Fast forward modeling of grounded electrical-source transient electromagnetic based on inverse Laplace transform adaptive hybrid algorithm
Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have...
Saved in:
Published in | Computers & geosciences Vol. 191; p. 105661 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have slow computation speed while algorithms with high efficiency have unsatisfactory accuracy, especially when facing inversion problems that are difficult to meet requirements. This paper introduces three inverse Laplace transform algorithms for this problem: the Gaver–Stehfest algorithm, the Euler algorithm, and the Talbot algorithm. The performance of each algorithm in forward modeling was analyzed using half-space and layered models, and the optimal selection schemes for algorithm weight coefficients were provided. The numerical calculation results show that the Gaver–Stehfest algorithm has a unique advantage in computational efficiency, while the Talbot algorithm and Euler algorithm meet the accuracy requirements. After considering both accuracy and efficiency, the Talbot algorithm is selected to replace conventional algorithms for calculation of grounded electrical-source transient electromagnetic forward modeling. In addition, this paper combines the characteristics of the Gaver–Stehfest algorithm and the Talbot algorithm to implement an adaptive hybrid algorithm. This algorithm uses the Gaver–Stehfest algorithm for forward modeling in the early times and the Talbot algorithm to compensate for the decrease in accuracy in the later times. Through the comparison of forward modeling calculations, it can be seen that the hybrid algorithm proposed in this paper fully utilizes the advantages of both algorithms. The hybrid algorithm greatly improves computational speed while meeting accuracy requirements, and has significant advantages over conventional algorithms.
•Compared and analyzed the characteristics of three inverse Laplace transform algorithms.•The optimal selection for the number of nodes with inverse Laplace transform algorithms coefficients is provided.•The Talbot algorithm has been selected as the most suitable algorithm for forward modeling of grounded electrical-source TEM.•Proposed an adaptive hybrid algorithm and verified its advantages. |
---|---|
AbstractList | Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have slow computation speed while algorithms with high efficiency have unsatisfactory accuracy, especially when facing inversion problems that are difficult to meet requirements. This paper introduces three inverse Laplace transform algorithms for this problem: the Gaver–Stehfest algorithm, the Euler algorithm, and the Talbot algorithm. The performance of each algorithm in forward modeling was analyzed using half-space and layered models, and the optimal selection schemes for algorithm weight coefficients were provided. The numerical calculation results show that the Gaver–Stehfest algorithm has a unique advantage in computational efficiency, while the Talbot algorithm and Euler algorithm meet the accuracy requirements. After considering both accuracy and efficiency, the Talbot algorithm is selected to replace conventional algorithms for calculation of grounded electrical-source transient electromagnetic forward modeling. In addition, this paper combines the characteristics of the Gaver–Stehfest algorithm and the Talbot algorithm to implement an adaptive hybrid algorithm. This algorithm uses the Gaver–Stehfest algorithm for forward modeling in the early times and the Talbot algorithm to compensate for the decrease in accuracy in the later times. Through the comparison of forward modeling calculations, it can be seen that the hybrid algorithm proposed in this paper fully utilizes the advantages of both algorithms. The hybrid algorithm greatly improves computational speed while meeting accuracy requirements, and has significant advantages over conventional algorithms. Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have slow computation speed while algorithms with high efficiency have unsatisfactory accuracy, especially when facing inversion problems that are difficult to meet requirements. This paper introduces three inverse Laplace transform algorithms for this problem: the Gaver–Stehfest algorithm, the Euler algorithm, and the Talbot algorithm. The performance of each algorithm in forward modeling was analyzed using half-space and layered models, and the optimal selection schemes for algorithm weight coefficients were provided. The numerical calculation results show that the Gaver–Stehfest algorithm has a unique advantage in computational efficiency, while the Talbot algorithm and Euler algorithm meet the accuracy requirements. After considering both accuracy and efficiency, the Talbot algorithm is selected to replace conventional algorithms for calculation of grounded electrical-source transient electromagnetic forward modeling. In addition, this paper combines the characteristics of the Gaver–Stehfest algorithm and the Talbot algorithm to implement an adaptive hybrid algorithm. This algorithm uses the Gaver–Stehfest algorithm for forward modeling in the early times and the Talbot algorithm to compensate for the decrease in accuracy in the later times. Through the comparison of forward modeling calculations, it can be seen that the hybrid algorithm proposed in this paper fully utilizes the advantages of both algorithms. The hybrid algorithm greatly improves computational speed while meeting accuracy requirements, and has significant advantages over conventional algorithms. •Compared and analyzed the characteristics of three inverse Laplace transform algorithms.•The optimal selection for the number of nodes with inverse Laplace transform algorithms coefficients is provided.•The Talbot algorithm has been selected as the most suitable algorithm for forward modeling of grounded electrical-source TEM.•Proposed an adaptive hybrid algorithm and verified its advantages. |
ArticleNumber | 105661 |
Author | Zhang, Jifeng Luo, Jiao You, Xiran |
Author_xml | – sequence: 1 givenname: Xiran orcidid: 0009-0006-8724-2732 surname: You fullname: You, Xiran organization: School of Geology Engineering and Geomatics, Chang’an University, Shaanxi, 710054, China – sequence: 2 givenname: Jifeng surname: Zhang fullname: Zhang, Jifeng email: zjf0201@126.com organization: School of Geology Engineering and Geomatics, Chang’an University, Shaanxi, 710054, China – sequence: 3 givenname: Jiao surname: Luo fullname: Luo, Jiao organization: Xi’an Northwest Nonferrous Geophysical & Geochemical Exploration Brigade Co Ltd, Shaanxi, 710068, China |
BookMark | eNp9kD1PHDEQhq0IpByQX5DGZZo97PV-eIsUCIUP6SQaqK2xPV582rUvtu8QfyG_miUHLdVIM-8zo3nOyEmIAQn5ydmaM95dbtcGRozrmtXN0mm7jn8jKy57UfWSiROyYmyQlWCs-U7Oct4yxupativy7wZyoS6mF0iWztHi5MNIo6Njivtg0VKc0JTkDUxVjvtkkJYEIXsM5WMWZxgDFm-ohrwQMVAfDpgy0g3sJvhEljMzBQu74g9In1918pbCNMbky_N8QU4dTBl_fNRz8nTz5_H6rto83N5fX20qEGwo1YBSI8raSXBD0zdC97YH3aAVrRHaOtMDZ73TErQ2BgbHdce7rmuHVhiN4pz8Ou7dpfh3j7mo2WeD0wQB4z4rwVvR83qQfImKY9SkmHNCp3bJz5BeFWfq3bzaqv_m1bt5dTS_UL-PFC5fHDwmlc1iy6D1adGlbPRf8m_Ld5Qq |
Cites_doi | 10.1190/1.1441307 10.1190/1.1441848 10.2528/PIERM20071602 10.1046/j.1365-2478.1997.500292.x 10.1190/geo2015-0174.1 10.1002/nme.995 10.1093/imamat/23.1.97 10.1093/jge/gxad045 10.1111/j.1365-246X.2008.04011.x 10.1190/1.1440839 10.1016/j.tust.2022.104893 10.1190/1.1442212 10.1190/1.1441280 10.1287/ijoc.1050.0137 10.1071/EG08115 10.1016/j.jappgeo.2023.104955 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.cageo.2024.105661 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1873-7803 |
ExternalDocumentID | 10_1016_j_cageo_2024_105661 S0098300424001444 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-a309t-9e8bee82f8af94743b7d7ab4ed35c3bdfc7a107fb8abbcca9f1b616665953cbe3 |
IEDL.DBID | .~1 |
ISSN | 0098-3004 |
IngestDate | Mon Jul 21 10:11:02 EDT 2025 Tue Jul 01 02:26:51 EDT 2025 Sat Aug 10 15:31:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inverse Laplace transform algorithm Grounded electrical-source transient electromagnetic method Frequency–time conversion Forward modeling Adaptive hybrid algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a309t-9e8bee82f8af94743b7d7ab4ed35c3bdfc7a107fb8abbcca9f1b616665953cbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0006-8724-2732 |
PQID | 3153712981 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153712981 crossref_primary_10_1016_j_cageo_2024_105661 elsevier_sciencedirect_doi_10_1016_j_cageo_2024_105661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computers & geosciences |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Du, Zhu (b8) 2015; 6 Li, Farquharson, Hu (b16) 2016; 81 Pelton (b28) 1977 Yin, Smith, Hodges (b46) 2008 Nabighian (b26) 1988 Chang, Zhang (b6) 1995; 3 Xian, Lan, Liu (b41) 2023; 20 Guptasarma, Singh (b12) 1997; 45 Xue, Chen, Li (b42) 2015; 30 Knight, Raiche (b15) 1982; 47 Luo, Zhang, Wang (b23) 2003; 46 Gan, Tang, Wang (b10) 2018; 33 Xue, Wu, Chen (b44) 2023; 66 Mogi, Kusunoki, Kaieda (b25) 2009; 40 Yin, Huang, Ben (b45) 2013; 56 Guptasarma (b11) 1982; 47 Everett (b9) 2009; 177 Piao, Yin (b31) 1987; 9 Abate, Choudhury, Whitt (b1) 2000 Cai (b5) 2014; 29 Jiang, Xiang (b13) 2007; 4 Xue, Chen, Zhou (b43) 2013; 56 Talbot (b36) 1979; 23 Yu (b47) 1987; 6 Li, Yang, Deng (b19) 2016; 40 Wooden, Azari, Soliman (b40) 1992; 90 Li, Wang, Sun (b18) 2002; 26 Wang, Di (b39) 2015; 30 Anderson (b4) 1983 Qi, Li, Sun (b32) 2022; 52 Abate, Whitt (b3) 2006; 18 Wang (b38) 2004; 1 Villinger (b37) 1985; 50 Chen, Yan, Sun (b7) 2020; 98 Newman, Hohmann, Anderson (b27) 1986; 51 Piao (b30) 1990 Pelton, Ward, Hallof (b29) 1978; 43 Zhou (b48) 1990 Sun, Li, Fan (b34) 2014; 29 Li, Piao (b17) 1993; 15 Li, Zhang, Lu (b20) 2015; 58 Abate, Valkó (b2) 2004; 60 Ruan (b33) 1996; 16 Li, Zhu, Zeng (b22) 2012 Sun, Zhang, Li (b35) 2023; 132 Kaufman, Keller (b14) 1983 Li, Zhu, Liu (b21) 2011; 46 Ma, Di, Jia (b24) 2023; 211 Luo (10.1016/j.cageo.2024.105661_b23) 2003; 46 Chang (10.1016/j.cageo.2024.105661_b6) 1995; 3 Xue (10.1016/j.cageo.2024.105661_b43) 2013; 56 Yu (10.1016/j.cageo.2024.105661_b47) 1987; 6 Cai (10.1016/j.cageo.2024.105661_b5) 2014; 29 Xue (10.1016/j.cageo.2024.105661_b42) 2015; 30 Chen (10.1016/j.cageo.2024.105661_b7) 2020; 98 Pelton (10.1016/j.cageo.2024.105661_b28) 1977 Li (10.1016/j.cageo.2024.105661_b21) 2011; 46 Villinger (10.1016/j.cageo.2024.105661_b37) 1985; 50 Yin (10.1016/j.cageo.2024.105661_b46) 2008 Nabighian (10.1016/j.cageo.2024.105661_b26) 1988 Wooden (10.1016/j.cageo.2024.105661_b40) 1992; 90 Piao (10.1016/j.cageo.2024.105661_b30) 1990 Sun (10.1016/j.cageo.2024.105661_b35) 2023; 132 Wang (10.1016/j.cageo.2024.105661_b38) 2004; 1 Knight (10.1016/j.cageo.2024.105661_b15) 1982; 47 Du (10.1016/j.cageo.2024.105661_b8) 2015; 6 Anderson (10.1016/j.cageo.2024.105661_b4) 1983 Guptasarma (10.1016/j.cageo.2024.105661_b11) 1982; 47 Gan (10.1016/j.cageo.2024.105661_b10) 2018; 33 Li (10.1016/j.cageo.2024.105661_b17) 1993; 15 Ma (10.1016/j.cageo.2024.105661_b24) 2023; 211 Piao (10.1016/j.cageo.2024.105661_b31) 1987; 9 Guptasarma (10.1016/j.cageo.2024.105661_b12) 1997; 45 Zhou (10.1016/j.cageo.2024.105661_b48) 1990 Talbot (10.1016/j.cageo.2024.105661_b36) 1979; 23 Jiang (10.1016/j.cageo.2024.105661_b13) 2007; 4 Newman (10.1016/j.cageo.2024.105661_b27) 1986; 51 Li (10.1016/j.cageo.2024.105661_b22) 2012 Ruan (10.1016/j.cageo.2024.105661_b33) 1996; 16 Mogi (10.1016/j.cageo.2024.105661_b25) 2009; 40 Everett (10.1016/j.cageo.2024.105661_b9) 2009; 177 Abate (10.1016/j.cageo.2024.105661_b2) 2004; 60 Li (10.1016/j.cageo.2024.105661_b18) 2002; 26 Xue (10.1016/j.cageo.2024.105661_b44) 2023; 66 Li (10.1016/j.cageo.2024.105661_b19) 2016; 40 Yin (10.1016/j.cageo.2024.105661_b45) 2013; 56 Wang (10.1016/j.cageo.2024.105661_b39) 2015; 30 Qi (10.1016/j.cageo.2024.105661_b32) 2022; 52 Li (10.1016/j.cageo.2024.105661_b20) 2015; 58 Xian (10.1016/j.cageo.2024.105661_b41) 2023; 20 Abate (10.1016/j.cageo.2024.105661_b3) 2006; 18 Sun (10.1016/j.cageo.2024.105661_b34) 2014; 29 Kaufman (10.1016/j.cageo.2024.105661_b14) 1983 Abate (10.1016/j.cageo.2024.105661_b1) 2000 Li (10.1016/j.cageo.2024.105661_b16) 2016; 81 Pelton (10.1016/j.cageo.2024.105661_b29) 1978; 43 |
References_xml | – volume: 43 start-page: 588 year: 1978 end-page: 609 ident: b29 article-title: Mineral discrimination and removal of inductive coupling with multifrequency IP publication-title: Geophysics – year: 1990 ident: b30 article-title: Electromagnetic Sounding Theory – volume: 6 start-page: 671 year: 2015 end-page: 679 ident: b8 article-title: Analysis and coefficients selection of frequency-time conversion methods publication-title: Comput. Techn. Geophys. Geochem. Explor. – volume: 52 start-page: 247 year: 2022 end-page: 260 ident: b32 article-title: Analysis of influence characteristics of topography on grounded-source short-offset transient electromagnetic responses publication-title: J. Jilin Univ. (Earth Sci. Ed.) – volume: 4 start-page: 512 year: 2007 end-page: 515 ident: b13 article-title: An efficient method to calculate the sine and cosine transform publication-title: Chin. J. Eng. Geophys. – volume: 66 start-page: 3514 year: 2023 end-page: 3523 ident: b44 article-title: Research of the short-offset TEM (SOTEM) system publication-title: Chin. J. Geophys. – year: 1983 ident: b14 article-title: Frequency and Transient Soundings – volume: 58 start-page: 277 year: 2015 end-page: 288 ident: b20 article-title: Inverse synthetic aperture lmaging of ground-airborne transient electromagnetic method with a galvanic source publication-title: Chin. J. Geophys. – volume: 177 start-page: 421 year: 2009 end-page: 429 ident: b9 article-title: Transient electromagnetic response of a loop source over a rough geological medium publication-title: Geophys. J. Int. – year: 1988 ident: b26 article-title: Electromagnetic Methods in Applied Geophysics: Voume 1, Theory – volume: 30 start-page: 121 year: 2015 end-page: 125 ident: b42 article-title: The key problems of SOTEM used in deep detection publication-title: Prog. Geophys. – volume: 29 start-page: 1243 year: 2014 end-page: 1247 ident: b34 article-title: Research on frequency-time domain transform method in central-loop transient electromagnetic field response computation publication-title: Prog. Geophys. – volume: 18 start-page: 408 year: 2006 end-page: 421 ident: b3 article-title: A unified framework for numerically inverting Laplace transforms publication-title: INFORMS J. Comput. – volume: 33 start-page: 596 year: 2018 end-page: 620 ident: b10 article-title: Hybrid optimization algorithm of transient electromagnetic time-frequency conversion publication-title: Prog. Geophys. – year: 1977 ident: b28 article-title: Interpretation of Induced Polarization and Resistivity Data – volume: 1 start-page: 329 year: 2004 end-page: 335 ident: b38 article-title: Digital filter algorithm of the sine and cosine transform publication-title: Chin. J. Eng. Geophys. – volume: 90 year: 1992 ident: b40 article-title: Well test analysis benefits from new method of Laplace space inversion publication-title: Oil Gas J. (United States) – volume: 51 start-page: 1608 year: 1986 end-page: 1627 ident: b27 article-title: Transient electromagnetic response of a three-dimensional body in a layered earth publication-title: Geophysics – volume: 20 start-page: 915 year: 2023 end-page: 926 ident: b41 article-title: Improved adaptive thin-layer inversion for semi-airborne transient electromagnetic method publication-title: J. Geophys. Eng. – year: 1983 ident: b4 article-title: Fourier Cosine and Sine Transforms Using Lagged Convolutions in Double-Precision (Subprograms DLAGF0/DLAGF1) – volume: 211 year: 2023 ident: b24 article-title: Receiver noise correction in semi-airborne transient electromagnetic method with an electric source publication-title: J. Appl. Geophys. – volume: 132 year: 2023 ident: b35 article-title: The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas publication-title: Tunn. Undergr. Space Technol. – volume: 23 start-page: 97 year: 1979 end-page: 120 ident: b36 article-title: The accurate numerical inversion of Laplace transforms publication-title: IMA J. Appl. Math. – volume: 60 start-page: 979 year: 2004 end-page: 993 ident: b2 article-title: Multi-precision Laplace transform inversion publication-title: Internat. J. Numer. Methods Engrg. – volume: 15 start-page: 108 year: 1993 end-page: 116 ident: b17 article-title: On the calculation and application of the apparent resistivity of transient EM sounding by electric dipole publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese) – start-page: 257 year: 2000 end-page: 323 ident: b1 article-title: An introduction to numerical transform inversion and its application to probability models publication-title: Computational Probability – start-page: cp year: 2008 end-page: 40 ident: b46 article-title: Modeling results of on-and off-time b and db/dt for time-domain airborne EM systems publication-title: 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008 – volume: 47 start-page: 1574 year: 1982 end-page: 1576 ident: b11 article-title: Computation of the time-domain response of a polarizable ground publication-title: Geophysics – year: 1990 ident: b48 article-title: Laplace Transform and Fourier Transform – volume: 26 start-page: 215 year: 2002 end-page: 217 ident: b18 article-title: The application of mixed algorithm to the calculation of transient electromagnetic response of couple source publication-title: Geophys. Geochem. Explor. – volume: 56 start-page: 255 year: 2013 end-page: 261 ident: b43 article-title: Short-offset TEM technique with a grounded wire source for deep sounding publication-title: Chin. J. Geophys. – volume: 40 start-page: 1 year: 2009 end-page: 7 ident: b25 article-title: Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan publication-title: Explor. Geophys. – volume: 40 start-page: 743 year: 2016 end-page: 749 ident: b19 article-title: Comparison of several frequency-time transformation methods for TEM forward modeling publication-title: Geophys. Geochem. Explor. – volume: 46 start-page: 719 year: 2003 end-page: 724 ident: b23 article-title: A research on one-dimension forward for aerial electromagnetic method in time domain publication-title: Chin. J. Geophys. – volume: 3 start-page: 25 year: 1995 end-page: 29 ident: b6 article-title: Comparison among three transformation algorithms of electromagnetic field from frequency domain to time domain publication-title: Comput. Tech. Geophys. Geochem. Explor. – volume: 45 start-page: 745 year: 1997 end-page: 762 ident: b12 article-title: New digital linear filters for Hankel J0 and J1 transforms publication-title: Geophys. Prospect. – volume: 98 start-page: 159 year: 2020 end-page: 169 ident: b7 article-title: Applicability of transient electromagnetic fast forward modeling algorithm with small loop publication-title: Prog. Electromagn. Res. M – volume: 81 start-page: E113 year: 2016 end-page: E128 ident: b16 article-title: Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses publication-title: Geophysics – volume: 16 start-page: 167 year: 1996 end-page: 170 ident: b33 article-title: Application of guptasarma algorithm in transient electromagnetic forward modeling publication-title: J. Guilin Univ. Technol. – volume: 56 start-page: 3153 year: 2013 end-page: 3162 ident: b45 article-title: The full-time electromagnetic modeling for time-domain airborne electromagnetic systems publication-title: Chin. J. Geophys. – volume: 29 start-page: 1384 year: 2014 end-page: 1390 ident: b5 article-title: The fast hankel transformation and its applications in forward calculations publication-title: Prog. Geophys. – volume: 50 start-page: 1581 year: 1985 end-page: 1587 ident: b37 article-title: Solving cylindrical geothermal problems using the Gaver–Stehfest inverse Laplace transform publication-title: Geophysics – volume: 30 start-page: 872 year: 2015 end-page: 877 ident: b39 article-title: The preliminary study of the ground source transient publication-title: Prog. Geophys. – volume: 9 start-page: 295 year: 1987 end-page: 302 ident: b31 article-title: Calculation of transient EM sounding using the Gaver–Stehfest inverse Laplace transform method publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese) – volume: 47 start-page: 47 year: 1982 end-page: 50 ident: b15 article-title: Transient electromagnetic calculations using the Gaver–Stehfest inverse Laplace transform method publication-title: Geophysics – volume: 46 start-page: 489 year: 2011 end-page: 492 ident: b21 article-title: Rectangular loop transient electromagnetic field expressed by Gaver–Stehfest algorithm publication-title: Oil Geophys. Prospect. – start-page: 1393 year: 2012 end-page: 1400 ident: b22 article-title: Progress of forward computation in transient electromagnetic method publication-title: Prog. Geophys. – volume: 6 start-page: 115 year: 1987 end-page: 119 ident: b47 article-title: Research status of forward modeling and inversion problems in transient electromagnetic method abroad publication-title: Bull. Geol. Sci. Technol. – volume: 16 start-page: 167 issue: 2 year: 1996 ident: 10.1016/j.cageo.2024.105661_b33 article-title: Application of guptasarma algorithm in transient electromagnetic forward modeling publication-title: J. Guilin Univ. Technol. – volume: 47 start-page: 1574 issue: 11 year: 1982 ident: 10.1016/j.cageo.2024.105661_b11 article-title: Computation of the time-domain response of a polarizable ground publication-title: Geophysics doi: 10.1190/1.1441307 – volume: 1 start-page: 329 issue: 4 year: 2004 ident: 10.1016/j.cageo.2024.105661_b38 article-title: Digital filter algorithm of the sine and cosine transform publication-title: Chin. J. Eng. Geophys. – volume: 50 start-page: 1581 issue: 10 year: 1985 ident: 10.1016/j.cageo.2024.105661_b37 article-title: Solving cylindrical geothermal problems using the Gaver–Stehfest inverse Laplace transform publication-title: Geophysics doi: 10.1190/1.1441848 – volume: 6 start-page: 671 issue: 37 year: 2015 ident: 10.1016/j.cageo.2024.105661_b8 article-title: Analysis and coefficients selection of frequency-time conversion methods publication-title: Comput. Techn. Geophys. Geochem. Explor. – volume: 26 start-page: 215 issue: 3 year: 2002 ident: 10.1016/j.cageo.2024.105661_b18 article-title: The application of mixed algorithm to the calculation of transient electromagnetic response of couple source publication-title: Geophys. Geochem. Explor. – volume: 29 start-page: 1243 issue: 3 year: 2014 ident: 10.1016/j.cageo.2024.105661_b34 article-title: Research on frequency-time domain transform method in central-loop transient electromagnetic field response computation publication-title: Prog. Geophys. – volume: 56 start-page: 3153 issue: 9 year: 2013 ident: 10.1016/j.cageo.2024.105661_b45 article-title: The full-time electromagnetic modeling for time-domain airborne electromagnetic systems publication-title: Chin. J. Geophys. – volume: 98 start-page: 159 year: 2020 ident: 10.1016/j.cageo.2024.105661_b7 article-title: Applicability of transient electromagnetic fast forward modeling algorithm with small loop publication-title: Prog. Electromagn. Res. M doi: 10.2528/PIERM20071602 – start-page: cp year: 2008 ident: 10.1016/j.cageo.2024.105661_b46 article-title: Modeling results of on-and off-time b and db/dt for time-domain airborne EM systems – year: 1983 ident: 10.1016/j.cageo.2024.105661_b4 – volume: 45 start-page: 745 issue: 5 year: 1997 ident: 10.1016/j.cageo.2024.105661_b12 article-title: New digital linear filters for Hankel J0 and J1 transforms publication-title: Geophys. Prospect. doi: 10.1046/j.1365-2478.1997.500292.x – volume: 30 start-page: 121 issue: 1 year: 2015 ident: 10.1016/j.cageo.2024.105661_b42 article-title: The key problems of SOTEM used in deep detection publication-title: Prog. Geophys. – volume: 81 start-page: E113 issue: 2 year: 2016 ident: 10.1016/j.cageo.2024.105661_b16 article-title: Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses publication-title: Geophysics doi: 10.1190/geo2015-0174.1 – volume: 6 start-page: 115 issue: 4 year: 1987 ident: 10.1016/j.cageo.2024.105661_b47 article-title: Research status of forward modeling and inversion problems in transient electromagnetic method abroad publication-title: Bull. Geol. Sci. Technol. – volume: 30 start-page: 872 issue: 2 year: 2015 ident: 10.1016/j.cageo.2024.105661_b39 article-title: The preliminary study of the ground source transient publication-title: Prog. Geophys. – volume: 58 start-page: 277 issue: 1 year: 2015 ident: 10.1016/j.cageo.2024.105661_b20 article-title: Inverse synthetic aperture lmaging of ground-airborne transient electromagnetic method with a galvanic source publication-title: Chin. J. Geophys. – year: 1990 ident: 10.1016/j.cageo.2024.105661_b30 – volume: 33 start-page: 596 issue: 2 year: 2018 ident: 10.1016/j.cageo.2024.105661_b10 article-title: Hybrid optimization algorithm of transient electromagnetic time-frequency conversion publication-title: Prog. Geophys. – volume: 52 start-page: 247 issue: 1 year: 2022 ident: 10.1016/j.cageo.2024.105661_b32 article-title: Analysis of influence characteristics of topography on grounded-source short-offset transient electromagnetic responses publication-title: J. Jilin Univ. (Earth Sci. Ed.) – volume: 60 start-page: 979 issue: 5 year: 2004 ident: 10.1016/j.cageo.2024.105661_b2 article-title: Multi-precision Laplace transform inversion publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.995 – volume: 23 start-page: 97 issue: 1 year: 1979 ident: 10.1016/j.cageo.2024.105661_b36 article-title: The accurate numerical inversion of Laplace transforms publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/23.1.97 – volume: 20 start-page: 915 issue: 5 year: 2023 ident: 10.1016/j.cageo.2024.105661_b41 article-title: Improved adaptive thin-layer inversion for semi-airborne transient electromagnetic method publication-title: J. Geophys. Eng. doi: 10.1093/jge/gxad045 – volume: 29 start-page: 1384 issue: 3 year: 2014 ident: 10.1016/j.cageo.2024.105661_b5 article-title: The fast hankel transformation and its applications in forward calculations publication-title: Prog. Geophys. – volume: 177 start-page: 421 issue: 2 year: 2009 ident: 10.1016/j.cageo.2024.105661_b9 article-title: Transient electromagnetic response of a loop source over a rough geological medium publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2008.04011.x – volume: 66 start-page: 3514 issue: 8 year: 2023 ident: 10.1016/j.cageo.2024.105661_b44 article-title: Research of the short-offset TEM (SOTEM) system publication-title: Chin. J. Geophys. – volume: 43 start-page: 588 issue: 3 year: 1978 ident: 10.1016/j.cageo.2024.105661_b29 article-title: Mineral discrimination and removal of inductive coupling with multifrequency IP publication-title: Geophysics doi: 10.1190/1.1440839 – volume: 46 start-page: 719 issue: 5 year: 2003 ident: 10.1016/j.cageo.2024.105661_b23 article-title: A research on one-dimension forward for aerial electromagnetic method in time domain publication-title: Chin. J. Geophys. – volume: 132 year: 2023 ident: 10.1016/j.cageo.2024.105661_b35 article-title: The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104893 – volume: 90 issue: 29 year: 1992 ident: 10.1016/j.cageo.2024.105661_b40 article-title: Well test analysis benefits from new method of Laplace space inversion publication-title: Oil Gas J. (United States) – start-page: 257 year: 2000 ident: 10.1016/j.cageo.2024.105661_b1 article-title: An introduction to numerical transform inversion and its application to probability models – volume: 51 start-page: 1608 issue: 8 year: 1986 ident: 10.1016/j.cageo.2024.105661_b27 article-title: Transient electromagnetic response of a three-dimensional body in a layered earth publication-title: Geophysics doi: 10.1190/1.1442212 – volume: 47 start-page: 47 issue: 1 year: 1982 ident: 10.1016/j.cageo.2024.105661_b15 article-title: Transient electromagnetic calculations using the Gaver–Stehfest inverse Laplace transform method publication-title: Geophysics doi: 10.1190/1.1441280 – volume: 4 start-page: 512 issue: 5 year: 2007 ident: 10.1016/j.cageo.2024.105661_b13 article-title: An efficient method to calculate the sine and cosine transform publication-title: Chin. J. Eng. Geophys. – year: 1983 ident: 10.1016/j.cageo.2024.105661_b14 – volume: 18 start-page: 408 issue: 4 year: 2006 ident: 10.1016/j.cageo.2024.105661_b3 article-title: A unified framework for numerically inverting Laplace transforms publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1050.0137 – year: 1988 ident: 10.1016/j.cageo.2024.105661_b26 – year: 1977 ident: 10.1016/j.cageo.2024.105661_b28 – volume: 40 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.cageo.2024.105661_b25 article-title: Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan publication-title: Explor. Geophys. doi: 10.1071/EG08115 – volume: 56 start-page: 255 issue: 1 year: 2013 ident: 10.1016/j.cageo.2024.105661_b43 article-title: Short-offset TEM technique with a grounded wire source for deep sounding publication-title: Chin. J. Geophys. – start-page: 1393 issue: 4 year: 2012 ident: 10.1016/j.cageo.2024.105661_b22 article-title: Progress of forward computation in transient electromagnetic method publication-title: Prog. Geophys. – volume: 211 year: 2023 ident: 10.1016/j.cageo.2024.105661_b24 article-title: Receiver noise correction in semi-airborne transient electromagnetic method with an electric source publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2023.104955 – volume: 40 start-page: 743 issue: 4 year: 2016 ident: 10.1016/j.cageo.2024.105661_b19 article-title: Comparison of several frequency-time transformation methods for TEM forward modeling publication-title: Geophys. Geochem. Explor. – volume: 46 start-page: 489 issue: 3 year: 2011 ident: 10.1016/j.cageo.2024.105661_b21 article-title: Rectangular loop transient electromagnetic field expressed by Gaver–Stehfest algorithm publication-title: Oil Geophys. Prospect. – volume: 3 start-page: 25 issue: 17 year: 1995 ident: 10.1016/j.cageo.2024.105661_b6 article-title: Comparison among three transformation algorithms of electromagnetic field from frequency domain to time domain publication-title: Comput. Tech. Geophys. Geochem. Explor. – volume: 9 start-page: 295 issue: 4 year: 1987 ident: 10.1016/j.cageo.2024.105661_b31 article-title: Calculation of transient EM sounding using the Gaver–Stehfest inverse Laplace transform method publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese) – year: 1990 ident: 10.1016/j.cageo.2024.105661_b48 – volume: 15 start-page: 108 issue: 2 year: 1993 ident: 10.1016/j.cageo.2024.105661_b17 article-title: On the calculation and application of the apparent resistivity of transient EM sounding by electric dipole publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese) |
SSID | ssj0002285 |
Score | 2.4282188 |
Snippet | Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 105661 |
SubjectTerms | Adaptive hybrid algorithm algorithms computers exhibitions Forward modeling Frequency–time conversion Grounded electrical-source transient electromagnetic method Inverse Laplace transform algorithm |
Title | Fast forward modeling of grounded electrical-source transient electromagnetic based on inverse Laplace transform adaptive hybrid algorithm |
URI | https://dx.doi.org/10.1016/j.cageo.2024.105661 https://www.proquest.com/docview/3153712981 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yIngRn7i-iODRutskbdOjiOv6PCnsLSRNsltx22W3Hrz4A_zVZtIWUdCDx7ZJKZlk5mvyfTMInUgirSVEBS60qIBRbgNpiQk4t6miOuvrDPY77h_i4RO7GUWjJXTRamGAVtn4_tqne2_d3Ok1o9mb5TlofFNO_dEd4HwGOUEZS2CWn71_0TwI4VGbNxNat5mHPMcrc2sWFICE-Qr0cfhbdPrhp33wGayjtQY14vP6wzbQkik20cqVr8r7toU-BnJRYQc_gQKLfXEbF5FwaTGINmCPG9flbsAiQb1fjyuIUqCGbJ6VUzkuQNKIIbJpXBY4L4C0YfCd9NStugugXCy1nIGjxJM3kHxh-TIu53k1mW6jp8Hl48UwaIosBJL20ypIDVfGcGK5tClzeEIlOpGKGU2jjCpts0S6X0SruFTKmTu1oYrhrDFKI5opQ3dQpygLs4swTQwxzKgsYpbp0I14X4eKW-Ygm-ZcddFpO7hiVufSEC3J7Fl4Wwiwhaht0UVxawDxbUoI5-3_7njcmku4xQInILIw5etCUOffE4dweLj335fvo1W4qmlmB6hTzV_NocMllTryE-8ILZ9f3w4fPgEb3-cx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLV4CMGCeIo3RmIktLGdxhkRohQonYrEZtmx3RZBUrXp0IUP4KvxdRIhkGBgTeIo8rHvPbHP8UXoXBJpLSEqcKlFBYxyG0hLTMC5TRTVaVOnsN7x2Gt1ntj9c_S8gK5rLwzIKqvYX8Z0H62rK42qNxvj0Qg8vgmnfusOeD5ji2iZuekLZQwu3790HoTwqD44Ex6vjx7yIq_UTVqwABLmS9C3wt_S049A7bNPewOtV7QRX5VftokWTLaFVm59Wd75Nvpoy2mBHf8EDSz21W1cSsK5xeDagEVuXNa7AUiCcsEeF5CmwA5Z3cvf5CADTyOG1KZxnuFRBqoNg7vSa7fKJkBzsdRyDJESD-fg-cLydZBPRsXwbQc9tW_6152gqrIQSNpMiiAxXBnDieXSJswRChXrWCpmNI1SqrRNY-n-Ea3iUimHd2JD1YLNxiiJaKoM3UVLWZ6ZPYRpbIhhRqURs0yHrsebOlTcMsfZNOdqH13UnSvG5WEaolaZvQiPhQAsRInFPmrVAIhvY0K4cP93w7MaLuFmC2yByMzks6mgLsDHjuLw8OC_Lz9Fq53-Y1d073oPh2gN7pSasyO0VExm5tiRlEKd-EH4CXIf6L8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+forward+modeling+of+grounded+electrical-source+transient+electromagnetic+based+on+inverse+Laplace+transform+adaptive+hybrid+algorithm&rft.jtitle=Computers+%26+geosciences&rft.au=You%2C+Xiran&rft.au=Zhang%2C+Jifeng&rft.au=Luo%2C+Jiao&rft.date=2024-09-01&rft.issn=0098-3004&rft.volume=191&rft.spage=105661&rft_id=info:doi/10.1016%2Fj.cageo.2024.105661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2024_105661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |