Heterobimetallic Base Pair Programming in Designer 3D DNA Crystals

Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensio...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 32; pp. 17945 - 17953
Main Authors Lu, Brandon, Ohayon, Yoel P., Woloszyn, Karol, Yang, Chu-fan, Yoder, Jesse B., Rothschild, Lynn J., Wind, Shalom J., Hendrickson, Wayne A., Mao, Chengde, Seeman, Nadrian C., Canary, James W., Sha, Ruojie, Vecchioni, Simon
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.08.2023
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver­(I) binds with increasing occupancy in T–T and U–U pairs at elevated pH levels, and we exploited this to capture silver­(I) and mercury­(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C–C pair with both silver­(I) and mercury­(II). Finally, we extend our paradigm to capture cadmium­(II) in T–T pairs together with mercury­(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.
AbstractList Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver(I) binds with increasing occupancy in T-T and U-U pairs at elevated pH levels, and we exploited this to capture silver(I) and mercury(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C-C pair with both silver(I) and mercury(II). Finally, we extend our paradigm to capture cadmium(II) in T-T pairs together with mercury(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.
Not provided.
Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver­(I) binds with increasing occupancy in T–T and U–U pairs at elevated pH levels, and we exploited this to capture silver­(I) and mercury­(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C–C pair with both silver­(I) and mercury­(II). Finally, we extend our paradigm to capture cadmium­(II) in T–T pairs together with mercury­(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.
Author Canary, James W.
Lu, Brandon
Rothschild, Lynn J.
Sha, Ruojie
Vecchioni, Simon
Seeman, Nadrian C.
Woloszyn, Karol
Yang, Chu-fan
Mao, Chengde
Yoder, Jesse B.
Wind, Shalom J.
Hendrickson, Wayne A.
Ohayon, Yoel P.
AuthorAffiliation Department of Chemistry
Columbia University
Department of Applied Physics and Applied Mathematics
Department of Biochemistry and Molecular Biophysics
AuthorAffiliation_xml – name: Department of Biochemistry and Molecular Biophysics
– name: Department of Chemistry
– name: Department of Applied Physics and Applied Mathematics
– name: Columbia University
Author_xml – sequence: 1
  givenname: Brandon
  orcidid: 0000-0001-6424-2197
  surname: Lu
  fullname: Lu, Brandon
  organization: Department of Chemistry
– sequence: 2
  givenname: Yoel P.
  surname: Ohayon
  fullname: Ohayon, Yoel P.
  organization: Department of Chemistry
– sequence: 3
  givenname: Karol
  surname: Woloszyn
  fullname: Woloszyn, Karol
  organization: Department of Chemistry
– sequence: 4
  givenname: Chu-fan
  surname: Yang
  fullname: Yang, Chu-fan
  organization: Department of Chemistry
– sequence: 5
  givenname: Jesse B.
  surname: Yoder
  fullname: Yoder, Jesse B.
– sequence: 6
  givenname: Lynn J.
  surname: Rothschild
  fullname: Rothschild, Lynn J.
– sequence: 7
  givenname: Shalom J.
  surname: Wind
  fullname: Wind, Shalom J.
  organization: Department of Applied Physics and Applied Mathematics
– sequence: 8
  givenname: Wayne A.
  surname: Hendrickson
  fullname: Hendrickson, Wayne A.
  organization: Columbia University
– sequence: 9
  givenname: Chengde
  orcidid: 0000-0001-7516-8666
  surname: Mao
  fullname: Mao, Chengde
  organization: Department of Chemistry
– sequence: 10
  givenname: Nadrian C.
  orcidid: 0000-0002-9680-4649
  surname: Seeman
  fullname: Seeman, Nadrian C.
  organization: Department of Chemistry
– sequence: 11
  givenname: James W.
  orcidid: 0000-0002-0352-8543
  surname: Canary
  fullname: Canary, James W.
  organization: Department of Chemistry
– sequence: 12
  givenname: Ruojie
  orcidid: 0000-0002-0807-734X
  surname: Sha
  fullname: Sha, Ruojie
  organization: Department of Chemistry
– sequence: 13
  givenname: Simon
  orcidid: 0000-0001-8243-650X
  surname: Vecchioni
  fullname: Vecchioni, Simon
  email: sv1091@nyu.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37530628$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2419794$$D View this record in Osti.gov
BookMark eNptkDlPAzEQRi0UBOHoqNGKioINvu2UObikCCigthzvbHCUtcHeFPn3bJQADdVopPd9M3onqBdiAIQuCB4QTMnt0ro8YA4LrvQB6hNBcSkIlT3UxxjTUmnJjtFJzstu5VSTI3TMlGBYUt1H40doIcW5b6C1q5V3xdhmKF6tT8Vriotkm8aHReFDMYXsFwFSwabF9HlUTNImd5l8hg7rbsD5fp6i9_u7t8ljOXt5eJqMZqVlWLclFXMGoqprXXHCicIWpCLUYclwzbBSwIZSggLBtZJyrurucVFxkBXlrtbsFF3temNuvcnOt-A-XAwBXGsoJ0M15B10vYM-U_xaQ25N47OD1coGiOtsqOaCYEEY7dCbHepSzDlBbT6Tb2zaGILNVq3ZqjV7tR1-uW9ezxuofuEfl3-nt6llXKfQ2fi_6xtzWYCe
Cites_doi 10.1038/nchem.2745
10.1093/protein/1.4.295
10.1002/anie.201704891
10.1111/j.1432-1033.1979.tb12921.x
10.1093/nar/gkt1344
10.1021/acsnano.9b02430
10.1002/2211-5463.12097
10.1002/chem.201300460
10.1002/chem.201603048
10.1038/350631a0
10.1002/cbdv.200890135
10.1021/acsnano.1c06963
10.1016/j.cbpa.2017.01.019
10.1093/nar/gkaa1210
10.1038/16437
10.1039/d1dt00975c
10.1002/anie.202213451
10.1107/s0567739476001551
10.1126/science.aat0971
10.1016/0022-5193(82)90002-9
10.1107/S0907444913001479
10.1002/adma.202210938
10.1021/ar200262x
10.1139/v94-143
10.1002/anie.201309066
10.1002/anie.202203568
10.1039/c4ra15453c
10.1107/s0365110x6500018x
10.1016/j.ica.2016.04.040
10.1007/s13361-016-1411-3
10.1002/anie.202204798
10.1021/acsomega.1c06464
10.1038/nature08274
10.1002/anie.200804952
10.1002/chem.201001171
10.1002/anie.201910029
10.1021/acs.nanolett.0c01292
10.1016/j.bpj.2022.08.019
10.1021/jacs.2c12667
10.1039/b812755g
10.1038/nchem.2808
10.1002/chem.201805394
10.1021/jacs.3c01941
10.1021/acs.analchem.2c02794
10.3389/fchem.2021.732770
10.1038/s41586-021-04225-4
10.1021/jacs.3c00081
10.1002/smll.202206511
10.1093/nar/gkg350
10.1038/s41467-019-12440-x
10.1002/smll.202205830
10.1093/nar/gkw1296
10.1038/s41598-019-43316-1
10.1021/jacs.0c11437
10.1002/adma.202206876
10.1021/ja056354d
10.1039/c7cc06153f
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
CorporateAuthor New York Univ. (NYU), NY (United States)
CorporateAuthor_xml – name: New York Univ. (NYU), NY (United States)
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
OTOTI
DOI 10.1021/jacs.3c05478
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 17953
ExternalDocumentID 2419794
10_1021_jacs_3c05478
37530628
a17543251
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM107462
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
ABJNI
ACBEA
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
OTOTI
ID FETCH-LOGICAL-a308t-25b3e5dff8d414170ae6712c0630f3077e3966e7e548766b7f8635d4e6d24cf83
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Mon Aug 12 05:47:26 EDT 2024
Fri Aug 16 21:36:28 EDT 2024
Fri Aug 23 00:58:32 EDT 2024
Sun Oct 13 09:33:16 EDT 2024
Fri Aug 18 03:15:09 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a308t-25b3e5dff8d414170ae6712c0630f3077e3966e7e548766b7f8635d4e6d24cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC)
SC0007991
ORCID 0000-0001-7516-8666
0000-0002-9680-4649
0000-0002-0352-8543
0000-0001-8243-650X
0000-0002-0807-734X
0000-0001-6424-2197
000000020807734X
0000000175168666
0000000203528543
0000000164242197
0000000296804649
000000018243650X
PMID 37530628
PQID 2845105132
PQPubID 23479
PageCount 9
ParticipantIDs osti_scitechconnect_2419794
proquest_miscellaneous_2845105132
crossref_primary_10_1021_jacs_3c05478
pubmed_primary_37530628
acs_journals_10_1021_jacs_3c05478
PublicationCentury 2000
PublicationDate 2023-08-16
PublicationDateYYYYMMDD 2023-08-16
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref24/cit24
ref38/cit38
Borsari M. (ref49/cit49) 2014
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref53/cit53
  doi: 10.1038/nchem.2745
– ident: ref58/cit58
  doi: 10.1093/protein/1.4.295
– ident: ref26/cit26
  doi: 10.1002/anie.201704891
– ident: ref37/cit37
  doi: 10.1111/j.1432-1033.1979.tb12921.x
– ident: ref17/cit17
  doi: 10.1093/nar/gkt1344
– ident: ref27/cit27
  doi: 10.1021/acsnano.9b02430
– ident: ref39/cit39
  doi: 10.1002/2211-5463.12097
– ident: ref41/cit41
  doi: 10.1002/chem.201300460
– ident: ref11/cit11
  doi: 10.1002/chem.201603048
– ident: ref4/cit4
  doi: 10.1038/350631a0
– ident: ref56/cit56
  doi: 10.1002/cbdv.200890135
– ident: ref1/cit1
  doi: 10.1021/acsnano.1c06963
– ident: ref14/cit14
  doi: 10.1016/j.cbpa.2017.01.019
– ident: ref34/cit34
  doi: 10.1093/nar/gkaa1210
– ident: ref3/cit3
  doi: 10.1038/16437
– ident: ref13/cit13
  doi: 10.1039/d1dt00975c
– ident: ref30/cit30
  doi: 10.1002/anie.202213451
– ident: ref50/cit50
  doi: 10.1107/s0567739476001551
– ident: ref8/cit8
  doi: 10.1126/science.aat0971
– ident: ref5/cit5
  doi: 10.1016/0022-5193(82)90002-9
– ident: ref46/cit46
  doi: 10.1107/S0907444913001479
– ident: ref9/cit9
  doi: 10.1002/adma.202210938
– ident: ref36/cit36
  doi: 10.1021/ar200262x
– ident: ref40/cit40
  doi: 10.1139/v94-143
– ident: ref18/cit18
  doi: 10.1002/anie.201309066
– ident: ref20/cit20
  doi: 10.1002/anie.202203568
– ident: ref38/cit38
  doi: 10.1039/c4ra15453c
– ident: ref44/cit44
  doi: 10.1107/s0365110x6500018x
– ident: ref42/cit42
  doi: 10.1016/j.ica.2016.04.040
– ident: ref43/cit43
  doi: 10.1007/s13361-016-1411-3
– ident: ref25/cit25
  doi: 10.1002/anie.202204798
– ident: ref54/cit54
  doi: 10.1021/acsomega.1c06464
– ident: ref2/cit2
  doi: 10.1038/nature08274
– ident: ref35/cit35
  doi: 10.1002/anie.200804952
– ident: ref47/cit47
  doi: 10.1002/chem.201001171
– ident: ref24/cit24
  doi: 10.1002/anie.201910029
– ident: ref48/cit48
  doi: 10.1021/acs.nanolett.0c01292
– ident: ref28/cit28
  doi: 10.1016/j.bpj.2022.08.019
– ident: ref33/cit33
  doi: 10.1021/jacs.2c12667
– ident: ref45/cit45
  doi: 10.1039/b812755g
– ident: ref15/cit15
  doi: 10.1038/nchem.2808
– ident: ref21/cit21
  doi: 10.1002/chem.201805394
– start-page: 1
  volume-title: Encyclopedia of Inorganic and Bioinorganic Chemistry
  year: 2014
  ident: ref49/cit49
  contributor:
    fullname: Borsari M.
– ident: ref7/cit7
  doi: 10.1021/jacs.3c01941
– ident: ref51/cit51
  doi: 10.1021/acs.analchem.2c02794
– ident: ref55/cit55
  doi: 10.3389/fchem.2021.732770
– ident: ref57/cit57
  doi: 10.1038/s41586-021-04225-4
– ident: ref6/cit6
  doi: 10.1021/jacs.3c00081
– ident: ref32/cit32
  doi: 10.1002/smll.202206511
– ident: ref19/cit19
  doi: 10.1093/nar/gkg350
– ident: ref23/cit23
  doi: 10.1038/s41467-019-12440-x
– ident: ref31/cit31
  doi: 10.1002/smll.202205830
– ident: ref52/cit52
  doi: 10.1093/nar/gkw1296
– ident: ref12/cit12
  doi: 10.1038/s41598-019-43316-1
– ident: ref22/cit22
  doi: 10.1021/jacs.0c11437
– ident: ref29/cit29
  doi: 10.1002/adma.202206876
– ident: ref10/cit10
  doi: 10.1021/ja056354d
– ident: ref16/cit16
  doi: 10.1039/c7cc06153f
SSID ssj0004281
Score 2.4786403
Snippet Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces...
Not provided.
SourceID osti
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17945
SubjectTerms Base Pairing
Chemistry
DNA - chemistry
Mercury - chemistry
Silver - chemistry
Title Heterobimetallic Base Pair Programming in Designer 3D DNA Crystals
URI http://dx.doi.org/10.1021/jacs.3c05478
https://www.ncbi.nlm.nih.gov/pubmed/37530628
https://search.proquest.com/docview/2845105132
https://www.osti.gov/biblio/2419794
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50PuiL98ucmproIwuUUtjjLs7FxGWJLtkbgdImixuYwR7013sOFxdnFn0DArT0tHzfac_5SsidBs7KQ2YZjLstgwtTG6FGtTyurcBxQxHkuTDPQzEY86eJM1kFyK6v4DPUB5Jp05YmCk9tkx0GkIhOVrv7ssp_ZJ5V0VzXE3YZ4L7-NAKQTH8AUC2BgbSZXOYg0z8gj1WqThFb8tZcZmFTfv5Wbvyj_odkv-SZtF10jCOypeJjstuttnc7IZ0BBsIk4XSugH_PppJ2ANDoKJgu6KgI2poDrNFpTHt5lIdaULtHe8M27S4-gFPO0lMy7j-8dgdGuaGCEdimlxnMCW3lRFp7Ebe45ZqBEq7FJOpuaRjsrrLB-1GuQjdGiNDV0JhOxJWIGJfas89ILU5idUEoawWcO2YkudXiEs40uKOcwTu4A8eiTm7hu_1yQKR-vtbNwNfAq2Vr1Ml9ZQn_vdDW2HBfA83kAydAYVuJEUAy84F7tOBvAiVV1vOhCXG9I4hVskx9QF6kj-Bv18l5Ydbvcmxw0zB99PIf9WyQPdxkHmeSLXFFatliqa6BimThTd4PvwD6DdMF
link.rule.ids 230,315,786,790,891,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHODC-zHGI0hwLGrTNOmOYwON1zQJJnGr2jSRJqBDa3eAX4_ddSAmIe3WRm3ixEn9ubG_AJxbxKwi4Z7DhWo6QrrWSSyx5QnrxYFKZFzmwjz2ZHcg7l6ClypZnXJhUIgca8rLTfxfdgGiCcJCX7vEP7UMK4FCQ0dIqP30mwbJQ2-GdlUo_SrOff5tskM6_2OHaiNcT_9jzNLW3GxA70fKMsTk9XJSJJf6a47AceFubMJ6hTpZazpNtmDJZNuw2p4d9rYDV10Kixklw3eDaPxtqNkVmjfWj4dj1p-GcL2jkWPDjHXKmA8zZn6HdXot1h5_IsJ8y3dhcHP93O461fEKTuy7YeHwIPFNkFobpsITnnJjI5XHNbFwWVz6yvjoCxllyKmRMlEWxzRIhZEpF9qG_h7UslFmDoDxZixE4KZaeE2h8c6icyo41iECvJZ1OMN-R9XyyKNy55uj50Gl1WjU4WKmkOhjyrTxz3MN0laECIFobjXFA-kiQiTSxG8LtjRTYoRDSLsfcWZGkzxCO0xgEr3vOuxPtfvTjo9OGyWTHi4g5ymsdp8fH6KH2959A9bo-Hn6x-zJI6gV44k5RpBSJCfl1PwGZtPbcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6VThp7gW3A6MrASPAYlDiOnT6WdlUHo6o2KvEWJY4tVbQpatIH-Ot3lyYgKiGxt_y2fWf7vovvPgOcWcSsIuGew4XqOEK61kksseUJ68WBSmRc5sLcjORwIq7ugrsGeHUuDFYixy_l5SI-jeqH1FYMA0QVhDd87RIH1RZ8CJQnaCx2e39fUiF56NWIV4XSr2LdN98mW6TzV7aoucAx9TbOLO3NYBf-PNe0DDO5v1gVyYV-2iBx_K-mfIadCn2y7rq7fIGGyb7Cdq_e9G0PLocUHrNIpnODqHw21ewSzRwbx9MlG69DueZo7Ng0Y_0y9sMsmd9n_VGX9ZaPiDRn-T5MBj9ve0On2mbBiX03LBweJL4JUmvDVKBAlRsbqTyuiY3L4hSgjI8-kVGGnBspE2VRrkEqjEy50Db0D6CZLTJzCIx3YiECN9XC6wiNZxadVMHxGyLAY9mCU2x3VA2TPCpXwDl6IHS1kkYLzmulRA9rxo03nmuTxiJECkR3qykuSBcRIpIOzjFYUq3ICEVIqyBxZharPEJ7TKASvfAWfFtr-LkcH503Sir9_o56nsDHcX8Q_f41um7DJ9qFnn41e_IImsVyZX4gVimS47J3_gOxmt3q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterobimetallic+Base+Pair+Programming+in+Designer+3D+DNA+Crystals&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lu%2C+Brandon&rft.au=Ohayon%2C+Yoel+P.&rft.au=Woloszyn%2C+Karol&rft.au=Yang%2C+Chu-fan&rft.date=2023-08-16&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=145&rft.issue=32&rft.spage=17945&rft.epage=17953&rft_id=info:doi/10.1021%2Fjacs.3c05478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_3c05478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon