2
e_1_3_1_208_2
e_1_3_1_186_2
Xing Chen (e_1_3_1_212_2) 2019; 32
e_1_3_1_74_2
Cao Kaidi (e_1_3_1_179_2) 2021
e_1_3_1_200_2
Radford Alec (e_1_3_1_206_2) 2021
e_1_3_1_246_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_262_2
Song Xingyou (e_1_3_1_140_2) 2019
e_1_3_1_115_2
Vinyals Oriol (e_1_3_1_24_2) 2016; 29
Nichol Alex (e_1_3_1_137_2) 2018
e_1_3_1_176_2
e_1_3_1_23_2
e_1_3_1_199_2
e_1_3_1_7_2
e_1_3_1_61_2
Chen Wei-Yu (e_1_3_1_93_2) 2019
e_1_3_1_213_2
e_1_3_1_69_2
Shalam Daniel (e_1_3_1_221_2) 2022
e_1_3_1_250_2
Pham Hieu (e_1_3_1_164_2) 2018
e_1_3_1_190_2
e_1_3_1_152_2
e_1_3_1_187_2
Zhou Kaiyang (e_1_3_1_219_2) 2022
e_1_3_1_96_2
e_1_3_1_73_2
e_1_3_1_209_2
Michaelis Claudio (e_1_3_1_269_2) 2018
e_1_3_1_247_2
e_1_3_1_58_2
Zhong Zexuan (e_1_3_1_118_2) 2021
e_1_3_1_240_2
Min Juhong (e_1_3_1_259_2) 2021
Zhang Xiaosong (e_1_3_1_248_2) 2022
Xu Liang (e_1_3_1_28_2) 2021
Cubuk Ekin D. (e_1_3_1_53_2) 2018
Bellan Patrizio (e_1_3_1_29_2) 2022
e_1_3_1_116_2
e_1_3_1_180_2
e_1_3_1_131_2
e_1_3_1_154_2
e_1_3_1_87_2
e_1_3_1_177_2
Zhang Tianyi (e_1_3_1_106_2) 2021
Müller Thomas (e_1_3_1_201_2) 2022
e_1_3_1_64_2
Hu Shell Xu (e_1_3_1_236_2) 2020
e_1_3_1_214_2
e_1_3_1_252_2
e_1_3_1_49_2
e_1_3_1_251_2
Ziko Imtiaz (e_1_3_1_233_2) 2020
e_1_3_1_127_2
Santoro Adam (e_1_3_1_157_2) 2016
Afham Mohamed (e_1_3_1_224_2) 2021
e_1_3_1_91_2
e_1_3_1_191_2
e_1_3_1_142_2
Cheng Meng (e_1_3_1_21_2) 2021
e_1_3_1_130_2
Schwartz Eli (e_1_3_1_77_2) 2018
e_1_3_1_76_2
e_1_3_1_188_2
Hou Ruibing (e_1_3_1_99_2) 2019; 32
e_1_3_1_30_2
Zhao Yiyang (e_1_3_1_166_2) 2021
Aksu Ibrahim (e_1_3_1_51_2) 2022
Maji Subhransu (e_1_3_1_35_2) 2013
e_1_3_1_225_2
Tsai Yao-Hung Hubert (e_1_3_1_75_2) 2017; 1710
e_1_3_1_38_2
Flennerhag Sebastian (e_1_3_1_153_2) 2019
e_1_3_1_202_2
e_1_3_1_263_2
Benaim Sagie (e_1_3_1_123_2) 2018; 31
Cao Tianshi (e_1_3_1_15_2) 2020
Tsimpoukelli Maria (e_1_3_1_220_2) 2021; 34
Luo Xu (e_1_3_1_107_2) 2021; 34
Snell Jake (e_1_3_1_175_2) 2017
e_1_3_1_181_2
Brown Tom (e_1_3_1_89_2) 2020; 33
Liu Hanxiao (e_1_3_1_168_2) 2018
Triantafillou Eleni (e_1_3_1_22_2) 2020
Song Liang (e_1_3_1_242_2) 2019
e_1_3_1_132_2
Bender Gabriel (e_1_3_1_165_2) 2018
Li Kevin (e_1_3_1_19_2) 2021
Wang Alex (e_1_3_1_104_2) 2019
e_1_3_1_178_2
e_1_3_1_40_2
e_1_3_1_86_2
e_1_3_1_63_2
Dosovitskiy Alexey (e_1_3_1_84_2) 2021
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_253_2
Baz Adrian El (e_1_3_1_3_2) 2022
e_1_3_1_128_2
Phoo Cheng Perng (e_1_3_1_47_2) 2021
e_1_3_1_105_2
e_1_3_1_192_2
e_1_3_1_120_2
e_1_3_1_189_2
Ye Han-Jia (e_1_3_1_155_2) 2022
e_1_3_1_249_2
e_1_3_1_52_2
e_1_3_1_37_2
e_1_3_1_203_2
e_1_3_1_264_2
References_xml – volume: 62
  start-page: 101983
  year: 2020
  ident: Bib0104
  article-title: Patent claim generation by fine-tuning OpenAI GPT-2
  publication-title: World Patent Inf.
– start-page: 10991
  year: 2021
  end-page: 11002
  ident: Bib0222
  article-title: Bridging multi-task learning and meta-learning: Towards efficient training and effective adaptation
  publication-title: Proceedings of the 38th International Conference on Machine Learning
– year: 2022
  ident: Bib0049
  article-title: PromDA: Prompt-based data augmentation for low-resource NLU tasks
  publication-title: arXiv preprint arXiv:2202.12499
– start-page: 888
  year: 2021
  end-page: 894
  ident: Bib0160
  article-title: Learn from concepts: Towards the purified memory for few-shot learning
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– start-page: 4765
  year: 2022
  end-page: 4771
  ident: Bib0226
  article-title: Multi-scale adaptive task attention network for few-shot learning
  publication-title: Proceedings of the 26th International Conference on Pattern Recognition
  doi: 10.1109/ICPR56361.2022.9955637
– year: 2021
  ident: Bib0027
  article-title: FewCLUE: A Chinese few-shot learning evaluation benchmark
  publication-title: arXiv preprint arXiv:2107.07498
– start-page: 7212
  year: 2019
  end-page: 7220
  ident: Bib0208
  article-title: Large-scale few-shot learning: Knowledge transfer with class hierarchy
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: Bib0229
  article-title: Match them up: Visually explainable few-shot image classification
  publication-title: arXiv preprint arXiv:2011.12527
– start-page: 8460
  year: 2019
  end-page: 8469
  ident: Bib0191
  article-title: Collect and select: Semantic alignment metric learning for few-shot learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 3558
  year: 2019
  end-page: 3565
  ident: Bib0197
  article-title: Hypergraph neural networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 770
  year: 2016
  end-page: 778
  ident: Bib0082
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4222
  year: 2020
  end-page: 4235
  ident: Bib0114
  article-title: AutoPrompt: Eliciting knowledge from language models with automatically generated prompts
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing
  doi: 10.18653/v1/2020.emnlp-main.346
– start-page: 5217
  year: 2019
  end-page: 5226
  ident: Bib0263
  article-title: CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 7260
  year: 2019
  end-page: 7268
  ident: Bib0243
  article-title: Revisiting local descriptor based image-to-class measure for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 6346
  year: 2021
  end-page: 6356
  ident: Bib0018
  article-title: MURAL: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement learning
  publication-title: Proceedings of the International Conference on Machine Learning
– year: 2020
  ident: Bib0235
  article-title: Empirical Bayes transductive meta-learning with synthetic gradients
  publication-title: Proceedings of the International Conference on Learning Representations
– volume: 34
  start-page: 22234
  year: 2021
  end-page: 22246
  ident: Bib0138
  article-title: EvoGrad: Efficient gradient-based meta-learning and hyperparameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 456
  year: 2020
  end-page: 472
  ident: Bib0251
  article-title: Multi-scale positive sample refinement for few-shot object detection
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 134
  start-page: 109108
  year: 2023
  ident: Bib0071
  article-title: PFEMed: Few-shot medical image classification using prior guided feature enhancement
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2022.109108
– start-page: 12707
  year: 2021
  end-page: 12718
  ident: Bib0165
  article-title: Few-shot neural architecture search
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 2677
  year: 2021
  end-page: 2684
  ident: Bib0228
  article-title: Complementing representation deficiency in few-shot image classification: A meta-learning approach
  publication-title: Proceedings of the 25th International Conference on Pattern Recognition (ICPR)
– start-page: 11
  year: 2019
  end-page: 20
  ident: Bib0194
  article-title: Edge-labeling graph neural network for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 135
  start-page: 109170
  year: 2023
  ident: Bib0099
  article-title: SAPENet: Self-attention based prototype enhancement network for few-shot learning
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2022.109170
– year: 2021
  ident: Bib0012
  article-title: Free lunch for few-shot learning: Distribution calibration
  publication-title: Proceedings of the 9th International Conference on Learning Representations
– start-page: 1087
  year: 2020
  end-page: 1094
  ident: Bib0159
  article-title: Dynamic memory induction networks for few-shot text classification
  publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
  doi: 10.18653/v1/2020.acl-main.102
– start-page: 14564
  year: 2022
  end-page: 14573
  ident: Bib0048
  article-title: Semi-supervised few-shot learning via multi-factor clustering
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: Bib0143
  article-title: Recasting gradient-based meta-learning as hierarchical Bayes
  publication-title: Proceedings of the International Conference on Learning Representations
– start-page: 9919
  year: 2020
  end-page: 9928
  ident: Bib0252
  article-title: Frustratingly simple few-shot object detection
  publication-title: Proceedings of the 37th International Conference on Machine Learning
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: Bib0088
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 8741
  year: 2021
  end-page: 8750
  ident: Bib0256
  article-title: Simpler is better: Few-shot semantic segmentation with classifier weight transformer
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 1
  start-page: 3
  issue: 2
  ident: Bib0031
  article-title: Meta-learning for semi-supervised few-shot classification
  publication-title: Training
– start-page: 8808
  year: 2020
  end-page: 8817
  ident: Bib0242
  article-title: Few-shot learning via embedding adaptation with set-to-set functions
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 233
  year: 2018
  end-page: 248
  ident: Bib0126
  article-title: Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 403
  year: 2017
  end-page: 412
  ident: Bib0173
  article-title: Beyond triplet loss: A deep quadruplet network for person re-identification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: Bib0225
  article-title: Extended few-shot learning: Exploiting existing resources for novel tasks
  publication-title: arXiv preprint arXiv:2012.07176
– start-page: 6577
  year: 2021
  end-page: 6586
  ident: Bib0153
  article-title: A lazy approach to long-horizon gradient-based meta-learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2019
  ident: Bib0039
  article-title: EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification
  publication-title: IEEE J. Select. Topics Appl. Earth Observ. and Remote Sensing
– start-page: 3482
  year: 2021
  end-page: 3491
  ident: Bib0067
  article-title: AdarGCN: Adaptive aggregation GCN for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– start-page: 11660
  year: 2020
  end-page: 11670
  ident: Bib0232
  article-title: Laplacian regularized few-shot learning
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1300
  year: 2021
  end-page: 1304
  ident: Bib0005
  article-title: Few-shot learning for decoding surface electromyography for hand gesture recognition
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
– start-page: 649
  year: 2016
  end-page: 666
  ident: Bib0128
  article-title: Colorful image colorization
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 1
  year: 2021
  end-page: 10
  ident: Bib0169
  article-title: Few-shot ship classification based on metric learning
  publication-title: Multim. Syst.
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  end-page: 24
  ident: Bib0192
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 512
  start-page: 352
  year: 2022
  end-page: 362
  ident: Bib0131
  article-title: SelfNet: A semi-supervised local Fisher discriminant network for few-shot learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.09.012
– year: 2020
  ident: Bib0014
  article-title: A theoretical analysis of the number of shots in few-shot learning
  publication-title: Proceedings of the 8th International Conference on Learning Representations
– start-page: 487
  year: 2018
  end-page: 498
  ident: Bib0125
  article-title: Few-shot charge prediction with discriminative legal attributes
  publication-title: Proceedings of the 27th International Conference on Computational Linguistics
– volume: 34
  start-page: 200
  year: 2021
  end-page: 212
  ident: Bib0219
  article-title: Multimodal few-shot learning with frozen language models
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 179
  year: 2021
  ident: Bib0096
  article-title: Self-supervised knowledge distillation for few-shot learning
  publication-title: Proceedings of the 32nd British Machine Vision Conference
– start-page: 5822
  year: 2018
  end-page: 5830
  ident: Bib0051
  article-title: Low-shot learning with imprinted weights
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4095
  year: 2018
  end-page: 4104
  ident: Bib0163
  article-title: Efficient neural architecture search via parameters sharing
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 12576
  year: 2020
  end-page: 12584
  ident: Bib0175
  article-title: Boosting few-shot learning with adaptive margin loss
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 10276
  year: 2019
  end-page: 10286
  ident: Bib0065
  article-title: Learning to self-train for semi-supervised few-shot classification
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2005
  year: 2021
  end-page: 2009
  ident: Bib0201
  article-title: Pseudo siamese network for few-shot intent generation
  publication-title: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
– volume: 12892
  start-page: 487
  year: 2021
  end-page: 499
  ident: Bib0234
  article-title: Leveraging the feature distribution in transfer-based few-shot learning
  publication-title: Artificial Neural Networks and Machine Learning - 30th International Conference on Artificial Neural Networks
  doi: 10.1007/978-3-030-86340-1_39
– start-page: 1
  year: 2019
  end-page: 11
  ident: Bib0037
  article-title: Traffic sign detection under challenging conditions: A deeper look into performance variations and spectral characteristics
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2019.2931429
– start-page: 6407
  year: 2019
  end-page: 6414
  ident: Bib0184
  article-title: Hybrid attention-based prototypical networks for noisy few-shot relation classification
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2022
  ident: Bib0162
  article-title: Hierarchical variational memory for few-shot learning across domains
  publication-title: Proceedings of the 10th International Conference on Learning Representations
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: Bib0187
  article-title: Adap-EMD: Adaptive EMD for aircraft fine-grained classification in remote sensing
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 804
  year: 2020
  end-page: 810
  ident: Bib0196
  article-title: Transductive relation-propagation network for few-shot learning
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– start-page: 7352
  year: 2021
  end-page: 7362
  ident: Bib0248
  article-title: FSCE: Few-shot object detection via contrastive proposal encoding
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: Bib0021
  article-title: Meta-Dataset: A dataset of datasets for learning to learn from few examples
  publication-title: Proceedings of the 8th International Conference on Learning Representations
– start-page: 1199
  year: 2018
  end-page: 1208
  ident: Bib0189
  article-title: Learning to compare: Relation network for few-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: Bib0238
  article-title: Task augmentation by rotating for meta-learning
  publication-title: arXiv preprint arXiv:2003.00804
– start-page: 192
  year: 2020
  end-page: 210
  ident: Bib0250
  article-title: Few-shot object detection and viewpoint estimation for objects in the wild
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 2850
  year: 2018
  end-page: 2860
  ident: Bib0076
  article-title: Delta-encoder: An effective sample synthesis method for few-shot object recognition
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– volume: 30
  year: 2017
  ident: Bib0121
  article-title: Few-shot adversarial domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2644
  year: 2021
  end-page: 2653
  ident: Bib0212
  article-title: Multimodal prototypical networks for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– start-page: 622
  year: 2019
  end-page: 631
  ident: Bib0262
  article-title: Feature weighting and boosting for few-shot segmentation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2022
  ident: Bib0154
  article-title: How to train your MAML to excel in few-shot classification
  publication-title: Proceedings of the 10th International Conference on Learning Representations
– year: 2019
  ident: Bib0142
  article-title: Meta-learning with latent embedding optimization
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2021
  ident: Bib0161
  article-title: Prototype memory and attention mechanisms for few shot image generation
  publication-title: Proceedings of the International Conference on Learning Representations
– year: 2018
  ident: Bib0193
  article-title: Few-shot learning with graph neural networks
  publication-title: Proceedings of the 6th International Conference on Learning Representations
– year: 2022
  ident: Bib0247
  article-title: Integral migrating pre-trained transformer encoder-decoders for visual object detection
  publication-title: arXiv preprint arXiv:2205.09613
– start-page: 3816
  year: 2021
  end-page: 3830
  ident: Bib0115
  article-title: Making pre-trained language models better few-shot learners
  publication-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing
  doi: 10.18653/v1/2021.acl-long.295
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  ident: Bib0010
  article-title: Spatial-spectral local domain adaption for cross domain few shot hyperspectral images classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3208897
– start-page: 1185
  year: 2021
  end-page: 1194
  ident: Bib0264
  article-title: Incremental few-shot instance segmentation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1525
  year: 2022
  end-page: 1535
  ident: Bib0036
  article-title: Danish Fungi 2020—Not just another image recognition dataset
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– start-page: 2212
  year: 2021
  end-page: 2221
  ident: Bib0079
  article-title: Parameterless transductive feature re-representation for few-shot learning
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 266
  year: 2020
  end-page: 282
  ident: Bib0095
  article-title: Rethinking few-shot image classification: A good embedding is all you need?
  publication-title: Proceedings of the 16th European Conference on Computer Vision
– start-page: 2778
  year: 2021
  end-page: 2788
  ident: Bib0246
  article-title: TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 80
  year: 2022
  end-page: 96
  ident: Bib0002
  article-title: Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification
  publication-title: NeurIPS 2021 Competitions and Demonstrations Track
– year: 2021
  ident: Bib0118
  article-title: GPT understands, too
  publication-title: arXiv preprint arXiv:2103.10385
– start-page: 121
  year: 2020
  end-page: 138
  ident: Bib0179
  article-title: Embedding propagation: Smoother manifold for few-shot classification
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 202
  start-page: 107406
  year: 2022
  ident: Bib0056
  article-title: Few-shot learning based on Attn-CutMix and task-adaptive transformer for the recognition of cotton growth state
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107406
– start-page: 438
  year: 2020
  end-page: 455
  ident: Bib0176
  article-title: Negative margin matters: Understanding margin in few-shot classification
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 124
  year: 2020
  end-page: 141
  ident: Bib0022
  article-title: A broader study of cross-domain few-shot learning
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 763
  year: 2020
  end-page: 778
  ident: Bib0259
  article-title: Prototype mixture models for few-shot semantic segmentation
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 3309
  year: 2019
  end-page: 3319
  ident: Bib0244
  article-title: Meta-curvature
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– year: 2018
  ident: Bib0167
  article-title: DARTS: Differentiable architecture search
  publication-title: arXiv preprint arXiv:1806.09055
– start-page: 10836
  year: 2021
  end-page: 10846
  ident: Bib0224
  article-title: Exploring complementary strengths of invariant and equivariant representations for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference
– year: 2022
  ident: Bib0019
  article-title: Meta-DETR: Image-level few-shot detection with inter-class correlation exploitation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3195735
– start-page: 9594
  year: 2021
  end-page: 9602
  ident: Bib0093
  article-title: Partial is better than all: Revisiting fine-tuning strategy for few-shot learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 5177
  year: 2018
  end-page: 5186
  ident: Bib0063
  article-title: Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: Bib0221
  article-title: Unsupervised embedding adaptation via early-stage feature reconstruction for few-shot classification
  publication-title: arXiv preprint arXiv:2106.11486
– start-page: 8680
  year: 2019
  end-page: 8689
  ident: Bib0054
  article-title: Image deformation meta-networks for one-shot learning
  publication-title: Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference
– year: 2021
  ident: Bib0020
  article-title: Meta-learning based incremental few-shot object detection
  publication-title: IEEE Trans. Circ. Syst. Vid. Technol.
– year: 2020
  ident: Bib0097
  article-title: CrossTransformers: Spatially-aware few-shot transfer
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– year: 2021
  ident: Bib0178
  article-title: Concept learners for few-shot learning
  publication-title: Proceedings of the 9th International Conference on Learning Representations
– ident: Bib0024
– start-page: 2463
  year: 2019
  end-page: 2473
  ident: Bib0087
  article-title: Language models as knowledge bases?
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
  doi: 10.18653/v1/D19-1250
– start-page: 5542
  year: 2018
  end-page: 5551
  ident: Bib0015
  article-title: Feature generating networks for zero-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: arXiv–1810
  year: 2018
  ident: Bib0017
  article-title: Meta-learning: A survey
  publication-title: arXiv e-prints
– start-page: 1
  year: 2022
  end-page: 15
  ident: Bib0003
  article-title: FewJoint: Few-shot learning for joint dialogue understanding
  publication-title: Int. J. Mach. Learn. Cyber.
– start-page: 8751
  year: 2021
  end-page: 8760
  ident: Bib0047
  article-title: Iterative label cleaning for transductive and semi-supervised few-shot learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 152
  year: 2021
  ident: Bib0223
  article-title: Rich semantics improve few-shot learning
  publication-title: Proceedings of the 32nd British Machine Vision Conference
– start-page: 404
  year: 2020
  end-page: 416
  ident: Bib0230
  article-title: GPU-based self-organizing maps for post-labeled few-shot unsupervised learning
  publication-title: Proceedings of the International Conference on Neural Information Processing
– year: 2020
  ident: Bib0236
  article-title: PAC-Bayesian meta-learning with implicit prior and posterior
  publication-title: arXiv preprint arXiv:2003.02455
– start-page: 9577
  year: 2019
  end-page: 9586
  ident: Bib0253
  article-title: Meta R-CNN: Towards general solver for instance-level low-shot learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 31
  year: 2018
  ident: Bib0144
  article-title: Probabilistic model-agnostic meta-learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: Bib0147
  article-title: Amortized Bayesian meta-learning
  publication-title: Proceedings of the International Conference on Learning Representations
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  end-page: 34
  ident: Bib0006
  article-title: Generalizing from a few examples: A survey on few-shot learning
  publication-title: ACM Comput. Surv.
– start-page: 9851
  year: 2022
  end-page: 9860
  ident: Bib0155
  article-title: Dynamic kernel selection for improved generalization and memory efficiency in meta-learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: arXiv–2204
  year: 2022
  ident: Bib0220
  article-title: The self-optimal-transport feature transform
  publication-title: arXiv e-prints
– volume: 31
  year: 2018
  ident: Bib0145
  article-title: Bayesian model-agnostic meta-learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 105
  start-page: 107370
  year: 2020
  ident: Bib0068
  article-title: Deep transductive network for generalized zero shot learning
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2020.107370
– volume: 160
  start-page: 142
  year: 2022
  end-page: 147
  ident: Bib0209
  article-title: Baby steps towards few-shot learning with multiple semantics
  publication-title: Pattern Recog. Lett.
– start-page: 441
  year: 2019
  end-page: 449
  ident: Bib0210
  article-title: Few-shot image recognition with knowledge transfer
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 10559
  year: 2020
  end-page: 10566
  ident: Bib0072
  article-title: Diversity transfer network for few-shot learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2019
  ident: Bib0111
  article-title: Language models as knowledge bases?
  publication-title: arXiv preprint arXiv:1909.01066
– start-page: 7115
  year: 2019
  end-page: 7123
  ident: Bib0240
  article-title: TapNet: Neural network augmented with task-adaptive projection for few-shot learning
  publication-title: Proceedings of the International Conference on Machine Learning
– year: 2018
  ident: Bib0084
  article-title: Deep contextualized word representations
  publication-title: arXiv preprint arXiv:1802.05365
– start-page: 1835
  year: 2021
  end-page: 1845
  ident: Bib0107
  article-title: Template-based named entity recognition using BART
  publication-title: Findings of the Association for Computational Linguistics: ACL/IJCNLP (Findings of ACL)
  doi: 10.18653/v1/2021.findings-acl.161
– start-page: 12365
  year: 2020
  end-page: 12375
  ident: Bib0166
  article-title: Meta-learning of neural architectures for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 3018
  year: 2017
  end-page: 3027
  ident: Bib0058
  article-title: Low-shot visual recognition by shrinking and hallucinating features
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 2927
  year: 2018
  end-page: 2936
  ident: Bib0148
  article-title: Gradient-based meta-learning with learned layerwise metric and subspace
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 8748
  year: 2021
  end-page: 8763
  ident: Bib0205
  article-title: Learning transferable visual models from natural language supervision
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 8543
  year: 2019
  end-page: 8553
  ident: Bib0059
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 8059
  year: 2019
  end-page: 8068
  ident: Bib0127
  article-title: Boosting few-shot visual learning with self-supervision
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 11719
  year: 2019
  end-page: 11727
  ident: Bib0149
  article-title: Task agnostic meta-learning for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 718
  year: 2020
  end-page: 734
  ident: Bib0207
  article-title: Large-scale few-shot learning via multi-modal knowledge discovery
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 1659
  year: 2022
  end-page: 1671
  ident: Bib0050
  article-title: N-shot learning for augmenting task-oriented dialogue state tracking
  publication-title: Findings of the Association for Computational Linguistics
– volume: 133
  start-page: 109024
  year: 2023
  ident: Bib0130
  article-title: SaberNet: Self-attention based effective relation network for few-shot learning
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2022.109024
– start-page: 1842
  year: 2016
  end-page: 1850
  ident: Bib0156
  article-title: Meta-learning with memory-augmented neural networks
  publication-title: Proceedings of the International Conference on Machine Learning
– year: 2020
  ident: Bib0231
  article-title: Region comparison network for interpretable few-shot image classification
  publication-title: arXiv preprint arXiv:2009.03558
– start-page: 8646
  year: 2022
  end-page: 8665
  ident: Bib0061
  article-title: FlipDA: Effective and robust data augmentation for few-shot learning
  publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
  doi: 10.18653/v1/2022.acl-long.592
– start-page: 105
  year: 2022
  end-page: 113
  ident: Bib0109
  article-title: OpenPrompt: An open-source framework for prompt-learning
  publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
  doi: 10.18653/v1/2022.acl-demo.10
– start-page: 14554
  year: 2022
  end-page: 14563
  ident: Bib0185
  article-title: CAD: Co-adapting discriminative features for improved few-shot classification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 13390
  year: 2020
  end-page: 13399
  ident: Bib0198
  article-title: DPGN: Distribution propagation graph network for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 3017
  year: 2021
  end-page: 3023
  ident: Bib0004
  article-title: MFNP: A meta-optimized model for few-shot next POI recommendation
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– start-page: 3045
  year: 2021
  end-page: 3059
  ident: Bib0110
  article-title: The power of scale for parameter-efficient prompt tuning
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing
  doi: 10.18653/v1/2021.emnlp-main.243
– year: 2020
  ident: Bib0011
  article-title: Probably approximately correct constrained learning
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– year: 2019
  ident: Bib0092
  article-title: A closer look at few-shot classification
  publication-title: Proceedings of the 7th International Conference on Learning Representations
– volume: 34
  start-page: 13073
  year: 2021
  end-page: 13085
  ident: Bib0106
  article-title: Rectifying the shortcut learning of background for few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2017
  ident: Bib0102
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: Bib0258
  article-title: Hypercorrelation squeeze for few-shot segmentation
  publication-title: arXiv preprint arXiv:2104.01538
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  ident: Bib0032
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– start-page: 9090
  year: 2018
  end-page: 9098
  ident: Bib0124
  article-title: Feature space transfer for data augmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2022
  end-page: 12
  ident: Bib0218
  article-title: Learning to prompt for vision-language models
  publication-title: Int. J. Comput. Vis.
– start-page: 142
  year: 2020
  end-page: 158
  ident: Bib0261
  article-title: Part-aware prototype network for few-shot semantic segmentation
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 29
  start-page: 3630
  year: 2016
  end-page: 3638
  ident: Bib0023
  article-title: Matching networks for one shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 385
  issue: 4
  year: 1985
  ident: Bib0009
  article-title: How many memory systems are there?
  publication-title: Amer. Psychol.
– start-page: 8671
  year: 2021
  end-page: 8680
  ident: Bib0081
  article-title: Pseudo-loss confidence metric for semi-supervised few-shot learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2022
  ident: Bib0094
  article-title: ReFine: Re-randomization before fine-tuning for cross-domain few-shot learning
  publication-title: arXiv preprint arXiv:2205.05282
– start-page: 7772
  year: 2020
  end-page: 7779
  ident: Bib0078
  article-title: Neural snowball for few-shot relation learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2019
  ident: Bib0139
  article-title: ES-MAML: Simple Hessian-free meta learning
  publication-title: arXiv preprint arXiv:1910.01215
– year: 2018
  ident: Bib0136
  article-title: On first-order meta-learning algorithms
  publication-title: arXiv preprint arXiv:1803.02999
– start-page: 814
  year: 2014
  end-page: 829
  ident: Bib0062
  article-title: Domain-adaptive discriminative one-shot learning of gestures
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 1
  issue: 01
  year: 2020
  end-page: 1
  ident: Bib0260
  article-title: Prior guided feature enrichment network for few-shot segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: abs/1710.08347
  year: 2017
  ident: Bib0074
  article-title: Improving one-shot learning through fusing side information
  publication-title: CoRR
– volume: 520
  start-page: 356
  year: 2023
  end-page: 364
  ident: Bib0177
  article-title: ReNAP: Relation network with adaptive prototypical learning for few-shot classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.11.082
– year: 2019
  ident: Bib0195
  article-title: Meta-graph: Few shot link prediction via meta learning
  publication-title: arXiv preprint arXiv:1912.09867
– year: 2019
  ident: Bib0241
  article-title: Generalized adaptation for few-shot learning
  publication-title: arXiv preprint arXiv:1911.10807
– start-page: 9042
  year: 2021
  end-page: 9051
  ident: Bib0204
  article-title: Meta-baseline: Exploring simple meta-learning for few-shot learning
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  doi: 10.1109/ICCV48922.2021.00893
– year: 2017
  ident: Bib0255
  article-title: One-shot learning for semantic segmentation
  publication-title: Proceedings of the British Machine Vision Conference
– volume: 30
  start-page: 1318
  year: 2020
  end-page: 1331
  ident: Bib0190
  article-title: BSNet: Bi-similarity network for few-shot fine-grained image classification
  publication-title: IEEE Trans. Image Process.
– year: 2017
  ident: Bib0157
  article-title: Learning to remember rare events
  publication-title: Proceedings of the 5th International Conference on Learning Representations
– start-page: 84
  year: 2015
  end-page: 92
  ident: Bib0171
  article-title: Deep metric learning using triplet network
  publication-title: Proceedings of the International Workshop on Similarity-based Pattern Recognition
– year: 2019
  ident: Bib0152
  article-title: Meta-learning with warped gradient descent
  publication-title: arXiv preprint arXiv:1909.00025
– volume: 29
  start-page: 97
  year: 2019
  end-page: 104
  ident: Bib0033
  article-title: The Omniglot challenge: A 3-year progress report
  publication-title: Curr. Opin. Behav. Sci.ences
– year: 2019
  ident: Bib0040
  article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC)
  publication-title: arXiv preprint arXiv:1902.03368
– volume: 31
  year: 2018
  ident: Bib0122
  article-title: One-shot unsupervised cross domain translation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2019
  ident: Bib0158
  article-title: Adaptive posterior learning: Few-shot learning with a surprise-based memory module
  publication-title: Proceedings of the 7th International Conference on Learning Representations
– start-page: 9197
  year: 2019
  end-page: 9206
  ident: Bib0202
  article-title: PANet: Few-shot image semantic segmentation with prototype alignment
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2015
  ident: Bib0120
  article-title: Multi-task transfer methods to improve one-shot learning for multimedia event detection.
  publication-title: Proceedings of the British Machine Vision Conference
– year: 2018
  ident: Bib0007
  article-title: Small sample learning in big data era
  publication-title: arXiv preprint arXiv:1808.04572
– year: 2020
  ident: Bib0146
  article-title: Bayesian meta-learning for the few-shot setting via deep kernels
– start-page: 237
  year: 2020
  end-page: 253
  ident: Bib0181
  article-title: Attentive prototype few-shot learning with capsule network-based embedding
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 9003
  year: 2022
  end-page: 9013
  ident: Bib0043
  article-title: Generating representative samples for few-shot classification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2009
  ident: Bib0029
  article-title: Learning multiple layers of features from tiny images
– start-page: 8401
  year: 2021
  end-page: 8409
  ident: Bib0055
  article-title: Learning intact features by erasing-inpainting for few-shot classification
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 9052
  year: 2021
  end-page: 9061
  ident: Bib0080
  article-title: Coarsely-labeled data for better few-shot transfer
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2017
  ident: Bib0140
  article-title: Meta-SGD: Learning to learn quickly for few-shot learning
  publication-title: arXiv preprint arXiv:1707.09835
– start-page: 2383
  year: 2016
  end-page: 2392
  ident: Bib0101
  article-title: SQuAD: 100, 000+ questions for machine comprehension of text
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing
  doi: 10.18653/v1/d16-1264
– start-page: 3606
  year: 2014
  end-page: 3613
  ident: Bib0035
  article-title: Describing textures in the wild
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 464
  year: 2000
  end-page: 471
  ident: Bib0057
  article-title: Learning from one example through shared densities on transforms
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3349
  year: 2018
  end-page: 3358
  ident: Bib0075
  article-title: Low-shot learning with large-scale diffusion
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 645
  year: 2020
  end-page: 666
  ident: Bib0129
  article-title: When does self-supervision improve few-shot learning?
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2022
  ident: Bib0116
  article-title: Making pre-trained language models end-to-end few-shot learners with contrastive prompt tuning
  publication-title: arXiv preprint arXiv:2204.00166
– start-page: 2218
  year: 2020
  end-page: 2227
  ident: Bib0239
  article-title: Charting the right manifold: Manifold mixup for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– year: 2021
  ident: Bib0215
  article-title: ActionCLIP: A new paradigm for video action recognition
  publication-title: arXiv preprint arXiv:2109.08472
– start-page: 11085
  year: 2020
  end-page: 11092
  ident: Bib0180
  article-title: SGAP-Net: Semantic-guided attentive prototypes network for few-shot human-object interaction recognition
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2021
  ident: Bib0217
  article-title: CPT: Colorful prompt tuning for pre-trained vision-language models
  publication-title: arXiv preprint arXiv:2109.11797
– volume: 32
  year: 2019
  ident: Bib0098
  article-title: Cross attention network for few-shot classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 406
  start-page: 49
  year: 2020
  end-page: 58
  ident: Bib0172
  article-title: Revisiting metric learning for few-shot image classification
  publication-title: Neurocomputing
– year: 2021
  ident: Bib0083
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: Proceedings of the 9th International Conference on Learning Representations
– start-page: 118
  year: 2020
  end-page: 134
  ident: Bib0182
  article-title: SEN: A novel feature normalization dissimilarity measure for prototypical few-shot learning networks
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 740
  year: 2014
  end-page: 755
  ident: Bib0038
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2019
  ident: Bib0103
  article-title: GLUE: A multi-task benchmark and analysis platform for natural language understanding
  publication-title: Proceedings of the 7th International Conference on Learning Representations
– start-page: 4077
  year: 2017
  end-page: 4087
  ident: Bib0174
  article-title: Prototypical networks for few-shot learning
  publication-title: Proceedings of the International Conference on Neural Information Processing Systems
– start-page: 1691
  year: 2020
  end-page: 1703
  ident: Bib0089
  article-title: Generative pretraining from pixels
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 8247
  year: 2019
  end-page: 8255
  ident: Bib0206
  article-title: Generalized zero-and few-shot learning via aligned variational autoencoders
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 12836
  year: 2020
  end-page: 12845
  ident: Bib0064
  article-title: Instance credibility inference for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 13663
  year: 2021
  end-page: 13672
  ident: Bib0132
  article-title: Pareto self-supervised training for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 9715
  year: 2019
  end-page: 9724
  ident: Bib0077
  article-title: Few-shot learning with global class representations
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2018
  ident: Bib0052
  article-title: AutoAugment: Learning augmentation policies from data
  publication-title: arXiv preprint arXiv:1805.09501
– start-page: 6558
  year: 2020
  end-page: 6565
  ident: Bib0183
  article-title: One-shot image classification by learning to restore prototypes
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2022
  ident: Bib0200
  article-title: Few-shot learning with siamese networks and label tuning
  publication-title: arXiv preprint arXiv:2203.14655
– year: 2021
  ident: Bib0117
  article-title: Factual probing is [MASK]: Learning vs. learning to recall
  publication-title: arXiv preprint arXiv:2104.05240
– volume: 32
  year: 2019
  ident: Bib0134
  article-title: Meta-learning with implicit gradients
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: Bib0151
  article-title: Automated relational meta-learning
– start-page: 501
  year: 2022
  end-page: 516
  ident: Bib0026
  article-title: FewNLU: Benchmarking state-of-the-art methods for few-shot natural language understanding
  publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
  doi: 10.18653/v1/2022.acl-long.38
– year: 2020
  ident: Bib0008
  article-title: Learning from very few samples: A survey
  publication-title: arXiv preprint arXiv:2009.02653
– start-page: 9068
  year: 2022
  end-page: 9077
  ident: Bib0100
  article-title: Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 8410
  year: 2022
  end-page: 8423
  ident: Bib0119
  article-title: PPT: Pre-trained prompt tuning for few-shot learning
  publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
  doi: 10.18653/v1/2022.acl-long.576
– volume: 2
  start-page: 4
  issue: 3
  year: 2018
  ident: Bib0137
  article-title: Reptile: A scalable metalearning algorithm
  publication-title: arXiv preprint arXiv:1803.02999
– start-page: 12203
  year: 2020
  end-page: 12213
  ident: Bib0186
  article-title: DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2022
  ident: Bib0045
  article-title: Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning
  publication-title: arXiv preprint arXiv:2202.09059
– start-page: 248
  year: 2009
  end-page: 255
  ident: Bib0030
  article-title: ImageNet: A large-scale hierarchical image database
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: Bib0199
  article-title: Few-shot learning for palmprint recognition via meta-Siamese network
  publication-title: IEEE Trans. Instrum. Measur.
– year: 2013
  ident: Bib0034
  article-title: Fine-grained visual classification of aircraft
  publication-title: arXiv preprint arXiv:1306.5151
– start-page: 1481
  year: 2022
  end-page: 1489
  ident: Bib0168
  article-title: Guided deep metric learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 9925
  year: 2019
  end-page: 9934
  ident: Bib0254
  article-title: Meta-learning to detect rare objects
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 1597
  year: 2022
  end-page: 1606
  ident: Bib0233
  article-title: Enhancing few-shot image classification with unlabelled examples
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
  doi: 10.1109/WACV51458.2022.00166
– start-page: 4654
  year: 2021
  end-page: 4660
  ident: Bib0001
  article-title: Federated meta-learning for fraudulent credit card detection
  publication-title: Proceedings of the 29th International Conference on International Joint Conference on Artificial Intelligence
– start-page: 4171
  year: 2019
  end-page: 4186
  ident: Bib0085
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
  doi: 10.18653/v1/n19-1423
– start-page: 4582
  year: 2021
  end-page: 4597
  ident: Bib0108
  article-title: Prefix-tuning: Optimizing continuous prompts for generation
  publication-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing
  doi: 10.18653/v1/2021.acl-long.353
– start-page: 8782
  year: 2021
  end-page: 8791
  ident: Bib0249
  article-title: Semantic relation reasoning for shot-stable few-shot object detection
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 4847
  year: 2019
  end-page: 4857
  ident: Bib0211
  article-title: Adaptive cross-modal few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 10617
  year: 2020
  end-page: 10627
  ident: Bib0237
  article-title: MetaFun: Meta-learning with iterative functional updates
  publication-title: Proceedings of the International Conference on Machine Learning
– year: 2020
  ident: Bib0091
  article-title: What makes instance discrimination good for transfer learning?
  publication-title: arXiv preprint arXiv:2006.06606
– start-page: 4953
  year: 2022
  end-page: 4963
  ident: Bib0216
  article-title: Align and prompt: Video-and-language pre-training with entity prompts
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 21984
  year: 2021
  end-page: 21996
  ident: Bib0257
  article-title: Few-shot segmentation via cycle-consistent transformer
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– year: 2018
  ident: Bib0086
  article-title: Improving language understanding by generative pre-training
– start-page: 9014
  year: 2022
  end-page: 9021
  ident: Bib0203
  article-title: MetaNODE: Prototype optimization as a neural ODE for few-shot learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 13470
  year: 2020
  end-page: 13479
  ident: Bib0073
  article-title: Adversarial feature hallucination networks for few-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 34
  start-page: 3584
  year: 2021
  end-page: 3595
  ident: Bib0069
  article-title: Dynamic distillation network for cross-domain few-shot recognition with unlabeled data
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: Bib0268
  article-title: One-shot instance segmentation
  publication-title: arXiv preprint arXiv:1811.11507
– start-page: arXiv–2203
  year: 2022
  ident: Bib0028
  article-title: PET: A new dataset for process extraction from natural language text
  publication-title: arXiv e-prints
– year: 2021
  ident: Bib0214
  article-title: Multimodal conditionality for natural language generation
  publication-title: arXiv preprint arXiv:2109.01229
– volume: 33
  start-page: 3907
  year: 2020
  end-page: 3916
  ident: Bib0150
  article-title: OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3279
  year: 2021
  end-page: 3288
  ident: Bib0213
  article-title: Towards contextual learning in few-shot object classification
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– year: 2020
  ident: Bib0042
  article-title: It’s not just size that matters: Small language models are also few-shot learners
  publication-title: arXiv preprint arXiv:2009.07118
– start-page: 11099
  year: 2021
  end-page: 11108
  ident: Bib0265
  article-title: FAPIS: A few-shot anchor-free part-based instance segmenter
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 16000
  year: 2022
  end-page: 16009
  ident: Bib0090
  article-title: Masked autoencoders are scalable vision learners
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 2
  year: 2015
  ident: Bib0170
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: ICML Deep Learning Workshop
– start-page: 6548
  year: 2019
  end-page: 6557
  ident: Bib0070
  article-title: LaSO: Label-set operations networks for multi-label few-shot learning
  publication-title: Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition Conference
– start-page: 255
  year: 2021
  end-page: 269
  ident: Bib0112
  article-title: Exploiting cloze-questions for few-shot text classification and natural language inference
  publication-title: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics
  doi: 10.18653/v1/2021.eacl-main.20
– start-page: 7972
  year: 2022
  end-page: 7981
  ident: Bib0188
  article-title: Joint distribution matters: Deep Brownian distance covariance for few-shot classification
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 78
  year: 2016
  end-page: 86
  ident: Bib0060
  article-title: One-shot learning of scene locations via feature trajectory transfer
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 550
  year: 2018
  end-page: 559
  ident: Bib0164
  article-title: Understanding and simplifying one-shot architecture search
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 10011
  year: 2021
  end-page: 10021
  ident: Bib0013
  article-title: Generalization error bound for hyperbolic ordinal embedding
  publication-title: Proceedings of the 38th International Conference on Machine Learning
– year: 2021
  ident: Bib0046
  article-title: Self-training for few-shot transfer across extreme task differences
  publication-title: Proceedings of the 9th International Conference on Learning Representations
– start-page: 983
  year: 2018
  end-page: 993
  ident: Bib0066
  article-title: Low-shot learning via covariance-preserving adversarial augmentation networks
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– volume: 50
  start-page: 3855
  issue: 9
  year: 2020
  end-page: 3865
  ident: Bib0267
  article-title: SG-One: Similarity guidance network for one-shot semantic segmentation
  publication-title: IEEE Trans. Cyber.
– year: 2021
  ident: Bib0105
  article-title: Revisiting few-sample BERT fine-tuning
  publication-title: Proceedings of the 9th International Conference on Learning Representations
– start-page: 1440
  year: 2015
  end-page: 1448
  ident: Bib0245
  article-title: Fast R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2022
  ident: Bib0025
  article-title: MSANet: Multi-similarity and attention guidance for boosting few-shot segmentation
  publication-title: arXiv preprint arXiv:2206.09667
– start-page: 6381
  year: 2019
  end-page: 6387
  ident: Bib0053
  article-title: EDA: Easy data augmentation techniques for boosting performance on text classification tasks
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
  doi: 10.18653/v1/D19-1670
– volume: 514
  start-page: 351
  year: 2022
  end-page: 361
  ident: Bib0135
  article-title: MGML: Momentum group meta-learning for few-shot image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.012
– start-page: 1745
  year: 2021
  end-page: 1749
  ident: Bib0227
  article-title: Self-supervised learning for few-shot image classification
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 1126
  year: 2017
  end-page: 1135
  ident: Bib0133
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 13499
  year: 2020
  end-page: 13508
  ident: Bib0141
  article-title: Attentive weights generation for few shot learning via information maximization
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 2097
  year: 2017
  end-page: 2106
  ident: Bib0041
  article-title: ChestX-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference
– start-page: 953
  year: 2021
  end-page: 962
  ident: Bib0016
  article-title: Learning graph embeddings for compositional zero-shot learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 8812
  year: 2021
  end-page: 8821
  ident: Bib0044
  article-title: Variational feature disentangling for fine-grained few-shot classification
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 8
  start-page: 423
  year: 2020
  end-page: 438
  ident: Bib0113
  article-title: How can we know what language models know?
  publication-title: Trans. Assoc. Computat. Ling.
– start-page: 7564
  year: 2018
  end-page: 7573
  ident: Bib0123
  article-title: Multi-content GAN for few-shot font style transfer
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 9172
  year: 2020
  end-page: 9181
  ident: Bib0266
  article-title: FGN: Fully guided network for few-shot instance segmentation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– ident: e_1_3_1_31_2
  doi: 10.1109/CVPR.2009.5206848
– volume-title: ICML Deep Learning Workshop
  year: 2015
  ident: e_1_3_1_171_2
– year: 2018
  ident: e_1_3_1_8_2
  article-title: Small sample learning in big data era
  publication-title: arXiv preprint arXiv:1808.04572
– ident: e_1_3_1_49_2
  doi: 10.1109/CVPR52688.2022.01416
– ident: e_1_3_1_45_2
  doi: 10.1109/ICCV48922.2021.00869
– year: 2018
  ident: e_1_3_1_53_2
  article-title: AutoAugment: Learning augmentation policies from data
  publication-title: arXiv preprint arXiv:1805.09501
– ident: e_1_3_1_195_2
  doi: 10.1109/CVPR.2019.00010
– ident: e_1_3_1_124_2
  doi: 10.1109/CVPR.2018.00789
– start-page: 80
  volume-title: NeurIPS 2021 Competitions and Demonstrations Track
  year: 2022
  ident: e_1_3_1_3_2
– ident: e_1_3_1_132_2
  doi: 10.1016/j.neucom.2022.09.012
– ident: e_1_3_1_33_2
  doi: 10.1007/s11263-015-0816-y
– ident: e_1_3_1_7_2
  doi: 10.1145/3386252
– ident: e_1_3_1_187_2
  doi: 10.1109/CVPR42600.2020.01222
– ident: e_1_3_1_210_2
  doi: 10.1016/j.patrec.2022.06.012
– start-page: 10617
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2020
  ident: e_1_3_1_238_2
– ident: e_1_3_1_102_2
  doi: 10.18653/v1/d16-1264
– ident: e_1_3_1_207_2
  doi: 10.1109/CVPR.2019.00844
– start-page: 11660
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2020
  ident: e_1_3_1_233_2
– ident: e_1_3_1_76_2
  doi: 10.1109/CVPR.2018.00353
– ident: e_1_3_1_198_2
  doi: 10.1609/aaai.v33i01.33013558
– ident: e_1_3_1_74_2
  doi: 10.1109/CVPR42600.2020.01348
– ident: e_1_3_1_121_2
  doi: 10.5244/C.29.37
– ident: e_1_3_1_142_2
  doi: 10.1109/CVPR42600.2020.01351
– ident: e_1_3_1_120_2
  doi: 10.18653/v1/2022.acl-long.576
– ident: e_1_3_1_128_2
  doi: 10.1109/ICCV.2019.00815
– ident: e_1_3_1_10_2
  doi: 10.1037/0003-066X.40.4.385
– year: 2019
  ident: e_1_3_1_140_2
  article-title: ES-MAML: Simple Hessian-free meta learning
  publication-title: arXiv preprint arXiv:1910.01215
– ident: e_1_3_1_6_2
  doi: 10.1109/ICASSP39728.2021.9413582
– start-page: 10991
  volume-title: Proceedings of the 38th International Conference on Machine Learning
  year: 2021
  ident: e_1_3_1_223_2
– volume: 30
  year: 2017
  ident: e_1_3_1_103_2
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_180_2
  doi: 10.1007/978-3-030-58574-7_8
– volume: 32
  year: 2019
  ident: e_1_3_1_135_2
  article-title: Meta-learning with implicit gradients
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4654
  volume-title: Proceedings of the 29th International Conference on International Joint Conference on Artificial Intelligence
  year: 2021
  ident: e_1_3_1_2_2
– volume-title: Proceedings of the International Conference on Learning Representations
  year: 2018
  ident: e_1_3_1_144_2
– start-page: arXiv–1810
  year: 2018
  ident: e_1_3_1_18_2
  article-title: Meta-learning: A survey
  publication-title: arXiv e-prints
– ident: e_1_3_1_56_2
  doi: 10.1609/aaai.v35i9.17021
– year: 2019
  ident: e_1_3_1_112_2
  article-title: Language models as knowledge bases?
  publication-title: arXiv preprint arXiv:1909.01066
– start-page: 487
  volume-title: Proceedings of the 27th International Conference on Computational Linguistics
  year: 2018
  ident: e_1_3_1_126_2
– ident: e_1_3_1_154_2
  doi: 10.1109/ICCV48922.2021.00651
– volume-title: Proceedings of the International Conference on Learning Representations
  year: 2020
  ident: e_1_3_1_236_2
– ident: e_1_3_1_205_2
  doi: 10.1109/ICCV48922.2021.00893
– ident: e_1_3_1_204_2
  doi: 10.1609/aaai.v36i8.20885
– ident: e_1_3_1_68_2
  doi: 10.1109/WACV48630.2021.00352
– volume-title: Proceedings of the 8th International Conference on Learning Representations
  year: 2020
  ident: e_1_3_1_22_2
– ident: e_1_3_1_25_2
– start-page: 1691
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2020
  ident: e_1_3_1_90_2
– volume-title: Proceedings of the 8th International Conference on Learning Representations
  year: 2020
  ident: e_1_3_1_15_2
– year: 2019
  ident: e_1_3_1_153_2
  article-title: Meta-learning with warped gradient descent
  publication-title: arXiv preprint arXiv:1909.00025
– volume-title: Proceedings of the 9th International Conference on Learning Representations
  year: 2021
  ident: e_1_3_1_84_2
– ident: e_1_3_1_111_2
  doi: 10.18653/v1/2021.emnlp-main.243
– ident: e_1_3_1_178_2
  doi: 10.1016/j.neucom.2022.11.082
– start-page: 2850
  volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems
  year: 2018
  ident: e_1_3_1_77_2
– ident: e_1_3_1_58_2
  doi: 10.1109/CVPR.2000.855856
– ident: e_1_3_1_261_2
  doi: 10.1109/TPAMI.2020.3032166
– ident: e_1_3_1_62_2
  doi: 10.18653/v1/2022.acl-long.592
– start-page: 1
  year: 2022
  ident: e_1_3_1_219_2
  article-title: Learning to prompt for vision-language models
  publication-title: Int. J. Comput. Vis.
– ident: e_1_3_1_244_2
  doi: 10.1109/CVPR.2019.00743
– ident: e_1_3_1_150_2
  doi: 10.1109/CVPR.2019.01199
– ident: e_1_3_1_185_2
  doi: 10.1609/aaai.v33i01.33016407
– year: 2021
  ident: e_1_3_1_222_2
  article-title: Unsupervised embedding adaptation via early-stage feature reconstruction for few-shot classification
  publication-title: arXiv preprint arXiv:2106.11486
– start-page: 1659
  volume-title: Findings of the Association for Computational Linguistics
  year: 2022
  ident: e_1_3_1_51_2
– ident: e_1_3_1_86_2
  doi: 10.18653/v1/n19-1423
– ident: e_1_3_1_250_2
  doi: 10.1109/CVPR46437.2021.00867
– ident: e_1_3_1_131_2
  doi: 10.1016/j.patcog.2022.109024
– ident: e_1_3_1_23_2
  doi: 10.1007/978-3-030-58583-9_8
– year: 2022
  ident: e_1_3_1_95_2
  article-title: ReFine: Re-randomization before fine-tuning for cross-domain few-shot learning
  publication-title: arXiv preprint arXiv:2205.05282
– volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems
  year: 2020
  ident: e_1_3_1_98_2
– ident: e_1_3_1_183_2
  doi: 10.1007/978-3-030-58592-1_8
– ident: e_1_3_1_127_2
  doi: 10.1007/978-3-030-01237-3_15
– volume: 34
  start-page: 200
  year: 2021
  ident: e_1_3_1_220_2
  article-title: Multimodal few-shot learning with frozen language models
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: e_1_3_1_226_2
  article-title: Extended few-shot learning: Exploiting existing resources for novel tasks
  publication-title: arXiv preprint arXiv:2012.07176
– ident: e_1_3_1_249_2
  doi: 10.1109/CVPR46437.2021.00727
– year: 2021
  ident: e_1_3_1_28_2
  article-title: FewCLUE: A Chinese few-shot learning evaluation benchmark
  publication-title: arXiv preprint arXiv:2107.07498
– ident: e_1_3_1_125_2
  doi: 10.1109/CVPR.2018.00947
– ident: e_1_3_1_211_2
  doi: 10.1109/ICCV.2019.00053
– ident: e_1_3_1_114_2
  doi: 10.1162/tacl_a_00324
– ident: e_1_3_1_257_2
  doi: 10.1109/ICCV48922.2021.00862
– ident: e_1_3_1_44_2
  doi: 10.1109/CVPR52688.2022.00880
– ident: e_1_3_1_227_2
  doi: 10.1109/ICPR56361.2022.9955637
– start-page: 179
  volume-title: Proceedings of the 32nd British Machine Vision Conference
  year: 2021
  ident: e_1_3_1_97_2
– ident: e_1_3_1_189_2
  doi: 10.1109/CVPR52688.2022.00781
– year: 2017
  ident: e_1_3_1_141_2
  article-title: Meta-SGD: Learning to learn quickly for few-shot learning
  publication-title: arXiv preprint arXiv:1707.09835
– ident: e_1_3_1_264_2
  doi: 10.1109/CVPR.2019.00536
– volume: 1
  start-page: 3
  issue: 2
  ident: e_1_3_1_32_2
  article-title: Meta-learning for semi-supervised few-shot classification
  publication-title: Training
– ident: e_1_3_1_188_2
  doi: 10.1109/LGRS.2022.3227055
– ident: e_1_3_1_177_2
  doi: 10.1007/978-3-030-58548-8_26
– ident: e_1_3_1_199_2
  doi: 10.1109/CVPR42600.2020.01340
– ident: e_1_3_1_190_2
  doi: 10.1109/CVPR.2018.00131
– ident: e_1_3_1_243_2
  doi: 10.1109/CVPR42600.2020.00883
– ident: e_1_3_1_65_2
  doi: 10.1109/CVPR42600.2020.01285
– ident: e_1_3_1_251_2
  doi: 10.1007/978-3-030-58520-4_12
– volume-title: Proceedings of the International Conference on Learning Representations
  year: 2021
  ident: e_1_3_1_162_2
– volume: 32
  start-page: 10276
  year: 2019
  ident: e_1_3_1_66_2
  article-title: Learning to self-train for semi-supervised few-shot classification
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_174_2
  doi: 10.1109/CVPR.2017.145
– volume: 32
  start-page: 4847
  year: 2019
  ident: e_1_3_1_212_2
  article-title: Adaptive cross-modal few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_78_2
  doi: 10.1109/ICCV.2019.00981
– volume-title: Proceedings of the 7th International Conference on Learning Representations
  year: 2019
  ident: e_1_3_1_159_2
– ident: e_1_3_1_109_2
  doi: 10.18653/v1/2021.acl-long.353
– year: 2021
  ident: e_1_3_1_119_2
  article-title: GPT understands, too
  publication-title: arXiv preprint arXiv:2103.10385
– ident: e_1_3_1_167_2
  doi: 10.1109/CVPR42600.2020.01238
– ident: e_1_3_1_105_2
  doi: 10.1016/j.wpi.2020.101983
– year: 2019
  ident: e_1_3_1_196_2
  article-title: Meta-graph: Few shot link prediction via meta learning
  publication-title: arXiv preprint arXiv:1912.09867
– start-page: 2927
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2018
  ident: e_1_3_1_149_2
– volume: 34
  start-page: 22234
  year: 2021
  ident: e_1_3_1_139_2
  article-title: EvoGrad: Efficient gradient-based meta-learning and hyperparameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_39_2
  doi: 10.1007/978-3-319-10602-1_48
– volume-title: Proceedings of the International Conference on Learning Representations
  year: 2019
  ident: e_1_3_1_143_2
– ident: e_1_3_1_87_2
– ident: e_1_3_1_161_2
  doi: 10.24963/ijcai.2021/123
– ident: e_1_3_1_100_2
  doi: 10.1016/j.patcog.2022.109170
– ident: e_1_3_1_254_2
  doi: 10.1109/ICCV.2019.00967
– ident: e_1_3_1_240_2
  doi: 10.1109/WACV45572.2020.9093338
– year: 2022
  ident: e_1_3_1_50_2
  article-title: PromDA: Prompt-based data augmentation for low-resource NLU tasks
  publication-title: arXiv preprint arXiv:2202.12499
– volume-title: Proceedings of the 9th International Conference on Learning Representations
  year: 2021
  ident: e_1_3_1_13_2
– volume: 29
  start-page: 3630
  year: 2016
  ident: e_1_3_1_24_2
  article-title: Matching networks for one shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: e_1_3_1_230_2
  article-title: Match them up: Visually explainable few-shot image classification
  publication-title: arXiv preprint arXiv:2011.12527
– ident: e_1_3_1_246_2
  doi: 10.1109/ICCV.2015.169
– ident: e_1_3_1_60_2
  doi: 10.1109/CVPR.2019.00874
– ident: e_1_3_1_88_2
  doi: 10.18653/v1/D19-1250
– start-page: arXiv–2204
  year: 2022
  ident: e_1_3_1_221_2
  article-title: The self-optimal-transport feature transform
  publication-title: arXiv e-prints
– ident: e_1_3_1_262_2
  doi: 10.1007/978-3-030-58545-7_9
– ident: e_1_3_1_266_2
  doi: 10.1109/CVPR46437.2021.01095
– ident: e_1_3_1_5_2
  doi: 10.24963/ijcai.2021/415
– ident: e_1_3_1_108_2
  doi: 10.18653/v1/2021.findings-acl.161
– ident: e_1_3_1_17_2
  doi: 10.1109/CVPR46437.2021.00101
– ident: e_1_3_1_214_2
  doi: 10.1109/WACV48630.2021.00332
– volume: 34
  start-page: 13073
  year: 2021
  ident: e_1_3_1_107_2
  article-title: Rectifying the shortcut learning of background for few-shot learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_172_2
  doi: 10.1007/978-3-319-24261-3_7
– ident: e_1_3_1_71_2
  doi: 10.1109/CVPR.2019.00671
– ident: e_1_3_1_182_2
  doi: 10.1007/978-3-030-58604-1_15
– ident: e_1_3_1_16_2
  doi: 10.1109/CVPR.2018.00581
– year: 2022
  ident: e_1_3_1_46_2
  article-title: Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning
  publication-title: arXiv preprint arXiv:2202.09059
– ident: e_1_3_1_173_2
  doi: 10.1016/j.neucom.2020.04.040
– volume: 31
  year: 2018
  ident: e_1_3_1_146_2
  article-title: Bayesian model-agnostic meta-learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 6346
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2021
  ident: e_1_3_1_19_2
– year: 2020
  ident: e_1_3_1_232_2
  article-title: Region comparison network for interpretable few-shot image classification
  publication-title: arXiv preprint arXiv:2009.03558
– year: 2018
  ident: e_1_3_1_85_2
  article-title: Deep contextualized word representations
  publication-title: arXiv preprint arXiv:1802.05365
– volume-title: Proceedings of the International Conference on Learning Representations
  year: 2018
  ident: e_1_3_1_148_2
– volume: 31
  year: 2018
  ident: e_1_3_1_145_2
  article-title: Probabilistic model-agnostic meta-learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_225_2
  doi: 10.1109/CVPR46437.2021.01069
– ident: e_1_3_1_253_2
  doi: 10.5555/3524938.3525858
– year: 2022
  ident: e_1_3_1_117_2
  article-title: Making pre-trained language models end-to-end few-shot learners with contrastive prompt tuning
  publication-title: arXiv preprint arXiv:2204.00166
– volume-title: Proceedings of the 7th International Conference on Learning Representations
  year: 2019
  ident: e_1_3_1_104_2
– year: 2021
  ident: e_1_3_1_218_2
  article-title: CPT: Colorful prompt tuning for pre-trained vision-language models
  publication-title: arXiv preprint arXiv:2109.11797
– ident: e_1_3_1_96_2
  doi: 10.1007/978-3-030-58568-6_16
– ident: e_1_3_1_48_2
  doi: 10.1109/ICCV48922.2021.00863
– ident: e_1_3_1_181_2
  doi: 10.1609/aaai.v34i07.6764
– start-page: 1842
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2016
  ident: e_1_3_1_157_2
– volume: 34
  start-page: 3584
  year: 2021
  ident: e_1_3_1_70_2
  article-title: Dynamic distillation network for cross-domain few-shot recognition with unlabeled data
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_129_2
  doi: 10.1007/978-3-319-46487-9_40
– ident: e_1_3_1_184_2
  doi: 10.1609/aaai.v34i04.6130
– start-page: 550
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2018
  ident: e_1_3_1_165_2
– ident: e_1_3_1_256_2
  doi: 10.5244/C.31.167
– start-page: 8748
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2021
  ident: e_1_3_1_206_2
– volume: 2
  start-page: 4
  issue: 3
  year: 2018
  ident: e_1_3_1_138_2
  article-title: Reptile: A scalable metalearning algorithm
  publication-title: arXiv preprint arXiv:1803.02999
– start-page: 12707
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2021
  ident: e_1_3_1_166_2
– year: 2021
  ident: e_1_3_1_259_2
  article-title: Hypercorrelation squeeze for few-shot segmentation
  publication-title: arXiv preprint arXiv:2104.01538
– year: 2022
  ident: e_1_3_1_26_2
  article-title: MSANet: Multi-similarity and attention guidance for boosting few-shot segmentation
  publication-title: arXiv preprint arXiv:2206.09667
– ident: e_1_3_1_202_2
  doi: 10.1145/3404835.3462995
– ident: e_1_3_1_200_2
  doi: 10.1109/TIM.2021.3053991
– ident: e_1_3_1_255_2
  doi: 10.1109/ICCV.2019.01002
– ident: e_1_3_1_265_2
  doi: 10.1109/CVPR46437.2021.00124
– ident: e_1_3_1_40_2
  doi: 10.1109/JSTARS.2019.2918242
– year: 2020
  ident: e_1_3_1_92_2
  article-title: What makes instance discrimination good for transfer learning?
  publication-title: arXiv preprint arXiv:2006.06606
– ident: e_1_3_1_133_2
  doi: 10.1109/CVPR46437.2021.01345
– volume-title: Proceedings of the 9th International Conference on Learning Representations
  year: 2021
  ident: e_1_3_1_179_2
– volume-title: Proceedings of the 6th International Conference on Learning Representations
  year: 2018
  ident: e_1_3_1_194_2
– ident: e_1_3_1_203_2
  doi: 10.1109/ICCV.2019.00929
– start-page: 10011
  volume-title: Proceedings of the 38th International Conference on Machine Learning
  year: 2021
  ident: e_1_3_1_14_2
– start-page: 1126
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2017
  ident: e_1_3_1_134_2
– ident: e_1_3_1_20_2
  doi: 10.1109/TPAMI.2022.3195735
– year: 2013
  ident: e_1_3_1_35_2
  article-title: Fine-grained visual classification of aircraft
  publication-title: arXiv preprint arXiv:1306.5151
– ident: e_1_3_1_267_2
  doi: 10.1109/CVPR42600.2020.00919
– ident: e_1_3_1_110_2
  doi: 10.18653/v1/2022.acl-demo.10
– ident: e_1_3_1_57_2
  doi: 10.1016/j.compag.2022.107406
– year: 2018
  ident: e_1_3_1_168_2
  article-title: DARTS: Differentiable architecture search
  publication-title: arXiv preprint arXiv:1806.09055
– ident: e_1_3_1_169_2
  doi: 10.1109/CVPRW56347.2022.00154
– ident: e_1_3_1_147_2
– ident: e_1_3_1_191_2
  doi: 10.1109/TIP.2020.3043128
– ident: e_1_3_1_116_2
  doi: 10.18653/v1/2021.acl-long.295
– ident: e_1_3_1_197_2
  doi: 10.24963/ijcai.2020/112
– year: 2020
  ident: e_1_3_1_239_2
  article-title: Task augmentation by rotating for meta-learning
  publication-title: arXiv preprint arXiv:2003.00804
– ident: e_1_3_1_213_2
  doi: 10.1109/WACV48630.2021.00269
– year: 2020
  ident: e_1_3_1_43_2
  article-title: It’s not just size that matters: Small language models are also few-shot learners
  publication-title: arXiv preprint arXiv:2009.07118
– ident: e_1_3_1_82_2
  doi: 10.1109/ICCV48922.2021.00855
– ident: e_1_3_1_63_2
  doi: 10.1007/978-3-319-10599-4_52
– volume: 1710
  year: 2017
  ident: e_1_3_1_75_2
  article-title: Improving one-shot learning through fusing side information
  publication-title: CoRR
– ident: e_1_3_1_27_2
  doi: 10.18653/v1/2022.acl-long.38
– volume-title: Proceedings of the 10th International Conference on Learning Representations
  year: 2022
  ident: e_1_3_1_163_2
– ident: e_1_3_1_231_2
  doi: 10.1007/978-3-030-63833-7_34
– volume: 33
  start-page: 1877
  year: 2020
  ident: e_1_3_1_89_2
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_176_2
  doi: 10.1109/CVPR42600.2020.01259
– ident: e_1_3_1_136_2
  doi: 10.1016/j.neucom.2022.10.012
– ident: e_1_3_1_130_2
  doi: 10.1007/978-3-030-58571-6_38
– start-page: 4095
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2018
  ident: e_1_3_1_164_2
– start-page: 2212
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2021
  ident: e_1_3_1_80_2
– volume: 31
  year: 2018
  ident: e_1_3_1_123_2
  article-title: One-shot unsupervised cross domain translation
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_247_2
  doi: 10.1109/ICCVW54120.2021.00312
– ident: e_1_3_1_73_2
  doi: 10.1609/aaai.v34i07.6628
– ident: e_1_3_1_229_2
  doi: 10.1109/ICPR48806.2021.9412416
– ident: e_1_3_1_36_2
  doi: 10.1109/CVPR.2014.461
– ident: e_1_3_1_235_2
  doi: 10.1007/978-3-030-86340-1_39
– ident: e_1_3_1_193_2
  doi: 10.1109/TNNLS.2020.2978386
– start-page: 4077
  volume-title: Proceedings of the International Conference on Neural Information Processing Systems
  year: 2017
  ident: e_1_3_1_175_2
– ident: e_1_3_1_186_2
  doi: 10.1109/CVPR52688.2022.01415
– ident: e_1_3_1_42_2
  doi: 10.1109/CVPR.2017.369
– ident: e_1_3_1_79_2
  doi: 10.1609/aaai.v34i05.6281
– ident: e_1_3_1_83_2
  doi: 10.1109/CVPR.2016.90
– year: 2018
  ident: e_1_3_1_269_2
  article-title: One-shot instance segmentation
  publication-title: arXiv preprint arXiv:1811.11507
– volume: 32
  year: 2019
  ident: e_1_3_1_99_2
  article-title: Cross attention network for few-shot classification
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_1_37_2
  doi: 10.1109/WACV51458.2022.00334
– start-page: 152
  volume-title: Proceedings of the 32nd British Machine Vision Conference
  year: 2021
  ident: e_1_3_1_224_2
– year: 2019
  ident: e_1_3_1_242_2
  article-title: Generalized adaptation for few-shot learning
  publication-title: arXiv preprint arXiv:1911.10807
– ident: e_1_3_1_152_2
– ident: e_1_3_1_94_2
  doi: 10.1609/aaai.v35i11.17155
– volume: 33
  start-page: 3907
  year: 2020
  ident: e_1_3_1_151_2
  article-title: OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Proceedings of the 5th International Conference on Learning Representations
  year: 2017
  ident: e_1_3_1_158_2
– ident: e_1_3_1_156_2
  doi: 10.1109/CVPR52688.2022.00962
– ident: e_1_3_1_59_2
  doi: 10.1109/ICCV.2017.328
– ident: e_1_3_1_115_2
  doi: 10.18653/v1/2020.emnlp-main.346
– volume-title: Proceedings of the 7th International Conference on Learning Representations
  year: 2019
  ident: e_1_3_1_93_2
– ident: e_1_3_1_34_2
  doi: 10.1016/j.cobeha.2019.04.007
– ident: e_1_3_1_260_2
  doi: 10.1007/978-3-030-58598-3_45
– ident: e_1_3_1_113_2
  doi: 10.18653/v1/2021.eacl-main.20
– ident: e_1_3_1_208_2
  doi: 10.1007/978-3-030-58607-2_42
– start-page: arXiv–2203
  year: 2022
  ident: e_1_3_1_29_2
  article-title: PET: A new dataset for process extraction from natural language text
  publication-title: arXiv e-prints
– ident: e_1_3_1_252_2
  doi: 10.1007/978-3-030-58517-4_27
– ident: e_1_3_1_268_2
  doi: 10.1109/TCYB.2020.2992433
– start-page: 983
  volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems
  year: 2018
  ident: e_1_3_1_67_2
– ident: e_1_3_1_101_2
  doi: 10.1109/CVPR52688.2022.00886
– ident: e_1_3_1_54_2
  doi: 10.18653/v1/D19-1670
– ident: e_1_3_1_209_2
  doi: 10.1109/CVPR.2019.00738
– start-page: 3309
  volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems
  year: 2019
  ident: e_1_3_1_245_2
– volume-title: Proceedings of the 9th International Conference on Learning Representations
  year: 2021
  ident: e_1_3_1_47_2
– year: 2021
  ident: e_1_3_1_215_2
  article-title: Multimodal conditionality for natural language generation
  publication-title: arXiv preprint arXiv:2109.01229
– ident: e_1_3_1_61_2
  doi: 10.1109/CVPR.2016.16
– volume-title: Proceedings of the 9th International Conference on Learning Representations
  year: 2021
  ident: e_1_3_1_106_2
– ident: e_1_3_1_69_2
  doi: 10.1016/j.patcog.2020.107370
– ident: e_1_3_1_234_2
  doi: 10.1109/WACV51458.2022.00166
– start-page: 21984
  volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems
  year: 2021
  ident: e_1_3_1_258_2
– ident: e_1_3_1_52_2
  doi: 10.1109/CVPR.2018.00610
– year: 2020
  ident: e_1_3_1_237_2
  article-title: PAC-Bayesian meta-learning with implicit prior and posterior
  publication-title: arXiv preprint arXiv:2003.02455
– year: 2019
  ident: e_1_3_1_41_2
  article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC)
  publication-title: arXiv preprint arXiv:1902.03368
– ident: e_1_3_1_81_2
  doi: 10.1109/ICCV48922.2021.00892
– ident: e_1_3_1_38_2
  doi: 10.1109/TITS.2019.2931429
– ident: e_1_3_1_72_2
  doi: 10.1016/j.patcog.2022.109108
– volume: 30
  year: 2017
  ident: e_1_3_1_122_2
  article-title: Few-shot adversarial domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: e_1_3_1_137_2
  article-title: On first-order meta-learning algorithms
  publication-title: arXiv preprint arXiv:1803.02999
– year: 2022
  ident: e_1_3_1_248_2
  article-title: Integral migrating pre-trained transformer encoder-decoders for visual object detection
  publication-title: arXiv preprint arXiv:2205.09613
– ident: e_1_3_1_11_2
  doi: 10.1109/TGRS.2022.3208897
– year: 2021
  ident: e_1_3_1_118_2
  article-title: Factual probing is [MASK]: Learning vs. learning to recall
  publication-title: arXiv preprint arXiv:2104.05240
– volume-title: Proceedings of the 10th International Conference on Learning Representations
  year: 2022
  ident: e_1_3_1_155_2
– ident: e_1_3_1_160_2
  doi: 10.18653/v1/2020.acl-main.102
– year: 2021
  ident: e_1_3_1_216_2
  article-title: ActionCLIP: A new paradigm for video action recognition
  publication-title: arXiv preprint arXiv:2109.08472
– ident: e_1_3_1_192_2
  doi: 10.1109/ICCV.2019.00855
– ident: e_1_3_1_64_2
  doi: 10.1109/CVPR.2018.00543
– start-page: 7115
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2019
  ident: e_1_3_1_241_2
– year: 2020
  ident: e_1_3_1_9_2
  article-title: Learning from very few samples: A survey
  publication-title: arXiv preprint arXiv:2009.02653
– volume-title: Proceedings of the Annual Conference on Neural Information Processing Systems
  year: 2020
  ident: e_1_3_1_12_2
– ident: e_1_3_1_30_2
– ident: e_1_3_1_228_2
  doi: 10.1109/ICASSP39728.2021.9413783
– ident: e_1_3_1_263_2
  doi: 10.1109/ICCV.2019.00071
– year: 2022
  ident: e_1_3_1_201_2
  article-title: Few-shot learning with siamese networks and label tuning
  publication-title: arXiv preprint arXiv:2203.14655
– start-page: 1
  year: 2022
  ident: e_1_3_1_4_2
  article-title: FewJoint: Few-shot learning for joint dialogue understanding
  publication-title: Int. J. Mach. Learn. Cyber.
– ident: e_1_3_1_217_2
  doi: 10.1109/CVPR52688.2022.00490
– start-page: 1
  year: 2021
  ident: e_1_3_1_170_2
  article-title: Few-shot ship classification based on metric learning
  publication-title: Multim. Syst.
– ident: e_1_3_1_91_2
  doi: 10.1109/CVPR52688.2022.01553
– year: 2021
  ident: e_1_3_1_21_2
  article-title: Meta-learning based incremental few-shot object detection
  publication-title: IEEE Trans. Circ. Syst. Vid. Technol.
– ident: e_1_3_1_55_2
  doi: 10.1109/CVPR.2019.00888
SSID ssj0002416
Score 2.733315
Snippet Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks,...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Computing methodologies
Learning paradigms
Machine learning
SubjectTermsDisplay Computing methodologies -- Artificial intelligence
Computing methodologies -- Learning paradigms
Computing methodologies -- Machine learning
Title A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities
URI https://dl.acm.org/doi/10.1145/3582688
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagvXABWkC0LPIBcWFcstiZGW7R0KoCBpBmKpXTyPGiItGkmkmK4NfzvCXucgAuUeQ4TuT35flz3obQKyqBVMvJlKRimhGqU0644gmRsiiUyhIurEV3_rk4PqEfTtnpYIqx0SVtdSB-3xpX8j9ShTaQq4mS_QfJ9oNCA5yDfOEIEobjX8m4tJ_zWp15L_RFt75U1mR-pH6SzVnThvypNqj58NK_jVUIkeXa291dVZVNcOj8cmG4eVfbnKsxiS1nc-uK3lmX6Y19aE_NF97H95txtvfLov1h75qX34e2mSuF_bX71fVyb2ppSxAYjbZuWv7m40H8YyLLQ_rDHkrzSJflRUJAnzgTjPK6lo3JOHd5r4Iydjl7A-jyTaRb02iRdimebqp_ajJlmODfwhULvJZL21-5i7Yz2FWAWtwu388_LfqlG-iMN267t3VR1mbYt_5WQ2LEeURiIjayfIju-20ELh0mdtAdVe-iB6FEB_Ya-xESJb4CEewgghuNA0RwgMg73ANkhGN4jPAAjhEGaOAr0HiMTo4Ol7Nj4utqEA5kviVMTFIluNBsTLXKdFLJMU8rWVWpkgIYoMgU5XqSyDSvBM3gQsIEnWiZMy6A_z1BW3VTq6cIM0lhR84FVZTSooLtc55rPuVMmSRAWu2hXZiu1YXLnLLyk7iHXofpWwmfit5URPmxcmHybOiI-45hjGtd9m99wjN0b4Dkc7TVrjv1AthjW730Mv8DkAFxUg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+of+Few-shot+Learning%3A+Evolution%2C+Applications%2C+Challenges%2C+and+Opportunities&rft.jtitle=ACM+computing+surveys&rft.au=Song%2C+Yisheng&rft.au=Wang%2C+Ting&rft.au=Cai%2C+Puyu&rft.au=Mondal%2C+Subrota+K.&rft.date=2023-12-31&rft.pub=ACM&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=55&rft.issue=13s&rft.spage=1&rft.epage=40&rft_id=info:doi/10.1145%2F3582688&rft.externalDocID=3582688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon