Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. He...
Saved in:
Published in | ACS nano Vol. 15; no. 10; pp. 16515 - 16524 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li–S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion. |
---|---|
AbstractList | Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li–S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion. Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li-S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion.Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy density. However, the shuttling behavior and sluggish conversion kinetics of lithium polysulfides (LiPSs) limit their practical application. Herein, B-doped MoS2 nanosheets are synthesized on carbon nanotubes (denoted as CNT@MoS2-B) to function as catalysts to boost the performance of Li-S batteries. The poor catalytic performance of the pristine MoS2 is revealed to be the result of unsuitable orbital orientation of the basal plane, which hinders the orbital overlap with sulfur species. B in CNT@MoS2-B is sp3 hybridized, and it has a vacant σ orbital perpendicular to the basal plane, which can maximize the head-on orbital overlap with S. The incorporation of B significantly increases the reactivity of MoS2 basal plane, which can facilitate the kinetics of Li2S formation and dissolution. With these merits, the S/CNT@MoS2-B cathodes deliver high rate capability and outstanding cycling stability, holding great promise for both scientific research and practical application. This work affords fresh insights for developing effective catalysts to accelerate LiPS conversion. |
Author | Zhang, Naiqing Fan, Lishuang Zhao, Chenghao Zhang, Yu Song, Xueqin Qiu, Yue Jiang, Bo Tian, Da Sun, Xun Xu, Xianzhu |
AuthorAffiliation | Harbin Institute of Technology Academy of Fundamental and Interdisciplinary Sciences State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Academy of Fundamental and Interdisciplinary Sciences – name: School of Chemistry and Chemical Engineering – name: Harbin Institute of Technology – name: State Key Laboratory of Urban Water Resource and Environment |
Author_xml | – sequence: 1 givenname: Da surname: Tian fullname: Tian, Da organization: Harbin Institute of Technology – sequence: 2 givenname: Xueqin surname: Song fullname: Song, Xueqin organization: Harbin Institute of Technology – sequence: 3 givenname: Yue surname: Qiu fullname: Qiu, Yue organization: Harbin Institute of Technology – sequence: 4 givenname: Xun surname: Sun fullname: Sun, Xun organization: Harbin Institute of Technology – sequence: 5 givenname: Bo surname: Jiang fullname: Jiang, Bo organization: Harbin Institute of Technology – sequence: 6 givenname: Chenghao surname: Zhao fullname: Zhao, Chenghao organization: Harbin Institute of Technology – sequence: 7 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Harbin Institute of Technology – sequence: 8 givenname: Xianzhu surname: Xu fullname: Xu, Xianzhu organization: Harbin Institute of Technology – sequence: 9 givenname: Lishuang orcidid: 0000-0002-8740-4571 surname: Fan fullname: Fan, Lishuang organization: Harbin Institute of Technology – sequence: 10 givenname: Naiqing orcidid: 0000-0002-9528-9673 surname: Zhang fullname: Zhang, Naiqing email: znqmww@163.com organization: Harbin Institute of Technology |
BookMark | eNp9UctKBDEQDKLg8-w1R0FGk5mdyc5RZX3A-gAVvA2dbAcj2USTjLI3v0H_0C8xyy4eBD11011VTVdtklXnHRKyy9kBZyU_BBUdOH_AFWtYI1bIBm-rpmDD5mH1p6_5OtmM8YmxWgxFs0E-jiGCLW4sOCyOVDKvkHBCL72dyQm6fkpve6vNBOlVFo-PiCnSN5Me89wkkBbpdZC5s7kadAmS8Y5CpCOtjZpP6MiiSsEryKhZzHztAx1nDdNPv94_5wf6QI8hJcwScZusabARd5Z1i9yfju5Ozovx9dnFydG4gIqzVFRSSuAaW9kAE5rVfFDqAUemNTYDIYWEBssWWq4mvIK2ldVQ1aJqZVnXgqlqi-wtdJ-Df-kxpm5qokI7t8L3sSuzRXwwFFWdofUCqoKPMaDulFl8mgIY23HWzTPolhl0ywwy7_AX7zmYKYTZP4z9BSMvuiffB5ct-BP9DfiDoWo |
CitedBy_id | crossref_primary_10_1021_acsanm_3c04781 crossref_primary_10_1002_adfm_202207021 crossref_primary_10_1149_1945_7111_ad6377 crossref_primary_10_1002_aesr_202200145 crossref_primary_10_1002_smll_202206750 crossref_primary_10_1016_j_cej_2023_141620 crossref_primary_10_1016_j_cej_2023_144736 crossref_primary_10_1016_j_apsusc_2023_157163 crossref_primary_10_1002_anie_202406065 crossref_primary_10_1021_acs_nanolett_4c04139 crossref_primary_10_2139_ssrn_4098272 crossref_primary_10_1016_j_jechem_2023_03_008 crossref_primary_10_1002_adma_202420588 crossref_primary_10_1002_aenm_202201056 crossref_primary_10_1002_adfm_202409303 crossref_primary_10_1039_D3EE01774E crossref_primary_10_1002_adfm_202310399 crossref_primary_10_1007_s12274_023_6227_4 crossref_primary_10_1002_smll_202303015 crossref_primary_10_1016_j_mattod_2022_05_017 crossref_primary_10_1002_aenm_202300590 crossref_primary_10_1016_j_ensm_2023_103026 crossref_primary_10_1002_ange_202406065 crossref_primary_10_1002_adma_202419918 crossref_primary_10_1016_j_cclet_2024_109543 crossref_primary_10_1007_s40820_021_00769_2 crossref_primary_10_1002_smll_202208281 crossref_primary_10_1016_j_electacta_2022_141218 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1039_D2TA04418H crossref_primary_10_1021_acsestengg_4c00377 crossref_primary_10_1016_j_jallcom_2025_179118 crossref_primary_10_1016_j_desal_2025_118601 crossref_primary_10_1002_adma_202309024 crossref_primary_10_1039_D1CP05666B crossref_primary_10_1002_cssc_202202265 crossref_primary_10_1016_j_electacta_2023_143385 crossref_primary_10_1016_j_coco_2023_101795 crossref_primary_10_1016_j_ensm_2024_103237 crossref_primary_10_1002_elt2_16 crossref_primary_10_1016_j_cclet_2023_108263 crossref_primary_10_1002_cnl2_70003 crossref_primary_10_1002_smll_202409025 crossref_primary_10_1002_adfm_202419837 crossref_primary_10_1002_advs_202201579 crossref_primary_10_1016_j_ensm_2023_102855 crossref_primary_10_1016_j_jcis_2022_12_010 crossref_primary_10_1002_sus2_42 crossref_primary_10_1002_aenm_202300611 crossref_primary_10_1016_j_actamat_2022_118441 crossref_primary_10_1002_smll_202305161 crossref_primary_10_1016_j_apsusc_2022_154022 crossref_primary_10_1021_acsanm_3c05447 crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1016_j_jcis_2024_10_167 crossref_primary_10_1002_idm2_12087 crossref_primary_10_1002_adfm_202303357 crossref_primary_10_1016_j_ensm_2022_12_011 crossref_primary_10_1002_cssc_202400451 crossref_primary_10_1002_aenm_202202094 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1039_D4TA07676A crossref_primary_10_1016_j_jechem_2022_09_001 crossref_primary_10_1002_adfm_202316221 |
Cites_doi | 10.1039/C7SC03960C 10.1002/aenm.201902096 10.1038/ncomms14627 10.1002/aenm.201901896 10.1021/acsaem.0c02015 10.1002/aenm.201903934 10.1016/j.nanoen.2018.12.019 10.1016/j.nantod.2017.12.010 10.1039/D0TA05282E 10.1038/ncomms10601 10.1016/j.nanoen.2020.105621 10.1016/j.matt.2020.06.002 10.1021/jacs.8b12973 10.1002/anie.202004914 10.1021/acsami.9b03011 10.1038/nenergy.2016.132 10.1038/nmat2460 10.1002/adma.201903813 10.34133/2020/5714349 10.1039/C8EE03252A 10.1021/nl503730c 10.1038/s41467-018-06629-9 10.1002/adma.201405115 10.1039/c0ee00777c 10.1002/adma.201601759 10.1016/j.joule.2020.01.001 10.1016/j.apmt.2020.100916 10.1002/aenm.202003314 10.1002/aenm.201700260 10.1002/chem.200600564 10.1016/j.cplett.2014.01.043 10.1103/PhysRevB.64.115107 10.1016/j.apcatb.2021.120274 10.1038/s41929-020-0498-x 10.1073/pnas.1615837114 10.1021/jp026324m 10.1021/acsnano.7b04442 10.1039/C5CS00410A 10.1021/jacs.6b08681 10.1039/C7EE01047H 10.1039/c2cs35256g 10.1038/ncomms5759 10.1002/anie.201304762 10.1002/adma.201903955 10.1002/cssc.201900929 10.1021/acs.nanolett.5b04166 10.1002/adfm.201707536 10.1126/science.1212741 10.1016/j.carbon.2018.09.067 10.1039/C9TA03227D 10.1103/PhysRevB.63.125117 10.1002/adfm.201903842 10.1016/j.jallcom.2016.09.004 10.1021/acsnano.6b06369 10.1002/anie.201100637 10.1016/j.nanoen.2012.10.003 10.1016/j.solidstatesciences.2007.11.024 10.1002/aenm.201601843 10.1016/j.jpowsour.2008.10.033 10.1021/acs.nanolett.5b00367 10.1002/aenm.202000907 10.1002/inf2.12056 10.1016/j.micron.2011.07.004 10.1021/cg5013395 10.1002/aenm.201602543 10.1021/nl200658a 10.1002/aenm.201702337 10.1038/ncomms11203 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.1c06067 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 16524 |
ExternalDocumentID | 10_1021_acsnano_1c06067 a70664581 |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ 7X8 |
ID | FETCH-LOGICAL-a310t-3bbba1fe9b6a07f05142f41e0ffe647b7ba6e29a91cd13a99b38c5739b25570c3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 06:04:09 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Tue Jul 01 03:37:16 EDT 2025 Thu Oct 28 07:00:31 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | shuttle effect orbital orientation lithium−sulfur batteries polysulfide redox reaction electrocatalysis |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a310t-3bbba1fe9b6a07f05142f41e0ffe647b7ba6e29a91cd13a99b38c5739b25570c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8740-4571 0000-0002-9528-9673 |
PQID | 2578148735 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2578148735 crossref_citationtrail_10_1021_acsnano_1c06067 crossref_primary_10_1021_acsnano_1c06067 acs_journals_10_1021_acsnano_1c06067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211026 2021-10-26 |
PublicationDateYYYYMMDD | 2021-10-26 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211026 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Yang G. (ref56/cit56) 2006; 47 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref49/cit49 doi: 10.1039/C7SC03960C – ident: ref47/cit47 doi: 10.1002/aenm.201902096 – ident: ref21/cit21 doi: 10.1038/ncomms14627 – ident: ref41/cit41 doi: 10.1002/aenm.201901896 – ident: ref43/cit43 doi: 10.1021/acsaem.0c02015 – ident: ref69/cit69 doi: 10.1002/aenm.201903934 – ident: ref32/cit32 doi: 10.1016/j.nanoen.2018.12.019 – ident: ref11/cit11 doi: 10.1016/j.nantod.2017.12.010 – ident: ref54/cit54 doi: 10.1039/D0TA05282E – ident: ref15/cit15 doi: 10.1038/ncomms10601 – volume: 47 start-page: 507 year: 2006 ident: ref56/cit56 publication-title: Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B – ident: ref30/cit30 doi: 10.1016/j.nanoen.2020.105621 – ident: ref33/cit33 doi: 10.1016/j.matt.2020.06.002 – ident: ref27/cit27 doi: 10.1021/jacs.8b12973 – ident: ref35/cit35 doi: 10.1002/anie.202004914 – ident: ref46/cit46 doi: 10.1021/acsami.9b03011 – ident: ref12/cit12 doi: 10.1038/nenergy.2016.132 – ident: ref14/cit14 doi: 10.1038/nmat2460 – ident: ref25/cit25 doi: 10.1002/adma.201903813 – ident: ref34/cit34 doi: 10.34133/2020/5714349 – ident: ref40/cit40 doi: 10.1039/C8EE03252A – ident: ref52/cit52 doi: 10.1021/nl503730c – ident: ref29/cit29 doi: 10.1038/s41467-018-06629-9 – ident: ref6/cit6 doi: 10.1002/adma.201405115 – ident: ref2/cit2 doi: 10.1039/c0ee00777c – ident: ref4/cit4 doi: 10.1002/adma.201601759 – ident: ref10/cit10 doi: 10.1016/j.joule.2020.01.001 – ident: ref44/cit44 doi: 10.1016/j.apmt.2020.100916 – ident: ref45/cit45 doi: 10.1002/aenm.202003314 – ident: ref7/cit7 doi: 10.1002/aenm.201700260 – ident: ref61/cit61 doi: 10.1002/chem.200600564 – ident: ref67/cit67 doi: 10.1016/j.cplett.2014.01.043 – ident: ref57/cit57 doi: 10.1103/PhysRevB.64.115107 – ident: ref65/cit65 doi: 10.1016/j.apcatb.2021.120274 – ident: ref31/cit31 doi: 10.1038/s41929-020-0498-x – ident: ref60/cit60 doi: 10.1073/pnas.1615837114 – ident: ref64/cit64 doi: 10.1021/jp026324m – ident: ref38/cit38 doi: 10.1021/acsnano.7b04442 – ident: ref1/cit1 doi: 10.1039/C5CS00410A – ident: ref53/cit53 doi: 10.1021/jacs.6b08681 – ident: ref50/cit50 doi: 10.1039/C7EE01047H – ident: ref5/cit5 doi: 10.1039/c2cs35256g – ident: ref22/cit22 doi: 10.1038/ncomms5759 – ident: ref8/cit8 doi: 10.1002/anie.201304762 – ident: ref26/cit26 doi: 10.1002/adma.201903955 – ident: ref42/cit42 doi: 10.1002/cssc.201900929 – ident: ref28/cit28 doi: 10.1021/acs.nanolett.5b04166 – ident: ref9/cit9 doi: 10.1002/adfm.201707536 – ident: ref3/cit3 doi: 10.1126/science.1212741 – ident: ref20/cit20 doi: 10.1016/j.carbon.2018.09.067 – ident: ref48/cit48 doi: 10.1039/C9TA03227D – ident: ref62/cit62 doi: 10.1103/PhysRevB.63.125117 – ident: ref36/cit36 doi: 10.1002/adfm.201903842 – ident: ref51/cit51 doi: 10.1016/j.jallcom.2016.09.004 – ident: ref17/cit17 doi: 10.1021/acsnano.6b06369 – ident: ref13/cit13 doi: 10.1002/anie.201100637 – ident: ref18/cit18 doi: 10.1016/j.nanoen.2012.10.003 – ident: ref55/cit55 doi: 10.1016/j.solidstatesciences.2007.11.024 – ident: ref37/cit37 doi: 10.1002/aenm.201601843 – ident: ref63/cit63 doi: 10.1016/j.jpowsour.2008.10.033 – ident: ref66/cit66 doi: 10.1021/acs.nanolett.5b00367 – ident: ref59/cit59 doi: 10.1002/aenm.202000907 – ident: ref24/cit24 doi: 10.1002/inf2.12056 – ident: ref58/cit58 doi: 10.1016/j.micron.2011.07.004 – ident: ref68/cit68 doi: 10.1021/cg5013395 – ident: ref19/cit19 doi: 10.1002/aenm.201602543 – ident: ref16/cit16 doi: 10.1021/nl200658a – ident: ref39/cit39 doi: 10.1002/aenm.201702337 – ident: ref23/cit23 doi: 10.1038/ncomms11203 |
SSID | ssj0057876 |
Score | 2.5945485 |
Snippet | Lithium–sulfur (Li–S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy... Lithium-sulfur (Li-S) batteries are one of the most promising candidates for next-generation energy storage systems because of their high theoretical energy... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16515 |
Title | Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium–Sulfur Batteries |
URI | http://dx.doi.org/10.1021/acsnano.1c06067 https://www.proquest.com/docview/2578148735 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoXNoDLX2o9CVX4tCLt2vHSTZHihYhBPRAkbhFfozVFdsErZMDPfU3lH_IL-lMkoVShMopkmU7lj2e-ewZf8PYlgaAxCsvMrQPAi10Iawba5EG461GwKAlPU4-PMr2TvT-aXp6Qxb9rwdfyc_GxcpU9Ui6MYLt_BFbUxluYUJBO8dLpUtyl_UOZDwgI4q4ZvG50wGZIRdvm6HbWrgzLbtP-6Cs2DESUkTJ2aht7Mj9vMvX-P9RP2PrA8Dk271EbLAVqJ6zJ3_RDr5gv7-YaOaC8hWB2HZdgjPw_LCeX1hPofH8uJ2HmQeOureO3wGayOnCFstnDb214l8XlrKN4Hc2PF6quIl82hFSYAmf9ul1utuhi4jtERzzA-xj1v64-nVJP2gXvGf3xMP6S3ayO_22syeG3AzCICBsRGKtNTJAYTMzzgOxqKugJYxDgEznNrcmA1WYQjovE1MUNpm4NE8Kq4j0yyWv2GpVV_Ca8WDSoI2aANbWuQoT0N64YHPpZep12GRbOJvlsLdi2bnNlSyHKS6HKd5ko-WKlm7gN6c0G_P7G3y6bnDeU3vcX_XjUkRK3H7kU8EVqttYksbDE2WepG8eNsy37LGisBg0fyp7x1abRQvvEdc09kMn0X8AiJr5Nw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VcoAeKL-itICReuDiJXacZHNcqq0W2C1CbaXeIv-qK5akWieHcuIZ4A37JIyT7EJBleAUybIdyx7PfPZ4vgHYF9ba2HBDU7QPFC10TpWOBE2cNEogYBAsBCfPjtLJqXh_lpxtQLSKhcFBeOzJt078X-wC7A2WlbKsBkxHiLmzW3AboQgPMj06OF7p3iB-aedHxnMygok1mc9fHQRrpP11a3RdGbcW5nAbPq3H1j4s-TxoajXQX_-gbfyfwd-Hez3cJKNOPh7Ahi0fwtZvJISP4Ptb6eWChuxFlo50m-7MGjKrFpfKhIfy5LhZuLmxBDVx5c-trT0J17dYPq9D5BX5uFQh9wh-530oU0mkJ-OWngJLyLhLttPeFV16bI9QmUyxj3nz5erbj_CDZkk6rk88uj-G08PxycGE9pkaqER4WNNYKSWZs7lKZZS5wKnOnWA2cs6mIlOZkqnlucyZNiyWea7ioU6yOFc8UIDp-AlsllVpnwJxMnFC8qHF2iLjbmiFkdqpjBmWGOF2YB9ns-h3mi9aJzpnRT_FRT_FOzBYLWyhe7bzkHRjcXOD1-sGFx3Rx81VX60kpcDNGDwsuEJV44ug__B8mcXJs38b5ku4MzmZTYvpu6MPu3CXhwczaBh5ugeb9bKxzxHx1OpFK-Q_AWI8Aac |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeeCPK00g9cPGydpxkc1zKrgq0Bams1Fvkp1ixTap1cmhP_Q30H_aXMJN4VxRUCU6RrNhx7PHMZ4_nG0K2pXMuscKyDOwDAwtdMG2GkqVeWS0BMEiOwcn7B9nuTH46So9iUBjGwkAnArQUOic-ruoT6yPDAH8H5ZWq6gE3Q8Dd-U1yC512KNfjncOV_kURzHpfMuyVAVCsCX3-agAtkglXLdJVhdxZmek9Mlv3r7tc8mPQNnpgzv6gbvzfH7hP7kbYSce9nDwgN1z1kGz-Rkb4iPx8r4JaMMxi5NjYdGnPnKX79eJUW7wwTw_bhZ9bR0Ej1-G7c02geIwL5fMGI7Dol6XGHCTwnMeQpoqqQCcdTQWU0EmfdKc7MzoNUB8gM92DNubt8eX5BX6gXdKe8xO28I_JbDr5trPLYsYGpgAmNizRWivuXaEzNcw9cqsLL7kbeu8ymetcq8yJQhXcWJ6ootDJyKR5UmiBVGAmeUI2qrpyTwn1KvVSiZGDt2Uu_MhJq4zXObc8tdJvkW0YzTKuuFB2znTByzjEZRziLTJYTW5pIus5Jt9YXF_h7brCSU_4cf2rb1bSUsKiRE8LzFDdhhL1IOwz8yR99m_dfE1uf_0wLfc-Hnx-Tu4IvDcD9lFkL8hGs2zdSwA-jX7Vyfkvh5kEKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basal-Plane-Activated+Molybdenum+Sulfide+Nanosheets+with+Suitable+Orbital+Orientation+as+Efficient+Electrocatalysts+for+Lithium-Sulfur+Batteries&rft.jtitle=ACS+nano&rft.au=Tian%2C+Da&rft.au=Song%2C+Xueqin&rft.au=Qiu%2C+Yue&rft.au=Sun%2C+Xun&rft.date=2021-10-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=10&rft.spage=16515&rft_id=info:doi/10.1021%2Facsnano.1c06067&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |