Fast forward modeling of grounded electrical-source transient electromagnetic based on inverse Laplace transform adaptive hybrid algorithm

Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 191; p. 105661
Main Authors You, Xiran, Zhang, Jifeng, Luo, Jiao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have slow computation speed while algorithms with high efficiency have unsatisfactory accuracy, especially when facing inversion problems that are difficult to meet requirements. This paper introduces three inverse Laplace transform algorithms for this problem: the Gaver–Stehfest algorithm, the Euler algorithm, and the Talbot algorithm. The performance of each algorithm in forward modeling was analyzed using half-space and layered models, and the optimal selection schemes for algorithm weight coefficients were provided. The numerical calculation results show that the Gaver–Stehfest algorithm has a unique advantage in computational efficiency, while the Talbot algorithm and Euler algorithm meet the accuracy requirements. After considering both accuracy and efficiency, the Talbot algorithm is selected to replace conventional algorithms for calculation of grounded electrical-source transient electromagnetic forward modeling. In addition, this paper combines the characteristics of the Gaver–Stehfest algorithm and the Talbot algorithm to implement an adaptive hybrid algorithm. This algorithm uses the Gaver–Stehfest algorithm for forward modeling in the early times and the Talbot algorithm to compensate for the decrease in accuracy in the later times. Through the comparison of forward modeling calculations, it can be seen that the hybrid algorithm proposed in this paper fully utilizes the advantages of both algorithms. The hybrid algorithm greatly improves computational speed while meeting accuracy requirements, and has significant advantages over conventional algorithms. •Compared and analyzed the characteristics of three inverse Laplace transform algorithms.•The optimal selection for the number of nodes with inverse Laplace transform algorithms coefficients is provided.•The Talbot algorithm has been selected as the most suitable algorithm for forward modeling of grounded electrical-source TEM.•Proposed an adaptive hybrid algorithm and verified its advantages.
AbstractList Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have slow computation speed while algorithms with high efficiency have unsatisfactory accuracy, especially when facing inversion problems that are difficult to meet requirements. This paper introduces three inverse Laplace transform algorithms for this problem: the Gaver–Stehfest algorithm, the Euler algorithm, and the Talbot algorithm. The performance of each algorithm in forward modeling was analyzed using half-space and layered models, and the optimal selection schemes for algorithm weight coefficients were provided. The numerical calculation results show that the Gaver–Stehfest algorithm has a unique advantage in computational efficiency, while the Talbot algorithm and Euler algorithm meet the accuracy requirements. After considering both accuracy and efficiency, the Talbot algorithm is selected to replace conventional algorithms for calculation of grounded electrical-source transient electromagnetic forward modeling. In addition, this paper combines the characteristics of the Gaver–Stehfest algorithm and the Talbot algorithm to implement an adaptive hybrid algorithm. This algorithm uses the Gaver–Stehfest algorithm for forward modeling in the early times and the Talbot algorithm to compensate for the decrease in accuracy in the later times. Through the comparison of forward modeling calculations, it can be seen that the hybrid algorithm proposed in this paper fully utilizes the advantages of both algorithms. The hybrid algorithm greatly improves computational speed while meeting accuracy requirements, and has significant advantages over conventional algorithms.
Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm is directly related to the overall accuracy and speed of forward modeling. In mainstream algorithms, algorithms with high accuracy often have slow computation speed while algorithms with high efficiency have unsatisfactory accuracy, especially when facing inversion problems that are difficult to meet requirements. This paper introduces three inverse Laplace transform algorithms for this problem: the Gaver–Stehfest algorithm, the Euler algorithm, and the Talbot algorithm. The performance of each algorithm in forward modeling was analyzed using half-space and layered models, and the optimal selection schemes for algorithm weight coefficients were provided. The numerical calculation results show that the Gaver–Stehfest algorithm has a unique advantage in computational efficiency, while the Talbot algorithm and Euler algorithm meet the accuracy requirements. After considering both accuracy and efficiency, the Talbot algorithm is selected to replace conventional algorithms for calculation of grounded electrical-source transient electromagnetic forward modeling. In addition, this paper combines the characteristics of the Gaver–Stehfest algorithm and the Talbot algorithm to implement an adaptive hybrid algorithm. This algorithm uses the Gaver–Stehfest algorithm for forward modeling in the early times and the Talbot algorithm to compensate for the decrease in accuracy in the later times. Through the comparison of forward modeling calculations, it can be seen that the hybrid algorithm proposed in this paper fully utilizes the advantages of both algorithms. The hybrid algorithm greatly improves computational speed while meeting accuracy requirements, and has significant advantages over conventional algorithms. •Compared and analyzed the characteristics of three inverse Laplace transform algorithms.•The optimal selection for the number of nodes with inverse Laplace transform algorithms coefficients is provided.•The Talbot algorithm has been selected as the most suitable algorithm for forward modeling of grounded electrical-source TEM.•Proposed an adaptive hybrid algorithm and verified its advantages.
ArticleNumber 105661
Author Zhang, Jifeng
Luo, Jiao
You, Xiran
Author_xml – sequence: 1
  givenname: Xiran
  orcidid: 0009-0006-8724-2732
  surname: You
  fullname: You, Xiran
  organization: School of Geology Engineering and Geomatics, Chang’an University, Shaanxi, 710054, China
– sequence: 2
  givenname: Jifeng
  surname: Zhang
  fullname: Zhang, Jifeng
  email: zjf0201@126.com
  organization: School of Geology Engineering and Geomatics, Chang’an University, Shaanxi, 710054, China
– sequence: 3
  givenname: Jiao
  surname: Luo
  fullname: Luo, Jiao
  organization: Xi’an Northwest Nonferrous Geophysical & Geochemical Exploration Brigade Co Ltd, Shaanxi, 710068, China
BookMark eNp9kD1PHDEQhq0IpByQX5DGZZo97PV-eIsUCIUP6SQaqK2xPV582rUvtu8QfyG_miUHLdVIM-8zo3nOyEmIAQn5ydmaM95dbtcGRozrmtXN0mm7jn8jKy57UfWSiROyYmyQlWCs-U7Oct4yxupativy7wZyoS6mF0iWztHi5MNIo6Njivtg0VKc0JTkDUxVjvtkkJYEIXsM5WMWZxgDFm-ohrwQMVAfDpgy0g3sJvhEljMzBQu74g9In1918pbCNMbky_N8QU4dTBl_fNRz8nTz5_H6rto83N5fX20qEGwo1YBSI8raSXBD0zdC97YH3aAVrRHaOtMDZ73TErQ2BgbHdce7rmuHVhiN4pz8Ou7dpfh3j7mo2WeD0wQB4z4rwVvR83qQfImKY9SkmHNCp3bJz5BeFWfq3bzaqv_m1bt5dTS_UL-PFC5fHDwmlc1iy6D1adGlbPRf8m_Ld5Qq
Cites_doi 10.1190/1.1441307
10.1190/1.1441848
10.2528/PIERM20071602
10.1046/j.1365-2478.1997.500292.x
10.1190/geo2015-0174.1
10.1002/nme.995
10.1093/imamat/23.1.97
10.1093/jge/gxad045
10.1111/j.1365-246X.2008.04011.x
10.1190/1.1440839
10.1016/j.tust.2022.104893
10.1190/1.1442212
10.1190/1.1441280
10.1287/ijoc.1050.0137
10.1071/EG08115
10.1016/j.jappgeo.2023.104955
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2024.105661
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
ExternalDocumentID 10_1016_j_cageo_2024_105661
S0098300424001444
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-a309t-9e8bee82f8af94743b7d7ab4ed35c3bdfc7a107fb8abbcca9f1b616665953cbe3
IEDL.DBID .~1
ISSN 0098-3004
IngestDate Mon Jul 21 10:11:02 EDT 2025
Tue Jul 01 02:26:51 EDT 2025
Sat Aug 10 15:31:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Inverse Laplace transform algorithm
Grounded electrical-source transient electromagnetic method
Frequency–time conversion
Forward modeling
Adaptive hybrid algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a309t-9e8bee82f8af94743b7d7ab4ed35c3bdfc7a107fb8abbcca9f1b616665953cbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0006-8724-2732
PQID 3153712981
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153712981
crossref_primary_10_1016_j_cageo_2024_105661
elsevier_sciencedirect_doi_10_1016_j_cageo_2024_105661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Du, Zhu (b8) 2015; 6
Li, Farquharson, Hu (b16) 2016; 81
Pelton (b28) 1977
Yin, Smith, Hodges (b46) 2008
Nabighian (b26) 1988
Chang, Zhang (b6) 1995; 3
Xian, Lan, Liu (b41) 2023; 20
Guptasarma, Singh (b12) 1997; 45
Xue, Chen, Li (b42) 2015; 30
Knight, Raiche (b15) 1982; 47
Luo, Zhang, Wang (b23) 2003; 46
Gan, Tang, Wang (b10) 2018; 33
Xue, Wu, Chen (b44) 2023; 66
Mogi, Kusunoki, Kaieda (b25) 2009; 40
Yin, Huang, Ben (b45) 2013; 56
Guptasarma (b11) 1982; 47
Everett (b9) 2009; 177
Piao, Yin (b31) 1987; 9
Abate, Choudhury, Whitt (b1) 2000
Cai (b5) 2014; 29
Jiang, Xiang (b13) 2007; 4
Xue, Chen, Zhou (b43) 2013; 56
Talbot (b36) 1979; 23
Yu (b47) 1987; 6
Li, Yang, Deng (b19) 2016; 40
Wooden, Azari, Soliman (b40) 1992; 90
Li, Wang, Sun (b18) 2002; 26
Wang, Di (b39) 2015; 30
Anderson (b4) 1983
Qi, Li, Sun (b32) 2022; 52
Abate, Whitt (b3) 2006; 18
Wang (b38) 2004; 1
Villinger (b37) 1985; 50
Chen, Yan, Sun (b7) 2020; 98
Newman, Hohmann, Anderson (b27) 1986; 51
Piao (b30) 1990
Pelton, Ward, Hallof (b29) 1978; 43
Zhou (b48) 1990
Sun, Li, Fan (b34) 2014; 29
Li, Piao (b17) 1993; 15
Li, Zhang, Lu (b20) 2015; 58
Abate, Valkó (b2) 2004; 60
Ruan (b33) 1996; 16
Li, Zhu, Zeng (b22) 2012
Sun, Zhang, Li (b35) 2023; 132
Kaufman, Keller (b14) 1983
Li, Zhu, Liu (b21) 2011; 46
Ma, Di, Jia (b24) 2023; 211
Luo (10.1016/j.cageo.2024.105661_b23) 2003; 46
Chang (10.1016/j.cageo.2024.105661_b6) 1995; 3
Xue (10.1016/j.cageo.2024.105661_b43) 2013; 56
Yu (10.1016/j.cageo.2024.105661_b47) 1987; 6
Cai (10.1016/j.cageo.2024.105661_b5) 2014; 29
Xue (10.1016/j.cageo.2024.105661_b42) 2015; 30
Chen (10.1016/j.cageo.2024.105661_b7) 2020; 98
Pelton (10.1016/j.cageo.2024.105661_b28) 1977
Li (10.1016/j.cageo.2024.105661_b21) 2011; 46
Villinger (10.1016/j.cageo.2024.105661_b37) 1985; 50
Yin (10.1016/j.cageo.2024.105661_b46) 2008
Nabighian (10.1016/j.cageo.2024.105661_b26) 1988
Wooden (10.1016/j.cageo.2024.105661_b40) 1992; 90
Piao (10.1016/j.cageo.2024.105661_b30) 1990
Sun (10.1016/j.cageo.2024.105661_b35) 2023; 132
Wang (10.1016/j.cageo.2024.105661_b38) 2004; 1
Knight (10.1016/j.cageo.2024.105661_b15) 1982; 47
Du (10.1016/j.cageo.2024.105661_b8) 2015; 6
Anderson (10.1016/j.cageo.2024.105661_b4) 1983
Guptasarma (10.1016/j.cageo.2024.105661_b11) 1982; 47
Gan (10.1016/j.cageo.2024.105661_b10) 2018; 33
Li (10.1016/j.cageo.2024.105661_b17) 1993; 15
Ma (10.1016/j.cageo.2024.105661_b24) 2023; 211
Piao (10.1016/j.cageo.2024.105661_b31) 1987; 9
Guptasarma (10.1016/j.cageo.2024.105661_b12) 1997; 45
Zhou (10.1016/j.cageo.2024.105661_b48) 1990
Talbot (10.1016/j.cageo.2024.105661_b36) 1979; 23
Jiang (10.1016/j.cageo.2024.105661_b13) 2007; 4
Newman (10.1016/j.cageo.2024.105661_b27) 1986; 51
Li (10.1016/j.cageo.2024.105661_b22) 2012
Ruan (10.1016/j.cageo.2024.105661_b33) 1996; 16
Mogi (10.1016/j.cageo.2024.105661_b25) 2009; 40
Everett (10.1016/j.cageo.2024.105661_b9) 2009; 177
Abate (10.1016/j.cageo.2024.105661_b2) 2004; 60
Li (10.1016/j.cageo.2024.105661_b18) 2002; 26
Xue (10.1016/j.cageo.2024.105661_b44) 2023; 66
Li (10.1016/j.cageo.2024.105661_b19) 2016; 40
Yin (10.1016/j.cageo.2024.105661_b45) 2013; 56
Wang (10.1016/j.cageo.2024.105661_b39) 2015; 30
Qi (10.1016/j.cageo.2024.105661_b32) 2022; 52
Li (10.1016/j.cageo.2024.105661_b20) 2015; 58
Xian (10.1016/j.cageo.2024.105661_b41) 2023; 20
Abate (10.1016/j.cageo.2024.105661_b3) 2006; 18
Sun (10.1016/j.cageo.2024.105661_b34) 2014; 29
Kaufman (10.1016/j.cageo.2024.105661_b14) 1983
Abate (10.1016/j.cageo.2024.105661_b1) 2000
Li (10.1016/j.cageo.2024.105661_b16) 2016; 81
Pelton (10.1016/j.cageo.2024.105661_b29) 1978; 43
References_xml – volume: 43
  start-page: 588
  year: 1978
  end-page: 609
  ident: b29
  article-title: Mineral discrimination and removal of inductive coupling with multifrequency IP
  publication-title: Geophysics
– year: 1990
  ident: b30
  article-title: Electromagnetic Sounding Theory
– volume: 6
  start-page: 671
  year: 2015
  end-page: 679
  ident: b8
  article-title: Analysis and coefficients selection of frequency-time conversion methods
  publication-title: Comput. Techn. Geophys. Geochem. Explor.
– volume: 52
  start-page: 247
  year: 2022
  end-page: 260
  ident: b32
  article-title: Analysis of influence characteristics of topography on grounded-source short-offset transient electromagnetic responses
  publication-title: J. Jilin Univ. (Earth Sci. Ed.)
– volume: 4
  start-page: 512
  year: 2007
  end-page: 515
  ident: b13
  article-title: An efficient method to calculate the sine and cosine transform
  publication-title: Chin. J. Eng. Geophys.
– volume: 66
  start-page: 3514
  year: 2023
  end-page: 3523
  ident: b44
  article-title: Research of the short-offset TEM (SOTEM) system
  publication-title: Chin. J. Geophys.
– year: 1983
  ident: b14
  article-title: Frequency and Transient Soundings
– volume: 58
  start-page: 277
  year: 2015
  end-page: 288
  ident: b20
  article-title: Inverse synthetic aperture lmaging of ground-airborne transient electromagnetic method with a galvanic source
  publication-title: Chin. J. Geophys.
– volume: 177
  start-page: 421
  year: 2009
  end-page: 429
  ident: b9
  article-title: Transient electromagnetic response of a loop source over a rough geological medium
  publication-title: Geophys. J. Int.
– year: 1988
  ident: b26
  article-title: Electromagnetic Methods in Applied Geophysics: Voume 1, Theory
– volume: 30
  start-page: 121
  year: 2015
  end-page: 125
  ident: b42
  article-title: The key problems of SOTEM used in deep detection
  publication-title: Prog. Geophys.
– volume: 29
  start-page: 1243
  year: 2014
  end-page: 1247
  ident: b34
  article-title: Research on frequency-time domain transform method in central-loop transient electromagnetic field response computation
  publication-title: Prog. Geophys.
– volume: 18
  start-page: 408
  year: 2006
  end-page: 421
  ident: b3
  article-title: A unified framework for numerically inverting Laplace transforms
  publication-title: INFORMS J. Comput.
– volume: 33
  start-page: 596
  year: 2018
  end-page: 620
  ident: b10
  article-title: Hybrid optimization algorithm of transient electromagnetic time-frequency conversion
  publication-title: Prog. Geophys.
– year: 1977
  ident: b28
  article-title: Interpretation of Induced Polarization and Resistivity Data
– volume: 1
  start-page: 329
  year: 2004
  end-page: 335
  ident: b38
  article-title: Digital filter algorithm of the sine and cosine transform
  publication-title: Chin. J. Eng. Geophys.
– volume: 90
  year: 1992
  ident: b40
  article-title: Well test analysis benefits from new method of Laplace space inversion
  publication-title: Oil Gas J. (United States)
– volume: 51
  start-page: 1608
  year: 1986
  end-page: 1627
  ident: b27
  article-title: Transient electromagnetic response of a three-dimensional body in a layered earth
  publication-title: Geophysics
– volume: 20
  start-page: 915
  year: 2023
  end-page: 926
  ident: b41
  article-title: Improved adaptive thin-layer inversion for semi-airborne transient electromagnetic method
  publication-title: J. Geophys. Eng.
– year: 1983
  ident: b4
  article-title: Fourier Cosine and Sine Transforms Using Lagged Convolutions in Double-Precision (Subprograms DLAGF0/DLAGF1)
– volume: 211
  year: 2023
  ident: b24
  article-title: Receiver noise correction in semi-airborne transient electromagnetic method with an electric source
  publication-title: J. Appl. Geophys.
– volume: 132
  year: 2023
  ident: b35
  article-title: The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas
  publication-title: Tunn. Undergr. Space Technol.
– volume: 23
  start-page: 97
  year: 1979
  end-page: 120
  ident: b36
  article-title: The accurate numerical inversion of Laplace transforms
  publication-title: IMA J. Appl. Math.
– volume: 60
  start-page: 979
  year: 2004
  end-page: 993
  ident: b2
  article-title: Multi-precision Laplace transform inversion
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 15
  start-page: 108
  year: 1993
  end-page: 116
  ident: b17
  article-title: On the calculation and application of the apparent resistivity of transient EM sounding by electric dipole
  publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese)
– start-page: 257
  year: 2000
  end-page: 323
  ident: b1
  article-title: An introduction to numerical transform inversion and its application to probability models
  publication-title: Computational Probability
– start-page: cp
  year: 2008
  end-page: 40
  ident: b46
  article-title: Modeling results of on-and off-time b and db/dt for time-domain airborne EM systems
  publication-title: 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008
– volume: 47
  start-page: 1574
  year: 1982
  end-page: 1576
  ident: b11
  article-title: Computation of the time-domain response of a polarizable ground
  publication-title: Geophysics
– year: 1990
  ident: b48
  article-title: Laplace Transform and Fourier Transform
– volume: 26
  start-page: 215
  year: 2002
  end-page: 217
  ident: b18
  article-title: The application of mixed algorithm to the calculation of transient electromagnetic response of couple source
  publication-title: Geophys. Geochem. Explor.
– volume: 56
  start-page: 255
  year: 2013
  end-page: 261
  ident: b43
  article-title: Short-offset TEM technique with a grounded wire source for deep sounding
  publication-title: Chin. J. Geophys.
– volume: 40
  start-page: 1
  year: 2009
  end-page: 7
  ident: b25
  article-title: Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan
  publication-title: Explor. Geophys.
– volume: 40
  start-page: 743
  year: 2016
  end-page: 749
  ident: b19
  article-title: Comparison of several frequency-time transformation methods for TEM forward modeling
  publication-title: Geophys. Geochem. Explor.
– volume: 46
  start-page: 719
  year: 2003
  end-page: 724
  ident: b23
  article-title: A research on one-dimension forward for aerial electromagnetic method in time domain
  publication-title: Chin. J. Geophys.
– volume: 3
  start-page: 25
  year: 1995
  end-page: 29
  ident: b6
  article-title: Comparison among three transformation algorithms of electromagnetic field from frequency domain to time domain
  publication-title: Comput. Tech. Geophys. Geochem. Explor.
– volume: 45
  start-page: 745
  year: 1997
  end-page: 762
  ident: b12
  article-title: New digital linear filters for Hankel J0 and J1 transforms
  publication-title: Geophys. Prospect.
– volume: 98
  start-page: 159
  year: 2020
  end-page: 169
  ident: b7
  article-title: Applicability of transient electromagnetic fast forward modeling algorithm with small loop
  publication-title: Prog. Electromagn. Res. M
– volume: 81
  start-page: E113
  year: 2016
  end-page: E128
  ident: b16
  article-title: Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses
  publication-title: Geophysics
– volume: 16
  start-page: 167
  year: 1996
  end-page: 170
  ident: b33
  article-title: Application of guptasarma algorithm in transient electromagnetic forward modeling
  publication-title: J. Guilin Univ. Technol.
– volume: 56
  start-page: 3153
  year: 2013
  end-page: 3162
  ident: b45
  article-title: The full-time electromagnetic modeling for time-domain airborne electromagnetic systems
  publication-title: Chin. J. Geophys.
– volume: 29
  start-page: 1384
  year: 2014
  end-page: 1390
  ident: b5
  article-title: The fast hankel transformation and its applications in forward calculations
  publication-title: Prog. Geophys.
– volume: 50
  start-page: 1581
  year: 1985
  end-page: 1587
  ident: b37
  article-title: Solving cylindrical geothermal problems using the Gaver–Stehfest inverse Laplace transform
  publication-title: Geophysics
– volume: 30
  start-page: 872
  year: 2015
  end-page: 877
  ident: b39
  article-title: The preliminary study of the ground source transient
  publication-title: Prog. Geophys.
– volume: 9
  start-page: 295
  year: 1987
  end-page: 302
  ident: b31
  article-title: Calculation of transient EM sounding using the Gaver–Stehfest inverse Laplace transform method
  publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese)
– volume: 47
  start-page: 47
  year: 1982
  end-page: 50
  ident: b15
  article-title: Transient electromagnetic calculations using the Gaver–Stehfest inverse Laplace transform method
  publication-title: Geophysics
– volume: 46
  start-page: 489
  year: 2011
  end-page: 492
  ident: b21
  article-title: Rectangular loop transient electromagnetic field expressed by Gaver–Stehfest algorithm
  publication-title: Oil Geophys. Prospect.
– start-page: 1393
  year: 2012
  end-page: 1400
  ident: b22
  article-title: Progress of forward computation in transient electromagnetic method
  publication-title: Prog. Geophys.
– volume: 6
  start-page: 115
  year: 1987
  end-page: 119
  ident: b47
  article-title: Research status of forward modeling and inversion problems in transient electromagnetic method abroad
  publication-title: Bull. Geol. Sci. Technol.
– volume: 16
  start-page: 167
  issue: 2
  year: 1996
  ident: 10.1016/j.cageo.2024.105661_b33
  article-title: Application of guptasarma algorithm in transient electromagnetic forward modeling
  publication-title: J. Guilin Univ. Technol.
– volume: 47
  start-page: 1574
  issue: 11
  year: 1982
  ident: 10.1016/j.cageo.2024.105661_b11
  article-title: Computation of the time-domain response of a polarizable ground
  publication-title: Geophysics
  doi: 10.1190/1.1441307
– volume: 1
  start-page: 329
  issue: 4
  year: 2004
  ident: 10.1016/j.cageo.2024.105661_b38
  article-title: Digital filter algorithm of the sine and cosine transform
  publication-title: Chin. J. Eng. Geophys.
– volume: 50
  start-page: 1581
  issue: 10
  year: 1985
  ident: 10.1016/j.cageo.2024.105661_b37
  article-title: Solving cylindrical geothermal problems using the Gaver–Stehfest inverse Laplace transform
  publication-title: Geophysics
  doi: 10.1190/1.1441848
– volume: 6
  start-page: 671
  issue: 37
  year: 2015
  ident: 10.1016/j.cageo.2024.105661_b8
  article-title: Analysis and coefficients selection of frequency-time conversion methods
  publication-title: Comput. Techn. Geophys. Geochem. Explor.
– volume: 26
  start-page: 215
  issue: 3
  year: 2002
  ident: 10.1016/j.cageo.2024.105661_b18
  article-title: The application of mixed algorithm to the calculation of transient electromagnetic response of couple source
  publication-title: Geophys. Geochem. Explor.
– volume: 29
  start-page: 1243
  issue: 3
  year: 2014
  ident: 10.1016/j.cageo.2024.105661_b34
  article-title: Research on frequency-time domain transform method in central-loop transient electromagnetic field response computation
  publication-title: Prog. Geophys.
– volume: 56
  start-page: 3153
  issue: 9
  year: 2013
  ident: 10.1016/j.cageo.2024.105661_b45
  article-title: The full-time electromagnetic modeling for time-domain airborne electromagnetic systems
  publication-title: Chin. J. Geophys.
– volume: 98
  start-page: 159
  year: 2020
  ident: 10.1016/j.cageo.2024.105661_b7
  article-title: Applicability of transient electromagnetic fast forward modeling algorithm with small loop
  publication-title: Prog. Electromagn. Res. M
  doi: 10.2528/PIERM20071602
– start-page: cp
  year: 2008
  ident: 10.1016/j.cageo.2024.105661_b46
  article-title: Modeling results of on-and off-time b and db/dt for time-domain airborne EM systems
– year: 1983
  ident: 10.1016/j.cageo.2024.105661_b4
– volume: 45
  start-page: 745
  issue: 5
  year: 1997
  ident: 10.1016/j.cageo.2024.105661_b12
  article-title: New digital linear filters for Hankel J0 and J1 transforms
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.1997.500292.x
– volume: 30
  start-page: 121
  issue: 1
  year: 2015
  ident: 10.1016/j.cageo.2024.105661_b42
  article-title: The key problems of SOTEM used in deep detection
  publication-title: Prog. Geophys.
– volume: 81
  start-page: E113
  issue: 2
  year: 2016
  ident: 10.1016/j.cageo.2024.105661_b16
  article-title: Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses
  publication-title: Geophysics
  doi: 10.1190/geo2015-0174.1
– volume: 6
  start-page: 115
  issue: 4
  year: 1987
  ident: 10.1016/j.cageo.2024.105661_b47
  article-title: Research status of forward modeling and inversion problems in transient electromagnetic method abroad
  publication-title: Bull. Geol. Sci. Technol.
– volume: 30
  start-page: 872
  issue: 2
  year: 2015
  ident: 10.1016/j.cageo.2024.105661_b39
  article-title: The preliminary study of the ground source transient
  publication-title: Prog. Geophys.
– volume: 58
  start-page: 277
  issue: 1
  year: 2015
  ident: 10.1016/j.cageo.2024.105661_b20
  article-title: Inverse synthetic aperture lmaging of ground-airborne transient electromagnetic method with a galvanic source
  publication-title: Chin. J. Geophys.
– year: 1990
  ident: 10.1016/j.cageo.2024.105661_b30
– volume: 33
  start-page: 596
  issue: 2
  year: 2018
  ident: 10.1016/j.cageo.2024.105661_b10
  article-title: Hybrid optimization algorithm of transient electromagnetic time-frequency conversion
  publication-title: Prog. Geophys.
– volume: 52
  start-page: 247
  issue: 1
  year: 2022
  ident: 10.1016/j.cageo.2024.105661_b32
  article-title: Analysis of influence characteristics of topography on grounded-source short-offset transient electromagnetic responses
  publication-title: J. Jilin Univ. (Earth Sci. Ed.)
– volume: 60
  start-page: 979
  issue: 5
  year: 2004
  ident: 10.1016/j.cageo.2024.105661_b2
  article-title: Multi-precision Laplace transform inversion
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.995
– volume: 23
  start-page: 97
  issue: 1
  year: 1979
  ident: 10.1016/j.cageo.2024.105661_b36
  article-title: The accurate numerical inversion of Laplace transforms
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/23.1.97
– volume: 20
  start-page: 915
  issue: 5
  year: 2023
  ident: 10.1016/j.cageo.2024.105661_b41
  article-title: Improved adaptive thin-layer inversion for semi-airborne transient electromagnetic method
  publication-title: J. Geophys. Eng.
  doi: 10.1093/jge/gxad045
– volume: 29
  start-page: 1384
  issue: 3
  year: 2014
  ident: 10.1016/j.cageo.2024.105661_b5
  article-title: The fast hankel transformation and its applications in forward calculations
  publication-title: Prog. Geophys.
– volume: 177
  start-page: 421
  issue: 2
  year: 2009
  ident: 10.1016/j.cageo.2024.105661_b9
  article-title: Transient electromagnetic response of a loop source over a rough geological medium
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.04011.x
– volume: 66
  start-page: 3514
  issue: 8
  year: 2023
  ident: 10.1016/j.cageo.2024.105661_b44
  article-title: Research of the short-offset TEM (SOTEM) system
  publication-title: Chin. J. Geophys.
– volume: 43
  start-page: 588
  issue: 3
  year: 1978
  ident: 10.1016/j.cageo.2024.105661_b29
  article-title: Mineral discrimination and removal of inductive coupling with multifrequency IP
  publication-title: Geophysics
  doi: 10.1190/1.1440839
– volume: 46
  start-page: 719
  issue: 5
  year: 2003
  ident: 10.1016/j.cageo.2024.105661_b23
  article-title: A research on one-dimension forward for aerial electromagnetic method in time domain
  publication-title: Chin. J. Geophys.
– volume: 132
  year: 2023
  ident: 10.1016/j.cageo.2024.105661_b35
  article-title: The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104893
– volume: 90
  issue: 29
  year: 1992
  ident: 10.1016/j.cageo.2024.105661_b40
  article-title: Well test analysis benefits from new method of Laplace space inversion
  publication-title: Oil Gas J. (United States)
– start-page: 257
  year: 2000
  ident: 10.1016/j.cageo.2024.105661_b1
  article-title: An introduction to numerical transform inversion and its application to probability models
– volume: 51
  start-page: 1608
  issue: 8
  year: 1986
  ident: 10.1016/j.cageo.2024.105661_b27
  article-title: Transient electromagnetic response of a three-dimensional body in a layered earth
  publication-title: Geophysics
  doi: 10.1190/1.1442212
– volume: 47
  start-page: 47
  issue: 1
  year: 1982
  ident: 10.1016/j.cageo.2024.105661_b15
  article-title: Transient electromagnetic calculations using the Gaver–Stehfest inverse Laplace transform method
  publication-title: Geophysics
  doi: 10.1190/1.1441280
– volume: 4
  start-page: 512
  issue: 5
  year: 2007
  ident: 10.1016/j.cageo.2024.105661_b13
  article-title: An efficient method to calculate the sine and cosine transform
  publication-title: Chin. J. Eng. Geophys.
– year: 1983
  ident: 10.1016/j.cageo.2024.105661_b14
– volume: 18
  start-page: 408
  issue: 4
  year: 2006
  ident: 10.1016/j.cageo.2024.105661_b3
  article-title: A unified framework for numerically inverting Laplace transforms
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1050.0137
– year: 1988
  ident: 10.1016/j.cageo.2024.105661_b26
– year: 1977
  ident: 10.1016/j.cageo.2024.105661_b28
– volume: 40
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.cageo.2024.105661_b25
  article-title: Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan
  publication-title: Explor. Geophys.
  doi: 10.1071/EG08115
– volume: 56
  start-page: 255
  issue: 1
  year: 2013
  ident: 10.1016/j.cageo.2024.105661_b43
  article-title: Short-offset TEM technique with a grounded wire source for deep sounding
  publication-title: Chin. J. Geophys.
– start-page: 1393
  issue: 4
  year: 2012
  ident: 10.1016/j.cageo.2024.105661_b22
  article-title: Progress of forward computation in transient electromagnetic method
  publication-title: Prog. Geophys.
– volume: 211
  year: 2023
  ident: 10.1016/j.cageo.2024.105661_b24
  article-title: Receiver noise correction in semi-airborne transient electromagnetic method with an electric source
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2023.104955
– volume: 40
  start-page: 743
  issue: 4
  year: 2016
  ident: 10.1016/j.cageo.2024.105661_b19
  article-title: Comparison of several frequency-time transformation methods for TEM forward modeling
  publication-title: Geophys. Geochem. Explor.
– volume: 46
  start-page: 489
  issue: 3
  year: 2011
  ident: 10.1016/j.cageo.2024.105661_b21
  article-title: Rectangular loop transient electromagnetic field expressed by Gaver–Stehfest algorithm
  publication-title: Oil Geophys. Prospect.
– volume: 3
  start-page: 25
  issue: 17
  year: 1995
  ident: 10.1016/j.cageo.2024.105661_b6
  article-title: Comparison among three transformation algorithms of electromagnetic field from frequency domain to time domain
  publication-title: Comput. Tech. Geophys. Geochem. Explor.
– volume: 9
  start-page: 295
  issue: 4
  year: 1987
  ident: 10.1016/j.cageo.2024.105661_b31
  article-title: Calculation of transient EM sounding using the Gaver–Stehfest inverse Laplace transform method
  publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese)
– year: 1990
  ident: 10.1016/j.cageo.2024.105661_b48
– volume: 15
  start-page: 108
  issue: 2
  year: 1993
  ident: 10.1016/j.cageo.2024.105661_b17
  article-title: On the calculation and application of the apparent resistivity of transient EM sounding by electric dipole
  publication-title: Comput. Techn. Geophys. Geochem. Explor. (in Chinese)
SSID ssj0002285
Score 2.4282188
Snippet Frequency–time conversion is a crucial step in grounded electrical-source transient electromagnetic response calculation, and the performance of the algorithm...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 105661
SubjectTerms Adaptive hybrid algorithm
algorithms
computers
exhibitions
Forward modeling
Frequency–time conversion
Grounded electrical-source transient electromagnetic method
Inverse Laplace transform algorithm
Title Fast forward modeling of grounded electrical-source transient electromagnetic based on inverse Laplace transform adaptive hybrid algorithm
URI https://dx.doi.org/10.1016/j.cageo.2024.105661
https://www.proquest.com/docview/3153712981
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yIngRn7i-iODRutskbdOjiOv6PCnsLSRNsltx22W3Hrz4A_zVZtIWUdCDx7ZJKZlk5mvyfTMInUgirSVEBS60qIBRbgNpiQk4t6miOuvrDPY77h_i4RO7GUWjJXTRamGAVtn4_tqne2_d3Ok1o9mb5TlofFNO_dEd4HwGOUEZS2CWn71_0TwI4VGbNxNat5mHPMcrc2sWFICE-Qr0cfhbdPrhp33wGayjtQY14vP6wzbQkik20cqVr8r7toU-BnJRYQc_gQKLfXEbF5FwaTGINmCPG9flbsAiQb1fjyuIUqCGbJ6VUzkuQNKIIbJpXBY4L4C0YfCd9NStugugXCy1nIGjxJM3kHxh-TIu53k1mW6jp8Hl48UwaIosBJL20ypIDVfGcGK5tClzeEIlOpGKGU2jjCpts0S6X0SruFTKmTu1oYrhrDFKI5opQ3dQpygLs4swTQwxzKgsYpbp0I14X4eKW-Ygm-ZcddFpO7hiVufSEC3J7Fl4Wwiwhaht0UVxawDxbUoI5-3_7njcmku4xQInILIw5etCUOffE4dweLj335fvo1W4qmlmB6hTzV_NocMllTryE-8ILZ9f3w4fPgEb3-cx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLV4CMGCeIo3RmIktLGdxhkRohQonYrEZtmx3RZBUrXp0IUP4KvxdRIhkGBgTeIo8rHvPbHP8UXoXBJpLSEqcKlFBYxyG0hLTMC5TRTVaVOnsN7x2Gt1ntj9c_S8gK5rLwzIKqvYX8Z0H62rK42qNxvj0Qg8vgmnfusOeD5ji2iZuekLZQwu3790HoTwqD44Ex6vjx7yIq_UTVqwABLmS9C3wt_S049A7bNPewOtV7QRX5VftokWTLaFVm59Wd75Nvpoy2mBHf8EDSz21W1cSsK5xeDagEVuXNa7AUiCcsEeF5CmwA5Z3cvf5CADTyOG1KZxnuFRBqoNg7vSa7fKJkBzsdRyDJESD-fg-cLydZBPRsXwbQc9tW_6152gqrIQSNpMiiAxXBnDieXSJswRChXrWCpmNI1SqrRNY-n-Ea3iUimHd2JD1YLNxiiJaKoM3UVLWZ6ZPYRpbIhhRqURs0yHrsebOlTcMsfZNOdqH13UnSvG5WEaolaZvQiPhQAsRInFPmrVAIhvY0K4cP93w7MaLuFmC2yByMzks6mgLsDHjuLw8OC_Lz9Fq53-Y1d073oPh2gN7pSasyO0VExm5tiRlEKd-EH4CXIf6L8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+forward+modeling+of+grounded+electrical-source+transient+electromagnetic+based+on+inverse+Laplace+transform+adaptive+hybrid+algorithm&rft.jtitle=Computers+%26+geosciences&rft.au=You%2C+Xiran&rft.au=Zhang%2C+Jifeng&rft.au=Luo%2C+Jiao&rft.date=2024-09-01&rft.issn=0098-3004&rft.volume=191&rft.spage=105661&rft_id=info:doi/10.1016%2Fj.cageo.2024.105661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2024_105661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon