Insight into the Polar Reactivity of the Onium Chalcogen Analogues of S-Adenosyl-l-methionine

S-Adenosyl-l-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several different modes of reactivity. The types of transformations in which it is involved include decarboxylation, electrophilic addition to an...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 43; no. 42; pp. 13496 - 13509
Main Authors Iwig, David F, Booker, Squire J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.10.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract S-Adenosyl-l-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several different modes of reactivity. The types of transformations in which it is involved include decarboxylation, electrophilic addition to any of the three carbons bonded to the central sulfur atom, proton removal at carbons adjacent to the sulfonium, and reductive cleavage to generate 5‘-deoxyadenosyl 5‘-radical intermediates. At physiological pH and temperature, AdoMet is subject to three spontaneous degradation pathways, the first of which is racemization of the chiral sulfonium group, which takes place in a pH-independent manner. The two remaining pathways are pH-dependent and include (1) intramolecular attack of the α-carboxylate group onto the γ-carbon, affording l-homoserine lactone (HSL) and 5‘-methylthioadenosine (MTA), and (2) deprotonation at C-5‘, initiating a cascade that results in formation of adenine and S-ribosylmethionine. Herein, we describe pH-dependent stability studies of AdoMet and its selenium and tellurium analogues, Se-adenosyl-l-selenomethionine and Te-adenosyl-l-telluromethionine (SeAdoMet and TeAdoMet, respectively), at 37 °C and constant ionic strength, which we use as a probe of their relative intrinsic reactivities. We find that with AdoMet intramolecular nucleophilic attack to afford HSL and MTA exhibits a pH−rate profile having two titratable groups with apparent pK a values of 1.2 ± 0.4 and 8.2 ± 0.05 and displaying first-order rate constants of <0.7 × 10-6 s-1 at pH values less than 0.5, ∼3 × 10-6 s-1 at pH values between 2 and 7, and ∼15 × 10-6 s-1 at pH values greater than 9. Degradation via deprotonation at C-5‘ follows a pH−rate profile having one titratable group with an apparent pK a value of ∼11.5. The selenium analogue decays significantly faster via intramolecular nucleophilic attack, also exhibiting a pH−rate profile with two titratable groups with pK a values of ∼0.86 and 8.0 ± 0.1 with first-order rate constants of <7 × 10-6 s-1 at pH values less than 0.9, ∼32 × 10-6 s-1 at pH values between 2 and 7, and ∼170 × 10-6 s-1 at pH values greater than 9. Degradation via deprotonation at C-5‘ proceeds with one titratable group displaying an apparent pK a value of ∼14.1. Unexpectedly, TeAdoMet did not decay at an observable rate via either of these two pathways. Last, enzymatically synthesized AdoMet was found to racemize at rates that were consistent with earlier studies (Hoffman, J. L. (1986) Biochemistry 25, 4444−4449); however, SeAdoMet and TeAdoMet did not racemize at detectable rates. In the accompanying paper, we use the information obtained in these model studies to probe the mechanism of cyclopropane fatty acid synthase via use of the onium chalcogens of AdoMet as methyl donors.
AbstractList S-Adenosyl-l-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several different modes of reactivity. The types of transformations in which it is involved include decarboxylation, electrophilic addition to any of the three carbons bonded to the central sulfur atom, proton removal at carbons adjacent to the sulfonium, and reductive cleavage to generate 5‘-deoxyadenosyl 5‘-radical intermediates. At physiological pH and temperature, AdoMet is subject to three spontaneous degradation pathways, the first of which is racemization of the chiral sulfonium group, which takes place in a pH-independent manner. The two remaining pathways are pH-dependent and include (1) intramolecular attack of the α-carboxylate group onto the γ-carbon, affording l-homoserine lactone (HSL) and 5‘-methylthioadenosine (MTA), and (2) deprotonation at C-5‘, initiating a cascade that results in formation of adenine and S-ribosylmethionine. Herein, we describe pH-dependent stability studies of AdoMet and its selenium and tellurium analogues, Se-adenosyl-l-selenomethionine and Te-adenosyl-l-telluromethionine (SeAdoMet and TeAdoMet, respectively), at 37 °C and constant ionic strength, which we use as a probe of their relative intrinsic reactivities. We find that with AdoMet intramolecular nucleophilic attack to afford HSL and MTA exhibits a pH−rate profile having two titratable groups with apparent pK a values of 1.2 ± 0.4 and 8.2 ± 0.05 and displaying first-order rate constants of <0.7 × 10-6 s-1 at pH values less than 0.5, ∼3 × 10-6 s-1 at pH values between 2 and 7, and ∼15 × 10-6 s-1 at pH values greater than 9. Degradation via deprotonation at C-5‘ follows a pH−rate profile having one titratable group with an apparent pK a value of ∼11.5. The selenium analogue decays significantly faster via intramolecular nucleophilic attack, also exhibiting a pH−rate profile with two titratable groups with pK a values of ∼0.86 and 8.0 ± 0.1 with first-order rate constants of <7 × 10-6 s-1 at pH values less than 0.9, ∼32 × 10-6 s-1 at pH values between 2 and 7, and ∼170 × 10-6 s-1 at pH values greater than 9. Degradation via deprotonation at C-5‘ proceeds with one titratable group displaying an apparent pK a value of ∼14.1. Unexpectedly, TeAdoMet did not decay at an observable rate via either of these two pathways. Last, enzymatically synthesized AdoMet was found to racemize at rates that were consistent with earlier studies (Hoffman, J. L. (1986) Biochemistry 25, 4444−4449); however, SeAdoMet and TeAdoMet did not racemize at detectable rates. In the accompanying paper, we use the information obtained in these model studies to probe the mechanism of cyclopropane fatty acid synthase via use of the onium chalcogens of AdoMet as methyl donors.
S-Adenosyl-L-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several different modes of reactivity. The types of transformations in which it is involved include decarboxylation, electrophilic addition to any of the three carbons bonded to the central sulfur atom, proton removal at carbons adjacent to the sulfonium, and reductive cleavage to generate 5'-deoxyadenosyl 5'-radical intermediates. At physiological pH and temperature, AdoMet is subject to three spontaneous degradation pathways, the first of which is racemization of the chiral sulfonium group, which takes place in a pH-independent manner. The two remaining pathways are pH-dependent and include (1) intramolecular attack of the alpha-carboxylate group onto the gamma-carbon, affording L-homoserine lactone (HSL) and 5'-methylthioadenosine (MTA), and (2) deprotonation at C-5', initiating a cascade that results in formation of adenine and S-ribosylmethionine. Herein, we describe pH-dependent stability studies of AdoMet and its selenium and tellurium analogues, Se-adenosyl-L-selenomethionine and Te-adenosyl-L-telluromethionine (SeAdoMet and TeAdoMet, respectively), at 37 degrees C and constant ionic strength, which we use as a probe of their relative intrinsic reactivities. We find that with AdoMet intramolecular nucleophilic attack to afford HSL and MTA exhibits a pH-rate profile having two titratable groups with apparent pK(a) values of 1.2 +/- 0.4 and 8.2 +/- 0.05 and displaying first-order rate constants of <0.7 x 10(-6) s(-1) at pH values less than 0.5, approximately 3 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 15 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' follows a pH-rate profile having one titratable group with an apparent pK(a) value of approximately 11.5. The selenium analogue decays significantly faster via intramolecular nucleophilic attack, also exhibiting a pH-rate profile with two titratable groups with pK(a) values of approximately 0.86 and 8.0 +/- 0.1 with first-order rate constants of <7 x 10(-6) s(-1) at pH values less than 0.9, approximately 32 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 170 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' proceeds with one titratable group displaying an apparent pK(a) value of approximately 14.1. Unexpectedly, TeAdoMet did not decay at an observable rate via either of these two pathways. Last, enzymatically synthesized AdoMet was found to racemize at rates that were consistent with earlier studies (Hoffman, J. L. (1986) Biochemistry 25, 4444-4449); however, SeAdoMet and TeAdoMet did not racemize at detectable rates. In the accompanying paper, we use the information obtained in these model studies to probe the mechanism of cyclopropane fatty acid synthase via use of the onium chalcogens of AdoMet as methyl donors.S-Adenosyl-L-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several different modes of reactivity. The types of transformations in which it is involved include decarboxylation, electrophilic addition to any of the three carbons bonded to the central sulfur atom, proton removal at carbons adjacent to the sulfonium, and reductive cleavage to generate 5'-deoxyadenosyl 5'-radical intermediates. At physiological pH and temperature, AdoMet is subject to three spontaneous degradation pathways, the first of which is racemization of the chiral sulfonium group, which takes place in a pH-independent manner. The two remaining pathways are pH-dependent and include (1) intramolecular attack of the alpha-carboxylate group onto the gamma-carbon, affording L-homoserine lactone (HSL) and 5'-methylthioadenosine (MTA), and (2) deprotonation at C-5', initiating a cascade that results in formation of adenine and S-ribosylmethionine. Herein, we describe pH-dependent stability studies of AdoMet and its selenium and tellurium analogues, Se-adenosyl-L-selenomethionine and Te-adenosyl-L-telluromethionine (SeAdoMet and TeAdoMet, respectively), at 37 degrees C and constant ionic strength, which we use as a probe of their relative intrinsic reactivities. We find that with AdoMet intramolecular nucleophilic attack to afford HSL and MTA exhibits a pH-rate profile having two titratable groups with apparent pK(a) values of 1.2 +/- 0.4 and 8.2 +/- 0.05 and displaying first-order rate constants of <0.7 x 10(-6) s(-1) at pH values less than 0.5, approximately 3 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 15 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' follows a pH-rate profile having one titratable group with an apparent pK(a) value of approximately 11.5. The selenium analogue decays significantly faster via intramolecular nucleophilic attack, also exhibiting a pH-rate profile with two titratable groups with pK(a) values of approximately 0.86 and 8.0 +/- 0.1 with first-order rate constants of <7 x 10(-6) s(-1) at pH values less than 0.9, approximately 32 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 170 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' proceeds with one titratable group displaying an apparent pK(a) value of approximately 14.1. Unexpectedly, TeAdoMet did not decay at an observable rate via either of these two pathways. Last, enzymatically synthesized AdoMet was found to racemize at rates that were consistent with earlier studies (Hoffman, J. L. (1986) Biochemistry 25, 4444-4449); however, SeAdoMet and TeAdoMet did not racemize at detectable rates. In the accompanying paper, we use the information obtained in these model studies to probe the mechanism of cyclopropane fatty acid synthase via use of the onium chalcogens of AdoMet as methyl donors.
S-Adenosyl-L-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several different modes of reactivity. The types of transformations in which it is involved include decarboxylation, electrophilic addition to any of the three carbons bonded to the central sulfur atom, proton removal at carbons adjacent to the sulfonium, and reductive cleavage to generate 5'-deoxyadenosyl 5'-radical intermediates. At physiological pH and temperature, AdoMet is subject to three spontaneous degradation pathways, the first of which is racemization of the chiral sulfonium group, which takes place in a pH-independent manner. The two remaining pathways are pH-dependent and include (1) intramolecular attack of the alpha-carboxylate group onto the gamma-carbon, affording L-homoserine lactone (HSL) and 5'-methylthioadenosine (MTA), and (2) deprotonation at C-5', initiating a cascade that results in formation of adenine and S-ribosylmethionine. Herein, we describe pH-dependent stability studies of AdoMet and its selenium and tellurium analogues, Se-adenosyl-L-selenomethionine and Te-adenosyl-L-telluromethionine (SeAdoMet and TeAdoMet, respectively), at 37 degrees C and constant ionic strength, which we use as a probe of their relative intrinsic reactivities. We find that with AdoMet intramolecular nucleophilic attack to afford HSL and MTA exhibits a pH-rate profile having two titratable groups with apparent pK(a) values of 1.2 +/- 0.4 and 8.2 +/- 0.05 and displaying first-order rate constants of <0.7 x 10(-6) s(-1) at pH values less than 0.5, approximately 3 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 15 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' follows a pH-rate profile having one titratable group with an apparent pK(a) value of approximately 11.5. The selenium analogue decays significantly faster via intramolecular nucleophilic attack, also exhibiting a pH-rate profile with two titratable groups with pK(a) values of approximately 0.86 and 8.0 +/- 0.1 with first-order rate constants of <7 x 10(-6) s(-1) at pH values less than 0.9, approximately 32 x 10(-6) s(-1) at pH values between 2 and 7, and approximately 170 x 10(-6) s(-1) at pH values greater than 9. Degradation via deprotonation at C-5' proceeds with one titratable group displaying an apparent pK(a) value of approximately 14.1. Unexpectedly, TeAdoMet did not decay at an observable rate via either of these two pathways. Last, enzymatically synthesized AdoMet was found to racemize at rates that were consistent with earlier studies (Hoffman, J. L. (1986) Biochemistry 25, 4444-4449); however, SeAdoMet and TeAdoMet did not racemize at detectable rates. In the accompanying paper, we use the information obtained in these model studies to probe the mechanism of cyclopropane fatty acid synthase via use of the onium chalcogens of AdoMet as methyl donors.
Author Booker, Squire J
Iwig, David F
Author_xml – sequence: 1
  givenname: David F
  surname: Iwig
  fullname: Iwig, David F
– sequence: 2
  givenname: Squire J
  surname: Booker
  fullname: Booker, Squire J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15491157$$D View this record in MEDLINE/PubMed
BookMark eNpl0N9LwzAQB_Agis7pg_-A9EFEkGjSNmn7OIc_JkPFzUcJaXrdom0ym1Tcf2_n_PHgyx13fDiO7y7aNNYAQgeUnFES0vNckzjlWXS6gXqUhQTHWcY2UY8QwnGYcbKDdp176caYJPE22qEszihlSQ89j4zTs7kPtPE28HMIHmwlm-ARpPL6XftlYMuv_b3RbR0M57JSdgYmGBhZ2VkLbgUmeFCAsW5Z4QrX4OfaGm1gD22VsnKw_9376Onqcjq8weP769FwMMYyIonHBU2zUBUJkxzyNApzXipWcJkCKzmNuxpHuSJ5GlJIQqU6q2RGcplLVcqURH10vL67aOxb95IXtXYKqkoasK0TnGdpEtIVPPyGbV5DIRaNrmWzFD-BdOBkDVRjnWug_CNErMIWP2F3FK-pdh4-fp1sXgVPooSJ6cNEsOnF-O6WX4lJ54_WXionXmzbdAG6_2c_AdVAi_M
Cites_doi 10.1021/ja953222j
10.1146/annurev.bi.53.070184.003533
10.1021/jm00232a005
10.1146/annurev.bi.44.070175.002251
10.1055/b-003-108605
10.1021/cr010210+
10.1038/416279a
10.1021/ja00496a032
10.1016/S0021-9258(18)70564-4
10.1128/MMBR.66.2.250-271.2002
10.1016/S0045-2068(02)00513-8
10.1021/ol005756h
10.1021/ja00410a004
10.1016/S0021-9258(19)70530-4
10.1007/s007750100210
ContentType Journal Article
Copyright Copyright © 2004 American Chemical Society
Copyright_xml – notice: Copyright © 2004 American Chemical Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/bi048693+
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 13509
ExternalDocumentID 15491157
10_1021_bi048693
ark_67375_TPS_5TBLNJ6F_S
c776979664
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM-63847
GroupedDBID -
.K2
02
08R
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
ZCA
~02
~KM
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7X8
ID FETCH-LOGICAL-a307t-d1892cd75a6eb832b6fc5d6a8e5f614e5f43bc0b821e72cc2cdca90babacfa803
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Fri Jul 11 05:04:41 EDT 2025
Wed Feb 19 01:48:40 EST 2025
Tue Jul 01 02:05:15 EDT 2025
Wed Oct 30 09:40:13 EDT 2024
Thu Aug 27 13:43:08 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a307t-d1892cd75a6eb832b6fc5d6a8e5f614e5f43bc0b821e72cc2cdca90babacfa803
Notes This work was supported by NIH Grant GM-63847 (S.J.B.) and NSF Grant MCB-0133826.
ark:/67375/TPS-5TBLNJ6F-S
istex:0C6DDBD55AC59BE1B53C79C5EF7C3A4A4EFC6566
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15491157
PQID 66987210
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_66987210
pubmed_primary_15491157
crossref_primary_10_1021_bi048693
istex_primary_ark_67375_TPS_5TBLNJ6F_S
acs_journals_10_1021_bi048693
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-10-26
PublicationDateYYYYMMDD 2004-10-26
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-26
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2004
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Parks L. W. (bi0486931b00028/bi0486931b00028_1) 1958; 230
Ramalingam K. (bi0486931b00020/bi0486931b00020_1) 1985
Park J. (bi0486931b00036/bi0486931b00036_1) 1996
Iwig D. F. (bi0486931b00040/bi0486931b00040_1) 2004
Knipe A. C. (bi0486931b00004/bi0486931b00004_1) 1981
Nau F. (bi0486931b00014/bi0486931b00014_1) 1976
Fontecave M. (bi0486931b00024/bi0486931b00024_1) 2001
Holtzclaw H. F. (bi0486931b00050/bi0486931b00050_1) 1984
Baddiley J. (bi0486931b00046/bi0486931b00046_1) 1953
Markham G. D. (bi0486931b00007/bi0486931b00007_1) 2002
Sofia H. J. (bi0486931b00027/bi0486931b00027_1) 2001
Frey P. A. (bi0486931b00006/bi0486931b00006_1) 2001; 58
Rice J. C. (bi0486931b00015/bi0486931b00015_1) 2001
Cheng J.-P. (bi0486931b00053/bi0486931b00053_1) 1999; 64
Clyne T. (bi0486931b00035/bi0486931b00035_1) 2002
Miller M. B. (bi0486931b00016/bi0486931b00016_1) 2001; 55
Hope E. G. (bi0486931b00038/bi0486931b00038_1) 1988; 7
Boyle S. M. (bi0486931b00034/bi0486931b00034_1) 1984
Stoner G. L. (bi0486931b00049/bi0486931b00049_1) 1975; 250
Markham G. D. (bi0486931b00002/bi0486931b00002_1) 1980; 255
Iwata-Reuyl D. (bi0486931b00008/bi0486931b00008_1) 2003; 31
Yu Y. B. (bi0486931b00019/bi0486931b00019_1) 1979
Borchardt R. T. (bi0486931b00029/bi0486931b00029_1) 1979; 101
Voet D. (bi0486931b00045/bi0486931b00045_1) 2004; 1
Slany R. K. (bi0486931b00022/bi0486931b00022_1) 1994
Gnegy M. E. (bi0486931b00041/bi0486931b00041_1) 1976; 19
Wu S.-E. (bi0486931b00031/bi0486931b00031_1) 1983
Shimizu T. (bi0486931b00048/bi0486931b00048_1) 1995; 2
Cantoni G. L. (bi0486931b00009/bi0486931b00009_1) 1975; 44
Cheng X. (bi0486931b00010/bi0486931b00010_1) 1995; 24
Takusagawa F. (bi0486931b00005/bi0486931b00005_1) 1998; 1
Grimshaw J. (bi0486931b00003/bi0486931b00003_1) 1981
Frey P. A. (bi0486931b00026/bi0486931b00026_1) 2003; 103
Bentley R. (bi0486931b00011/bi0486931b00011_1) 2002; 66
Kinzie S. D. (bi0486931b00023/bi0486931b00023_1) 2000; 2
O'Hagan D. (bi0486931b00021/bi0486931b00021_1) 2002; 416
Stolowitz M. L. (bi0486931b00032/bi0486931b00032_1) 1981; 103
Herrmann W. A. (bi0486931b00039/bi0486931b00039_1) 1997
Markham G. D. (bi0486931b00001/bi0486931b00001_1) 2002
Cheek J. (bi0486931b00025/bi0486931b00025_1) 2001; 6
Parks L. W. (bi0486931b00030/bi0486931b00030_1) 1958
Chasteen T. G. (bi0486931b00012/bi0486931b00012_1) 2003; 103
Crosby J. (bi0486931b00052/bi0486931b00052_1) 1970
Tabor C. W. (bi0486931b00017/bi0486931b00017_1) 1984; 53
Leatherbarrow R. J. (bi0486931b00044/bi0486931b00044_1) 2001
Karnbrock W. (bi0486931b00037/bi0486931b00037_1) 1996; 118
Abbreviations (bi0486931n00001/bi0486931n00001_1) 2000
Dawson R. M. C. (bi0486931b00043/bi0486931b00043_1) 1989
Hoffman J. L. (bi0486931b00033/bi0486931b00033_1) 1986
Hackert M. L. (bi0486931b00018/bi0486931b00018_1) 1997
Ellis K. J. (bi0486931b00042/bi0486931b00042_1) 1982; 87
Levin C. C. (bi0486931b00047/bi0486931b00047_1) 1975; 97
Choi S.-W. (bi0486931b00013/bi0486931b00013_1) 2000; 130
Wade L. G., Jr. (bi0486931b00051/bi0486931b00051_1) 1995
References_xml – volume: 24
  year: 1995
  ident: bi0486931b00010/bi0486931b00010_1
  publication-title: Rev. Biophys. Biomol. Struct.
– year: 1970
  ident: bi0486931b00052/bi0486931b00052_1
  publication-title: J. Chem. Soc. B, 671−679.
– volume-title: in The Chemistry of the Sulphonium Group
  year: 1981
  ident: bi0486931b00003/bi0486931b00003_1
– volume: 7
  start-page: 83
  year: 1988
  ident: bi0486931b00038/bi0486931b00038_1
  publication-title: Organometallics
– volume-title: Biochemistry 41, 7636−7646.
  year: 2002
  ident: bi0486931b00007/bi0486931b00007_1
– volume: 118
  year: 1996
  ident: bi0486931b00037/bi0486931b00037_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja953222j
– volume: 53
  year: 1984
  ident: bi0486931b00017/bi0486931b00017_1
  publication-title: Rev. Biochem.
  doi: 10.1146/annurev.bi.53.070184.003533
– volume-title: Organic Chemistry
  year: 1995
  ident: bi0486931b00051/bi0486931b00051_1
– volume-title: Curr. Opin. Cell Biol. 13, 263−273.
  year: 2001
  ident: bi0486931b00015/bi0486931b00015_1
– volume-title: Biochemistry 41, 13207−13216.
  year: 2002
  ident: bi0486931b00035/bi0486931b00035_1
– volume: 19
  year: 1976
  ident: bi0486931b00041/bi0486931b00041_1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00232a005
– volume: 2
  year: 1995
  ident: bi0486931b00048/bi0486931b00048_1
  publication-title: J. Chem. Soc., Perkin Trans.
– volume: 58
  start-page: 45
  year: 2001
  ident: bi0486931b00006/bi0486931b00006_1
  publication-title: Adv. Protein Chem.
– volume: 55
  year: 2001
  ident: bi0486931b00016/bi0486931b00016_1
  publication-title: Rev. Microbiol.
– volume: 103
  year: 2003
  ident: bi0486931b00026/bi0486931b00026_1
  publication-title: Chem. Rev.
– volume-title: Arch. Biochem. Biophys. 198, 280−286.
  year: 1979
  ident: bi0486931b00019/bi0486931b00019_1
– volume-title: Proc. Natl. Acad. Sci. U.S.A. 82
  year: 1985
  ident: bi0486931b00020/bi0486931b00020_1
– volume-title: Biochimie 58, 629−645.
  year: 1976
  ident: bi0486931b00014/bi0486931b00014_1
– volume: 44
  year: 1975
  ident: bi0486931b00009/bi0486931b00009_1
  publication-title: Rev. Biochem.
  doi: 10.1146/annurev.bi.44.070175.002251
– volume-title: Nucleic Acids Res. 29, 1097−1106.
  year: 2001
  ident: bi0486931b00027/bi0486931b00027_1
– volume-title: in Sulfur, Selenium, and Tellurium
  year: 1997
  ident: bi0486931b00039/bi0486931b00039_1
  doi: 10.1055/b-003-108605
– volume-title: in Comprehensive Biochemical Catalysis
  year: 1997
  ident: bi0486931b00018/bi0486931b00018_1
– volume: 97
  year: 1975
  ident: bi0486931b00047/bi0486931b00047_1
  publication-title: J. Am. Chem. Soc.
– volume-title: Curr. Opin. Chem. Biol. 5, 506−511.
  year: 2001
  ident: bi0486931b00024/bi0486931b00024_1
– volume: 103
  start-page: 25
  year: 2003
  ident: bi0486931b00012/bi0486931b00012_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr010210+
– volume-title: in The Chemistry of the Sulphonium Group
  year: 1981
  ident: bi0486931b00004/bi0486931b00004_1
– volume: 416
  start-page: 279
  year: 2002
  ident: bi0486931b00021/bi0486931b00021_1
  publication-title: Nature
  doi: 10.1038/416279a
– volume: 87
  start-page: 426
  volume-title: Methods in Enzymology
  year: 1982
  ident: bi0486931b00042/bi0486931b00042_1
– volume: 101
  year: 1979
  ident: bi0486931b00029/bi0486931b00029_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00496a032
– volume-title: Biochimie 76, 389−393.
  year: 1994
  ident: bi0486931b00022/bi0486931b00022_1
– volume-title: Biochemistry 22, 2828−2832.
  year: 1983
  ident: bi0486931b00031/bi0486931b00031_1
– volume-title: Biochemistry 25, 4444−4449.
  year: 1986
  ident: bi0486931b00033/bi0486931b00033_1
– volume: 230
  year: 1958
  ident: bi0486931b00028/bi0486931b00028_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)70564-4
– year: 1953
  ident: bi0486931b00046/bi0486931b00046_1
  publication-title: J. Chem. Soc., 2662−2664.
– volume: 66
  year: 2002
  ident: bi0486931b00011/bi0486931b00011_1
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.66.2.250-271.2002
– volume: 64
  year: 1999
  ident: bi0486931b00053/bi0486931b00053_1
  publication-title: J. Org. Chem.
– volume: 1
  volume-title: Comprehensive Biological Catalysis:  A Mechanistic Reference
  year: 1998
  ident: bi0486931b00005/bi0486931b00005_1
– volume: 31
  start-page: 43
  year: 2003
  ident: bi0486931b00008/bi0486931b00008_1
  publication-title: Bioorg. Chem.
  doi: 10.1016/S0045-2068(02)00513-8
– volume: 130
  year: 2000
  ident: bi0486931b00013/bi0486931b00013_1
  publication-title: J. Nutr.
– volume-title: Data for Biochemical Research
  year: 1989
  ident: bi0486931b00043/bi0486931b00043_1
– volume-title: in Encyclopedia of Life Sciences
  year: 2002
  ident: bi0486931b00001/bi0486931b00001_1
– volume: 2
  year: 2000
  ident: bi0486931b00023/bi0486931b00023_1
  publication-title: Org. Lett.
  doi: 10.1021/ol005756h
– volume: 103
  year: 1981
  ident: bi0486931b00032/bi0486931b00032_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00410a004
– volume-title: General Chemistry
  year: 1984
  ident: bi0486931b00050/bi0486931b00050_1
– volume-title: Arch. Biochem. Biophys. 75, 291−292.
  year: 1958
  ident: bi0486931b00030/bi0486931b00030_1
– volume: 255
  year: 1980
  ident: bi0486931b00002/bi0486931b00002_1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)70530-4
– volume: 6
  year: 2001
  ident: bi0486931b00025/bi0486931b00025_1
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s007750100210
– volume-title: cyclopropane fatty acid
  year: 2000
  ident: bi0486931n00001/bi0486931n00001_1
– volume: 1
  volume-title: Biochemistry
  year: 2004
  ident: bi0486931b00045/bi0486931b00045_1
– volume-title: Biochemistry 43, 13510−13524.
  year: 2004
  ident: bi0486931b00040/bi0486931b00040_1
– volume-title: Gene 30, 129−136.
  year: 1984
  ident: bi0486931b00034/bi0486931b00034_1
– volume: 250
  year: 1975
  ident: bi0486931b00049/bi0486931b00049_1
  publication-title: J. Biol. Chem.
– volume-title: GraFit Version 5
  year: 2001
  ident: bi0486931b00044/bi0486931b00044_1
– volume-title: Chem. 4, 2179−2185.
  year: 1996
  ident: bi0486931b00036/bi0486931b00036_1
SSID ssj0004074
Score 2.1345577
Snippet S-Adenosyl-l-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several...
S-Adenosyl-L-methionine (AdoMet) is one of Nature's most diverse metabolites, used not only in a large number of biological reactions but amenable to several...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 13496
SubjectTerms Alkylating Agents - chemical synthesis
Alkylating Agents - metabolism
Biotransformation
Chalcogens - chemical synthesis
Chalcogens - metabolism
Cysteine - analogs & derivatives
Cysteine - chemical synthesis
Cysteine - metabolism
Escherichia coli - enzymology
Escherichia coli - genetics
Humans
Methionine - analogs & derivatives
Methionine - chemical synthesis
Methionine - metabolism
Methionine Adenosyltransferase - biosynthesis
Methionine Adenosyltransferase - chemistry
Methionine Adenosyltransferase - genetics
Nuclear Magnetic Resonance, Biomolecular
Organoselenium Compounds - chemical synthesis
Organoselenium Compounds - metabolism
Protons
S-Adenosylmethionine - analogs & derivatives
S-Adenosylmethionine - chemical synthesis
S-Adenosylmethionine - metabolism
Selenocysteine - analogs & derivatives
Selenomethionine - analogs & derivatives
Selenomethionine - chemical synthesis
Selenomethionine - metabolism
Stereoisomerism
Substrate Specificity
Sulfonium Compounds - chemical synthesis
Sulfonium Compounds - metabolism
Tellurium - metabolism
Title Insight into the Polar Reactivity of the Onium Chalcogen Analogues of S-Adenosyl-l-methionine
URI http://dx.doi.org/10.1021/bi048693
https://api.istex.fr/ark:/67375/TPS-5TBLNJ6F-S/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15491157
https://www.proquest.com/docview/66987210
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9RAEJ4gPOiLCigeCq7G8GIWtr122308Gy5IFIl3JLyYze52L1w4WkJ7ifjXO9NeRSLgSx-a6Y_szGS-md35BuADQlCnlEENOBfxKEGXSo3y3OaINWRuhDRU7_h6JA9OosPT-HQJ3t-zgx8Ge3ZKrHCq_whWQom-S_AnG930PooF0zJmxiHC8Y496K8nP1LkcdWtyLNCi_jzfljZhJfhM8i6Jp32VMn57ry2u-7Xv5yND_z5c3i6QJds0JrDKiz5Yg3WBwVm1hfXbIc15z2bQvoaPM66WW_r8ONzUVGWzqZFXTLEhOyYUl723VPfA42XYOWkuf-tmM4vWHZmZq5E22NEakLVn4oERnyQE_n49YzPOM2mboq9_gWcDPfH2QFfDF7gBl2-5nmQqtDlSWykt-jy1BAU59KkPp5gOMdr1LdO2DQMfIJKRllnlLDGGjcxqei_hOWiLPwrYD4SLg76PhDKRCaNFUEE7ycOX5T4wPRgC1WjF45T6WZPPAx0t3Y9eNcpTV-2_Bt3yOw02vwjYK7O6bxaEuvx8UjH409fjg7lUI968LZTt8YFpq0RU_hyXmkpVYq5sOjBRmsFNx_DBJoIiTb_86Ov4UnLASl4KN_Acn0191uIV2q73Rjsb2aU4yQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_B9jBe-Nj4KDBmJLQX5OGkiZM8loqqG12ZaCftBVm244pqXYKWVGL89dw5CQUEgpc8RI7j3J3j3519vwN4hRDUZplGDVgb8SjBKZXqzHGTI9aQuRZSU7zjdCrH59HJRXzR0uRQLgwOosKeKr-Jv2EXCN6YJZHDZf3Xt2EbQUhI1jwYzjY5kKJlXEYPOURY3rEI_fworUC2-mUF2iZhfv07vPTLzOheU6_ID9CfLrk8WtfmyH77jbvx_77gPtxt0SYbNObxAG65Yhf2BgV62lc37JD5858-sL4LO8Ou9tsefDouKvLa2bKoS4YYkZ2RC8w-OsqDoHITrFz4-x-K5fqKDT_rlS3RFhmRnFA0qKIGMz7IiYz8ZsVXnGpV--Cvewjno3fz4Zi3hRi4xl9AzfMgzUKbJ7GWzuAvgBKE4lzq1MULXN7xGvWNFSYNA5eg0rGt1Zkw2mi70KnoP4KtoizcE2AuEjYO-i4QmY50GmcEGZxbWOwocYHuwT7KTrUTqVJ-jzwMVCe8HrzslKe-NHwcf2hz6LX6o4G-vqTza0ms5mczFc_fTqYncqRmPTjo1K5QwLRVogtXrislZZaibyx68Lixhs3L0KEmgqKn_xjoAeyM56cTNTmevn8Gdxp-SMFD-Ry26uu120csU5sX3oi_A4i5690
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJgEvfGx8FBgzEtoL8kjSxIkfS6Haxugq2kl7mSzbcUS1LpmWVGL89dy5yQYIBC95iC6Oc3eO78P3O4A3aIJaKTVKwNqYxykuqUxLx02OtobIdSA0xTs-j8XecXxwkpy0jiLVwuAkahyp9kl8WtUXedEiDITvzJwA4mT_7W1Yp3QdafRgOL2pgwxa1GX0kiM0zTskoZ8fpV3I1r_sQuvE0G9_NzH9VjN6AEfXk_QnTM52l43Ztd9_w2_8_694CPdbq5MNVmryCG65cgM2ByV63OdXbIf5c6A-wL4Bd4ddD7hNON0va_Le2bxsKoa2IpuQK8y-OKqHoLYTrCr8_aNyvjxnw696YSvUSUZgJxQVqolgygc5gZJfLfiCU89qHwR2j-F49HE23ONtQwau8VfQ8DzMZGTzNNHCGfwVUKFQkguduaTAbR6vcd_YwGRR6FIUPtJaLQOjjbaFzoL-E1grq9I9A-biwCZh34WB1LHOEkmmg3OFxYFSF-oebCH_VLugauVz5VGoOub14HUnQHWxwuX4A82Ol-w1gb48o3NsaaJmk6lKZu8PxwdipKY92O5Er5DBlDLRpauWtRJCZugjBz14utKIm5ehY01ARc__MdFtuDP5MFKH--NPL-DeCiYy4JF4CWvN5dJtoUnTmFdej38ATfnuYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+polar+reactivity+of+the+onium+chalcogen+analogues+of+S-adenosyl-L-methionine&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Iwig%2C+David+F&rft.au=Booker%2C+Squire+J&rft.date=2004-10-26&rft.issn=0006-2960&rft.volume=43&rft.issue=42&rft.spage=13496&rft_id=info:doi/10.1021%2Fbi048693%2B&rft_id=info%3Apmid%2F15491157&rft.externalDocID=15491157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon