Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. He...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 10; pp. 16515 - 16524
Main Authors Tian, Da, Song, Xueqin, Qiu, Yue, Sun, Xun, Jiang, Bo, Zhao, Chenghao, Zhang, Yu, Xu, Xianzhu, Fan, Lishuang, Zhang, Naiqing
Format Journal Article
LanguageEnglish
Published American Chemical Society 26.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li–S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion.
AbstractList Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li–S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion.
Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li-S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion.Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li-S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion.
Author Zhang, Naiqing
Fan, Lishuang
Zhao, Chenghao
Zhang, Yu
Song, Xueqin
Qiu, Yue
Jiang, Bo
Tian, Da
Sun, Xun
Xu, Xianzhu
AuthorAffiliation Harbin Institute of Technology
Academy of Fundamental and Interdisciplinary Sciences
State Key Laboratory of Urban Water Resource and Environment
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Academy of Fundamental and Interdisciplinary Sciences
– name: School of Chemistry and Chemical Engineering
– name: Harbin Institute of Technology
– name: State Key Laboratory of Urban Water Resource and Environment
Author_xml – sequence: 1
  givenname: Da
  surname: Tian
  fullname: Tian, Da
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Xueqin
  surname: Song
  fullname: Song, Xueqin
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Yue
  surname: Qiu
  fullname: Qiu, Yue
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Xun
  surname: Sun
  fullname: Sun, Xun
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Bo
  surname: Jiang
  fullname: Jiang, Bo
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Chenghao
  surname: Zhao
  fullname: Zhao, Chenghao
  organization: Harbin Institute of Technology
– sequence: 7
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Xianzhu
  surname: Xu
  fullname: Xu, Xianzhu
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Lishuang
  orcidid: 0000-0002-8740-4571
  surname: Fan
  fullname: Fan, Lishuang
  organization: Harbin Institute of Technology
– sequence: 10
  givenname: Naiqing
  orcidid: 0000-0002-9528-9673
  surname: Zhang
  fullname: Zhang, Naiqing
  email: znqmww@163.com
  organization: Harbin Institute of Technology
BookMark eNp9UctKBDEQDKLg8-w1R0FGk5mdyc5RZX3A-gAVvA2dbAcj2USTjLI3v0H_0C8xyy4eBD11011VTVdtklXnHRKyy9kBZyU_BBUdOH_AFWtYI1bIBm-rpmDD5mH1p6_5OtmM8YmxWgxFs0E-jiGCLW4sOCyOVDKvkHBCL72dyQm6fkpve6vNBOlVFo-PiCnSN5Me89wkkBbpdZC5s7kadAmS8Y5CpCOtjZpP6MiiSsEryKhZzHztAx1nDdNPv94_5wf6QI8hJcwScZusabARd5Z1i9yfju5Ozovx9dnFydG4gIqzVFRSSuAaW9kAE5rVfFDqAUemNTYDIYWEBssWWq4mvIK2ldVQ1aJqZVnXgqlqi-wtdJ-Df-kxpm5qokI7t8L3sSuzRXwwFFWdofUCqoKPMaDulFl8mgIY23HWzTPolhl0ywwy7_AX7zmYKYTZP4z9BSMvuiffB5ct-BP9DfiDoWo
CitedBy_id crossref_primary_10_1021_acsanm_3c04781
crossref_primary_10_1002_adfm_202207021
crossref_primary_10_1149_1945_7111_ad6377
crossref_primary_10_1002_aesr_202200145
crossref_primary_10_1002_smll_202206750
crossref_primary_10_1016_j_cej_2023_141620
crossref_primary_10_1016_j_cej_2023_144736
crossref_primary_10_1016_j_apsusc_2023_157163
crossref_primary_10_1002_anie_202406065
crossref_primary_10_1021_acs_nanolett_4c04139
crossref_primary_10_2139_ssrn_4098272
crossref_primary_10_1016_j_jechem_2023_03_008
crossref_primary_10_1002_adma_202420588
crossref_primary_10_1002_aenm_202201056
crossref_primary_10_1002_adfm_202409303
crossref_primary_10_1039_D3EE01774E
crossref_primary_10_1002_adfm_202310399
crossref_primary_10_1007_s12274_023_6227_4
crossref_primary_10_1002_smll_202303015
crossref_primary_10_1016_j_mattod_2022_05_017
crossref_primary_10_1002_aenm_202300590
crossref_primary_10_1016_j_ensm_2023_103026
crossref_primary_10_1002_ange_202406065
crossref_primary_10_1002_adma_202419918
crossref_primary_10_1016_j_cclet_2024_109543
crossref_primary_10_1007_s40820_021_00769_2
crossref_primary_10_1002_smll_202208281
crossref_primary_10_1016_j_electacta_2022_141218
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1039_D2TA04418H
crossref_primary_10_1021_acsestengg_4c00377
crossref_primary_10_1016_j_jallcom_2025_179118
crossref_primary_10_1016_j_desal_2025_118601
crossref_primary_10_1002_adma_202309024
crossref_primary_10_1039_D1CP05666B
crossref_primary_10_1002_cssc_202202265
crossref_primary_10_1016_j_electacta_2023_143385
crossref_primary_10_1016_j_coco_2023_101795
crossref_primary_10_1016_j_ensm_2024_103237
crossref_primary_10_1002_elt2_16
crossref_primary_10_1016_j_cclet_2023_108263
crossref_primary_10_1002_cnl2_70003
crossref_primary_10_1002_smll_202409025
crossref_primary_10_1002_adfm_202419837
crossref_primary_10_1002_advs_202201579
crossref_primary_10_1016_j_ensm_2023_102855
crossref_primary_10_1016_j_jcis_2022_12_010
crossref_primary_10_1002_sus2_42
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1016_j_actamat_2022_118441
crossref_primary_10_1002_smll_202305161
crossref_primary_10_1016_j_apsusc_2022_154022
crossref_primary_10_1021_acsanm_3c05447
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1016_j_jcis_2024_10_167
crossref_primary_10_1002_idm2_12087
crossref_primary_10_1002_adfm_202303357
crossref_primary_10_1016_j_ensm_2022_12_011
crossref_primary_10_1002_cssc_202400451
crossref_primary_10_1002_aenm_202202094
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1039_D4TA07676A
crossref_primary_10_1016_j_jechem_2022_09_001
crossref_primary_10_1002_adfm_202316221
Cites_doi 10.1039/C7SC03960C
10.1002/aenm.201902096
10.1038/ncomms14627
10.1002/aenm.201901896
10.1021/acsaem.0c02015
10.1002/aenm.201903934
10.1016/j.nanoen.2018.12.019
10.1016/j.nantod.2017.12.010
10.1039/D0TA05282E
10.1038/ncomms10601
10.1016/j.nanoen.2020.105621
10.1016/j.matt.2020.06.002
10.1021/jacs.8b12973
10.1002/anie.202004914
10.1021/acsami.9b03011
10.1038/nenergy.2016.132
10.1038/nmat2460
10.1002/adma.201903813
10.34133/2020/5714349
10.1039/C8EE03252A
10.1021/nl503730c
10.1038/s41467-018-06629-9
10.1002/adma.201405115
10.1039/c0ee00777c
10.1002/adma.201601759
10.1016/j.joule.2020.01.001
10.1016/j.apmt.2020.100916
10.1002/aenm.202003314
10.1002/aenm.201700260
10.1002/chem.200600564
10.1016/j.cplett.2014.01.043
10.1103/PhysRevB.64.115107
10.1016/j.apcatb.2021.120274
10.1038/s41929-020-0498-x
10.1073/pnas.1615837114
10.1021/jp026324m
10.1021/acsnano.7b04442
10.1039/C5CS00410A
10.1021/jacs.6b08681
10.1039/C7EE01047H
10.1039/c2cs35256g
10.1038/ncomms5759
10.1002/anie.201304762
10.1002/adma.201903955
10.1002/cssc.201900929
10.1021/acs.nanolett.5b04166
10.1002/adfm.201707536
10.1126/science.1212741
10.1016/j.carbon.2018.09.067
10.1039/C9TA03227D
10.1103/PhysRevB.63.125117
10.1002/adfm.201903842
10.1016/j.jallcom.2016.09.004
10.1021/acsnano.6b06369
10.1002/anie.201100637
10.1016/j.nanoen.2012.10.003
10.1016/j.solidstatesciences.2007.11.024
10.1002/aenm.201601843
10.1016/j.jpowsour.2008.10.033
10.1021/acs.nanolett.5b00367
10.1002/aenm.202000907
10.1002/inf2.12056
10.1016/j.micron.2011.07.004
10.1021/cg5013395
10.1002/aenm.201602543
10.1021/nl200658a
10.1002/aenm.201702337
10.1038/ncomms11203
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.1c06067
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 16524
ExternalDocumentID 10_1021_acsnano_1c06067
a70664581
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
ID FETCH-LOGICAL-a310t-3bbba1fe9b6a07f05142f41e0ffe647b7ba6e29a91cd13a99b38c5739b25570c3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 06:04:09 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Tue Jul 01 03:37:16 EDT 2025
Thu Oct 28 07:00:31 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords shuttle effect
orbital orientation
lithium−sulfur batteries
polysulfide redox reaction
electrocatalysis
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a310t-3bbba1fe9b6a07f05142f41e0ffe647b7ba6e29a91cd13a99b38c5739b25570c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8740-4571
0000-0002-9528-9673
PQID 2578148735
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2578148735
crossref_citationtrail_10_1021_acsnano_1c06067
crossref_primary_10_1021_acsnano_1c06067
acs_journals_10_1021_acsnano_1c06067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211026
2021-10-26
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: 20211026
  day: 26
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Yang G. (ref56/cit56) 2006; 47
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1039/C7SC03960C
– ident: ref47/cit47
  doi: 10.1002/aenm.201902096
– ident: ref21/cit21
  doi: 10.1038/ncomms14627
– ident: ref41/cit41
  doi: 10.1002/aenm.201901896
– ident: ref43/cit43
  doi: 10.1021/acsaem.0c02015
– ident: ref69/cit69
  doi: 10.1002/aenm.201903934
– ident: ref32/cit32
  doi: 10.1016/j.nanoen.2018.12.019
– ident: ref11/cit11
  doi: 10.1016/j.nantod.2017.12.010
– ident: ref54/cit54
  doi: 10.1039/D0TA05282E
– ident: ref15/cit15
  doi: 10.1038/ncomms10601
– volume: 47
  start-page: 507
  year: 2006
  ident: ref56/cit56
  publication-title: Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B
– ident: ref30/cit30
  doi: 10.1016/j.nanoen.2020.105621
– ident: ref33/cit33
  doi: 10.1016/j.matt.2020.06.002
– ident: ref27/cit27
  doi: 10.1021/jacs.8b12973
– ident: ref35/cit35
  doi: 10.1002/anie.202004914
– ident: ref46/cit46
  doi: 10.1021/acsami.9b03011
– ident: ref12/cit12
  doi: 10.1038/nenergy.2016.132
– ident: ref14/cit14
  doi: 10.1038/nmat2460
– ident: ref25/cit25
  doi: 10.1002/adma.201903813
– ident: ref34/cit34
  doi: 10.34133/2020/5714349
– ident: ref40/cit40
  doi: 10.1039/C8EE03252A
– ident: ref52/cit52
  doi: 10.1021/nl503730c
– ident: ref29/cit29
  doi: 10.1038/s41467-018-06629-9
– ident: ref6/cit6
  doi: 10.1002/adma.201405115
– ident: ref2/cit2
  doi: 10.1039/c0ee00777c
– ident: ref4/cit4
  doi: 10.1002/adma.201601759
– ident: ref10/cit10
  doi: 10.1016/j.joule.2020.01.001
– ident: ref44/cit44
  doi: 10.1016/j.apmt.2020.100916
– ident: ref45/cit45
  doi: 10.1002/aenm.202003314
– ident: ref7/cit7
  doi: 10.1002/aenm.201700260
– ident: ref61/cit61
  doi: 10.1002/chem.200600564
– ident: ref67/cit67
  doi: 10.1016/j.cplett.2014.01.043
– ident: ref57/cit57
  doi: 10.1103/PhysRevB.64.115107
– ident: ref65/cit65
  doi: 10.1016/j.apcatb.2021.120274
– ident: ref31/cit31
  doi: 10.1038/s41929-020-0498-x
– ident: ref60/cit60
  doi: 10.1073/pnas.1615837114
– ident: ref64/cit64
  doi: 10.1021/jp026324m
– ident: ref38/cit38
  doi: 10.1021/acsnano.7b04442
– ident: ref1/cit1
  doi: 10.1039/C5CS00410A
– ident: ref53/cit53
  doi: 10.1021/jacs.6b08681
– ident: ref50/cit50
  doi: 10.1039/C7EE01047H
– ident: ref5/cit5
  doi: 10.1039/c2cs35256g
– ident: ref22/cit22
  doi: 10.1038/ncomms5759
– ident: ref8/cit8
  doi: 10.1002/anie.201304762
– ident: ref26/cit26
  doi: 10.1002/adma.201903955
– ident: ref42/cit42
  doi: 10.1002/cssc.201900929
– ident: ref28/cit28
  doi: 10.1021/acs.nanolett.5b04166
– ident: ref9/cit9
  doi: 10.1002/adfm.201707536
– ident: ref3/cit3
  doi: 10.1126/science.1212741
– ident: ref20/cit20
  doi: 10.1016/j.carbon.2018.09.067
– ident: ref48/cit48
  doi: 10.1039/C9TA03227D
– ident: ref62/cit62
  doi: 10.1103/PhysRevB.63.125117
– ident: ref36/cit36
  doi: 10.1002/adfm.201903842
– ident: ref51/cit51
  doi: 10.1016/j.jallcom.2016.09.004
– ident: ref17/cit17
  doi: 10.1021/acsnano.6b06369
– ident: ref13/cit13
  doi: 10.1002/anie.201100637
– ident: ref18/cit18
  doi: 10.1016/j.nanoen.2012.10.003
– ident: ref55/cit55
  doi: 10.1016/j.solidstatesciences.2007.11.024
– ident: ref37/cit37
  doi: 10.1002/aenm.201601843
– ident: ref63/cit63
  doi: 10.1016/j.jpowsour.2008.10.033
– ident: ref66/cit66
  doi: 10.1021/acs.nanolett.5b00367
– ident: ref59/cit59
  doi: 10.1002/aenm.202000907
– ident: ref24/cit24
  doi: 10.1002/inf2.12056
– ident: ref58/cit58
  doi: 10.1016/j.micron.2011.07.004
– ident: ref68/cit68
  doi: 10.1021/cg5013395
– ident: ref19/cit19
  doi: 10.1002/aenm.201602543
– ident: ref16/cit16
  doi: 10.1021/nl200658a
– ident: ref39/cit39
  doi: 10.1002/aenm.201702337
– ident: ref23/cit23
  doi: 10.1038/ncomms11203
SSID ssj0057876
Score 2.5945485
Snippet Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy...
Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16515
Title Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium–Sulfur Batteries
URI http://dx.doi.org/10.1021/acsnano.1c06067
https://www.proquest.com/docview/2578148735
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXNoDLX2o9CVX4tCLt2vHSTZHihYhBPRAkbhFfozVFdsErZMDPfU3lH_IL-lMkoVShMopkmU7lj2e-ewZf8PYlgaAxCsvMrQPAi10Iawba5EG461GwKAlPU4-PMr2TvT-aXp6Qxb9rwdfyc_GxcpU9Ui6MYLt_BFbUxluYUJBO8dLpUtyl_UOZDwgI4q4ZvG50wGZIRdvm6HbWrgzLbtP-6Cs2DESUkTJ2aht7Mj9vMvX-P9RP2PrA8Dk271EbLAVqJ6zJ3_RDr5gv7-YaOaC8hWB2HZdgjPw_LCeX1hPofH8uJ2HmQeOureO3wGayOnCFstnDb214l8XlrKN4Hc2PF6quIl82hFSYAmf9ul1utuhi4jtERzzA-xj1v64-nVJP2gXvGf3xMP6S3ayO_22syeG3AzCICBsRGKtNTJAYTMzzgOxqKugJYxDgEznNrcmA1WYQjovE1MUNpm4NE8Kq4j0yyWv2GpVV_Ca8WDSoI2aANbWuQoT0N64YHPpZep12GRbOJvlsLdi2bnNlSyHKS6HKd5ko-WKlm7gN6c0G_P7G3y6bnDeU3vcX_XjUkRK3H7kU8EVqttYksbDE2WepG8eNsy37LGisBg0fyp7x1abRQvvEdc09kMn0X8AiJr5Nw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VcoAeKL-itICReuDiJXacZHNcqq0W2C1CbaXeIv-qK5akWieHcuIZ4A37JIyT7EJBleAUybIdyx7PfPZ4vgHYF9ba2HBDU7QPFC10TpWOBE2cNEogYBAsBCfPjtLJqXh_lpxtQLSKhcFBeOzJt078X-wC7A2WlbKsBkxHiLmzW3AboQgPMj06OF7p3iB-aedHxnMygok1mc9fHQRrpP11a3RdGbcW5nAbPq3H1j4s-TxoajXQX_-gbfyfwd-Hez3cJKNOPh7Ahi0fwtZvJISP4Ptb6eWChuxFlo50m-7MGjKrFpfKhIfy5LhZuLmxBDVx5c-trT0J17dYPq9D5BX5uFQh9wh-530oU0mkJ-OWngJLyLhLttPeFV16bI9QmUyxj3nz5erbj_CDZkk6rk88uj-G08PxycGE9pkaqER4WNNYKSWZs7lKZZS5wKnOnWA2cs6mIlOZkqnlucyZNiyWea7ioU6yOFc8UIDp-AlsllVpnwJxMnFC8qHF2iLjbmiFkdqpjBmWGOF2YB9ns-h3mi9aJzpnRT_FRT_FOzBYLWyhe7bzkHRjcXOD1-sGFx3Rx81VX60kpcDNGDwsuEJV44ug__B8mcXJs38b5ku4MzmZTYvpu6MPu3CXhwczaBh5ugeb9bKxzxHx1OpFK-Q_AWI8Aac
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeeCPK00g9cPGydpxkc1zKrgq0Bams1Fvkp1ixTap1cmhP_Q30H_aXMJN4VxRUCU6RrNhx7PHMZ4_nG0K2pXMuscKyDOwDAwtdMG2GkqVeWS0BMEiOwcn7B9nuTH46So9iUBjGwkAnArQUOic-ruoT6yPDAH8H5ZWq6gE3Q8Dd-U1yC512KNfjncOV_kURzHpfMuyVAVCsCX3-agAtkglXLdJVhdxZmek9Mlv3r7tc8mPQNnpgzv6gbvzfH7hP7kbYSce9nDwgN1z1kGz-Rkb4iPx8r4JaMMxi5NjYdGnPnKX79eJUW7wwTw_bhZ9bR0Ej1-G7c02geIwL5fMGI7Dol6XGHCTwnMeQpoqqQCcdTQWU0EmfdKc7MzoNUB8gM92DNubt8eX5BX6gXdKe8xO28I_JbDr5trPLYsYGpgAmNizRWivuXaEzNcw9cqsLL7kbeu8ymetcq8yJQhXcWJ6ootDJyKR5UmiBVGAmeUI2qrpyTwn1KvVSiZGDt2Uu_MhJq4zXObc8tdJvkW0YzTKuuFB2znTByzjEZRziLTJYTW5pIus5Jt9YXF_h7brCSU_4cf2rb1bSUsKiRE8LzFDdhhL1IOwz8yR99m_dfE1uf_0wLfc-Hnx-Tu4IvDcD9lFkL8hGs2zdSwA-jX7Vyfkvh5kEKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basal-Plane-Activated+Molybdenum+Sulfide+Nanosheets+with+Suitable+Orbital+Orientation+as+Efficient+Electrocatalysts+for+Lithium-Sulfur+Batteries&rft.jtitle=ACS+nano&rft.au=Tian%2C+Da&rft.au=Song%2C+Xueqin&rft.au=Qiu%2C+Yue&rft.au=Sun%2C+Xun&rft.date=2021-10-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=10&rft.spage=16515&rft_id=info:doi/10.1021%2Facsnano.1c06067&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon