Chemically Tunable Organic Dielectric Layer on an Oxide TFT: Poly(p‑xylylene) Derivatives

Inorganic materials such as SiO x and SiN x are commonly used as dielectric layers in thin-film transistors (TFTs), but recent advancements in TFT devices, such as inclusion in flexible electronics, require the development of novel types of dielectric layers. In this study, CVD-deposited poly­(p-xyl...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 36; pp. 43123 - 43133
Main Authors Kim, Jaehyun, Jang, Seong Cheol, Bae, Kihyeon, Park, Jimin, Kim, Hyoung-Do, Lahann, Joerg, Kim, Hyun-Suk, Lee, Kyung Jin
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inorganic materials such as SiO x and SiN x are commonly used as dielectric layers in thin-film transistors (TFTs), but recent advancements in TFT devices, such as inclusion in flexible electronics, require the development of novel types of dielectric layers. In this study, CVD-deposited poly­(p-xylylene) (PPx)-based polymers were evaluated as alternative dielectric layers. CVD-deposited PPx can produce thin, conformal, and pinhole-free polymer layers on various surfaces, including oxides and metals, without interfacial defects. Three types of commercial polymers were successfully deposited on various substrates and exhibited stable dielectric properties under frequency and voltage sweeps. Additionally, TFTs with PPx as a dielectric material and an oxide semiconductor exhibited excellent device performance; a mobility as high as 22.72 cm2/(V s), which is the highest value among organic gate dielectric TFTs, to the best of our knowledge. Because of the low-temperature deposition process and its unprecedented mechanical flexibility, TFTs with CVD-deposited PPx were successfully fabricated on a flexible plastic substrate, exhibiting excellent durability over 10000 bending cycles. Finally, a custom-synthesized functionalized PPx was introduced into top-gated TFTs, demonstrating the possibility for expanding this concept to a wide range of chemistries with tunable gate dielectric layers.
AbstractList Inorganic materials such as SiO x and SiN x are commonly used as dielectric layers in thin-film transistors (TFTs), but recent advancements in TFT devices, such as inclusion in flexible electronics, require the development of novel types of dielectric layers. In this study, CVD-deposited poly­(p-xylylene) (PPx)-based polymers were evaluated as alternative dielectric layers. CVD-deposited PPx can produce thin, conformal, and pinhole-free polymer layers on various surfaces, including oxides and metals, without interfacial defects. Three types of commercial polymers were successfully deposited on various substrates and exhibited stable dielectric properties under frequency and voltage sweeps. Additionally, TFTs with PPx as a dielectric material and an oxide semiconductor exhibited excellent device performance; a mobility as high as 22.72 cm2/(V s), which is the highest value among organic gate dielectric TFTs, to the best of our knowledge. Because of the low-temperature deposition process and its unprecedented mechanical flexibility, TFTs with CVD-deposited PPx were successfully fabricated on a flexible plastic substrate, exhibiting excellent durability over 10000 bending cycles. Finally, a custom-synthesized functionalized PPx was introduced into top-gated TFTs, demonstrating the possibility for expanding this concept to a wide range of chemistries with tunable gate dielectric layers.
Author Park, Jimin
Bae, Kihyeon
Kim, Hyun-Suk
Jang, Seong Cheol
Kim, Hyoung-Do
Lahann, Joerg
Kim, Jaehyun
Lee, Kyung Jin
AuthorAffiliation Department of Chemical Engineering and Applied Chemistry, College of Engineering
Department of Chemical Engineering, College of Engineering
Department of Materials Science and, College of Engineering
AuthorAffiliation_xml – name: Department of Materials Science and, College of Engineering
– name: Department of Chemical Engineering and Applied Chemistry, College of Engineering
– name: Department of Chemical Engineering, College of Engineering
Author_xml – sequence: 1
  givenname: Jaehyun
  surname: Kim
  fullname: Kim, Jaehyun
  organization: Department of Chemical Engineering and Applied Chemistry, College of Engineering
– sequence: 2
  givenname: Seong Cheol
  surname: Jang
  fullname: Jang, Seong Cheol
  organization: Department of Materials Science and, College of Engineering
– sequence: 3
  givenname: Kihyeon
  surname: Bae
  fullname: Bae, Kihyeon
  organization: Department of Chemical Engineering and Applied Chemistry, College of Engineering
– sequence: 4
  givenname: Jimin
  surname: Park
  fullname: Park, Jimin
  organization: Department of Materials Science and, College of Engineering
– sequence: 5
  givenname: Hyoung-Do
  surname: Kim
  fullname: Kim, Hyoung-Do
  organization: Department of Materials Science and, College of Engineering
– sequence: 6
  givenname: Joerg
  surname: Lahann
  fullname: Lahann, Joerg
  email: lahann@umich.edu
  organization: Department of Chemical Engineering, College of Engineering
– sequence: 7
  givenname: Hyun-Suk
  orcidid: 0000-0003-4286-7027
  surname: Kim
  fullname: Kim, Hyun-Suk
  email: khs3297@cnu.ac.kr
  organization: Department of Materials Science and, College of Engineering
– sequence: 8
  givenname: Kyung Jin
  orcidid: 0000-0002-6709-3235
  surname: Lee
  fullname: Lee, Kyung Jin
  email: kjlee@cnu.ac.kr
  organization: Department of Chemical Engineering, College of Engineering
BookMark eNp1kDFPwzAQhS1UJNrCyuyxIKXYcZw4bKilgFSpDGFiiFz3Aq4cp9hJ1Wz8Bf4iv4SgVGwsd0-n75303ggNbGUBoUtKppSE9EYqL0s9pYoyEfMTNKRpFAUi5OHgT0fRGRp5vyUkZiHhQ_Q6e4dSK2lMi7PGyrUBvHJv0mqF5xoMqNp1cilbcLiyWFq8OugN4GyR3eLnyrST3ffn16E1rQELV3gOTu9lrffgz9FpIY2Hi-Meo5fFfTZ7DJarh6fZ3TKQjCR1oIqCMRKrdaE2Ycyk4DxJFI3ShNM4FImAiKYUiphx6GaSRnLDSSGooAmBcM3GaNL_3bnqowFf56X2CoyRFqrG5yGPBRdpxEiHTntUucp7B0W-c7qUrs0pyX9bzPsW82OLneG6N3T3fFs1znZJ_oN_AI_Ydm4
CitedBy_id crossref_primary_10_1002_adfm_202315891
crossref_primary_10_1021_acsami_4c00611
crossref_primary_10_1016_j_nanoen_2023_109087
crossref_primary_10_1002_marc_202300303
crossref_primary_10_1021_acsami_2c16881
crossref_primary_10_1002_adfm_202313511
crossref_primary_10_1002_adfm_202405530
crossref_primary_10_1016_j_tsf_2024_140333
crossref_primary_10_1021_acs_inorgchem_2c03294
crossref_primary_10_1055_s_0043_1761309
Cites_doi 10.1021/acsami.7b03537
10.1002/adfm.201602585
10.1039/C8TC04691C
10.1021/acsami.6b11815
10.1146/annurev-chembioeng-060713-040042
10.1021/am301793m
10.1002/adma.200500517
10.1038/srep37764
10.1016/j.tsf.2011.07.018
10.1002/anie.200600357
10.1021/acsami.8b02678
10.1002/adma.200800455
10.1063/1.5082862
10.1073/pnas.0802105105
10.1002/adfm.201704780
10.1002/adma.201505197
10.1039/C4RA14222E
10.1021/acsami.9b17456
10.1021/acsami.7b06765
10.1007/s13391-020-00236-x
10.1039/c3tc30134f
10.1021/la101623n
10.1109/NEMS.2016.7758283
10.1016/j.tsf.2011.10.025
10.1021/acsmaterialslett.0c00086
10.1143/JJAP.42.6614
10.1021/am401875x
10.1002/marc.200800101
10.1016/j.orgel.2019.105391
10.1002/adfm.201900657
10.1146/annurev-chembioeng-080615-033524
10.1002/(SICI)1521-3927(19980901)19:9<441::AID-MARC441>3.0.CO;2-G
10.1007/s11664-020-08090-1
10.1080/00986440500511619
10.1002/pi.2098
10.1016/j.snb.2017.05.057
10.1149/08611.0125ecst
10.7567/1347-4065/ab1fc0
10.1002/pol.1966.150041209
10.3762/bjnano.8.155
10.1002/adma.201004071
10.1016/j.orgel.2019.04.040
10.1109/MEMSYS.2016.7421661
10.1002/pat.3729
10.1021/ma011769e
10.1016/j.jiec.2018.07.035
10.1063/1.4985627
10.1021/acs.chemrev.8b00045
10.1039/C5TC00048C
10.1109/LED.2015.2461003
10.1021/cm900637p
10.1021/acsami.9b15363
10.1002/marc.201100819
10.1038/s42254-020-0192-6
10.1109/LED.2020.3019265
10.1002/app.40315
10.18494/SAM.2008.515
10.1007/s13233-019-7045-0
10.1007/s13204-018-0866-x
10.3938/jkps.73.1787
10.1039/C8TC06249H
10.1021/acsaelm.0c00339
10.1021/acs.nanolett.8b01519
10.1021/cm990642p
10.1039/C7NR06152H
10.1007/978-1-4757-3901-5
10.1080/15980316.2016.1171803
10.1021/acsami.8b12716
10.1109/LED.2015.2504931
10.1039/b905263a
10.1021/acs.chemmater.8b03904
10.1063/1.5099293
10.1002/pol.1984.170220218
10.1021/acsmaterialslett.9b00120
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsami.1c13865
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 43133
ExternalDocumentID 10_1021_acsami_1c13865
h7314172
GroupedDBID -
.K2
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
5ZA
6J9
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a307t-cff3306cbfcd263a85577c14975162878e4191ef635eef6794ad50f818170e2b3
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 21:10:56 EDT 2024
Fri Aug 23 01:30:46 EDT 2024
Fri Sep 17 13:05:20 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords hybrid TFTs
oxide semiconductors
room temperature
flexible
polymer dielectrics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a307t-cff3306cbfcd263a85577c14975162878e4191ef635eef6794ad50f818170e2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6709-3235
0000-0003-4286-7027
PQID 2568589430
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2568589430
crossref_primary_10_1021_acsami_1c13865
acs_journals_10_1021_acsami_1c13865
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210915
2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 20210915
  day: 15
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Fortin J. B. (ref33/cit33) 2004
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
Hastings H. (ref47/cit47) 2019
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref4/cit4
ref30/cit30
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref62/cit62
  doi: 10.1021/acsami.7b03537
– ident: ref15/cit15
  doi: 10.1002/adfm.201602585
– ident: ref66/cit66
  doi: 10.1039/C8TC04691C
– ident: ref70/cit70
  doi: 10.1021/acsami.6b11815
– ident: ref29/cit29
  doi: 10.1146/annurev-chembioeng-060713-040042
– ident: ref56/cit56
  doi: 10.1021/am301793m
– ident: ref43/cit43
  doi: 10.1002/adma.200500517
– ident: ref64/cit64
  doi: 10.1038/srep37764
– ident: ref1/cit1
  doi: 10.1016/j.tsf.2011.07.018
– ident: ref72/cit72
  doi: 10.1002/anie.200600357
– ident: ref3/cit3
  doi: 10.1021/acsami.8b02678
– ident: ref34/cit34
  doi: 10.1002/adma.200800455
– ident: ref67/cit67
  doi: 10.1063/1.5082862
– ident: ref58/cit58
  doi: 10.1073/pnas.0802105105
– ident: ref61/cit61
  doi: 10.1002/adfm.201704780
– ident: ref31/cit31
  doi: 10.1002/adma.201505197
– ident: ref51/cit51
  doi: 10.1039/C4RA14222E
– ident: ref52/cit52
  doi: 10.1021/acsami.9b17456
– ident: ref54/cit54
  doi: 10.1021/acsami.7b06765
– ident: ref21/cit21
  doi: 10.1007/s13391-020-00236-x
– ident: ref59/cit59
  doi: 10.1039/c3tc30134f
– ident: ref30/cit30
  doi: 10.1021/la101623n
– ident: ref46/cit46
  doi: 10.1109/NEMS.2016.7758283
– ident: ref50/cit50
  doi: 10.1016/j.tsf.2011.10.025
– ident: ref10/cit10
  doi: 10.1021/acsmaterialslett.0c00086
– ident: ref26/cit26
  doi: 10.1143/JJAP.42.6614
– ident: ref74/cit74
  doi: 10.1021/am401875x
– ident: ref35/cit35
  doi: 10.1002/marc.200800101
– ident: ref27/cit27
  doi: 10.1016/j.orgel.2019.105391
– ident: ref5/cit5
  doi: 10.1002/adfm.201900657
– ident: ref12/cit12
  doi: 10.1146/annurev-chembioeng-080615-033524
– ident: ref37/cit37
  doi: 10.1002/(SICI)1521-3927(19980901)19:9<441::AID-MARC441>3.0.CO;2-G
– ident: ref42/cit42
  doi: 10.1007/s11664-020-08090-1
– ident: ref32/cit32
  doi: 10.1080/00986440500511619
– ident: ref75/cit75
  doi: 10.1002/pi.2098
– ident: ref23/cit23
  doi: 10.1016/j.snb.2017.05.057
– ident: ref39/cit39
  doi: 10.1149/08611.0125ecst
– ident: ref2/cit2
  doi: 10.7567/1347-4065/ab1fc0
– ident: ref18/cit18
  doi: 10.1002/pol.1966.150041209
– ident: ref25/cit25
  doi: 10.3762/bjnano.8.155
– ident: ref60/cit60
  doi: 10.1002/adma.201004071
– ident: ref65/cit65
  doi: 10.1016/j.orgel.2019.04.040
– ident: ref49/cit49
  doi: 10.1109/MEMSYS.2016.7421661
– ident: ref20/cit20
  doi: 10.1002/pat.3729
– ident: ref38/cit38
  doi: 10.1021/ma011769e
– ident: ref7/cit7
  doi: 10.1016/j.jiec.2018.07.035
– ident: ref44/cit44
  doi: 10.1063/1.4985627
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.8b00045
– ident: ref69/cit69
  doi: 10.1039/C5TC00048C
– ident: ref68/cit68
  doi: 10.1109/LED.2015.2461003
– ident: ref53/cit53
  doi: 10.1021/cm900637p
– ident: ref17/cit17
  doi: 10.1021/acsami.9b15363
– ident: ref73/cit73
  doi: 10.1002/marc.201100819
– ident: ref11/cit11
  doi: 10.1038/s42254-020-0192-6
– ident: ref41/cit41
  doi: 10.1109/LED.2020.3019265
– ident: ref28/cit28
  doi: 10.1002/app.40315
– ident: ref48/cit48
  doi: 10.18494/SAM.2008.515
– ident: ref14/cit14
  doi: 10.1007/s13233-019-7045-0
– ident: ref4/cit4
  doi: 10.1007/s13204-018-0866-x
– ident: ref22/cit22
  doi: 10.3938/jkps.73.1787
– ident: ref63/cit63
  doi: 10.1039/C8TC06249H
– ident: ref71/cit71
  doi: 10.1021/acsaelm.0c00339
– ident: ref24/cit24
  doi: 10.1021/acs.nanolett.8b01519
– ident: ref45/cit45
  doi: 10.1021/cm990642p
– ident: ref55/cit55
  doi: 10.1039/C7NR06152H
– volume-title: Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films
  year: 2004
  ident: ref33/cit33
  doi: 10.1007/978-1-4757-3901-5
  contributor:
    fullname: Fortin J. B.
– ident: ref13/cit13
  doi: 10.1080/15980316.2016.1171803
– ident: ref16/cit16
  doi: 10.1021/acsami.8b12716
– ident: ref40/cit40
  doi: 10.1109/LED.2015.2504931
– ident: ref57/cit57
  doi: 10.1039/b905263a
– ident: ref9/cit9
  doi: 10.1021/acs.chemmater.8b03904
– ident: ref19/cit19
  doi: 10.1063/1.5099293
– ident: ref36/cit36
  doi: 10.1002/pol.1984.170220218
– volume-title: Characterization and Optimization of Parylene-C Deposition Process Using Scs Parylene Coater
  year: 2019
  ident: ref47/cit47
  contributor:
    fullname: Hastings H.
– ident: ref8/cit8
  doi: 10.1021/acsmaterialslett.9b00120
SSID ssj0063205
Score 2.4513023
Snippet Inorganic materials such as SiO x and SiN x are commonly used as dielectric layers in thin-film transistors (TFTs), but recent advancements in TFT devices,...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 43123
SubjectTerms Functional Inorganic Materials and Devices
Title Chemically Tunable Organic Dielectric Layer on an Oxide TFT: Poly(p‑xylylene) Derivatives
URI http://dx.doi.org/10.1021/acsami.1c13865
https://search.proquest.com/docview/2568589430
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvRBTUh841bZrWt7E5hngDNxj4UJI0heFoh91k88m_4F_0l3jSCzqH6EtpoTdOcvKdk5x8H0LHLhEKgCYwPCaEYbs2MQSHS8ZCIkXIzEDqjcI3t06rY191afdrvuPnCj4xz7lMtBSOKU0tTzmPFgirelqkoVZ_KMZcxyJpsSJk5LbhAmIV9Iwzz2sQksk0CE2PwSmwNFcylqMk5SPU9SRPldFQVOTrLFvjn_-8ipbz6BLXsu6whuZUtI6WvnEObqDHgiKgP8HtUbpzCmcbMiVu9DJVHDi95hCL4zjCPMJ3416gcLvZvsD3cX9yOvh4ex9P-hMALHWGG_Dil5Q-PNlEneZlu94ycoUFg4NvDw0ZhhbkDNAoMiCOxV1KGZOQNDFqOpBLucqGfE6FEJUoOILv8oBWQwB5k1UVEdYWKkVxpLYRDpnFA1s4QrowLjAlKFVVxgNPKo9SxyujI7CKn3tI4qeL38T0M1P5uanK6KRoGH-Q0W38eudh0W4-eIRe5uCRikeJD0GcS1Na-Z1_fXMXLRJdqKJ1IegeKg2fR2ofIo2hOEg72Se6ms7h
link.rule.ids 315,783,787,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6qHtSDb7E-VxTUQ9rmsdnUm1hL1foAIwgewu5mA8WSFtOK9eRf8C_6S5xsGp8IeglJSHaXnZ39ZtiZbwC2PUsoBJrQqDIhDMdzLENwfGQssqSImBnKNFH47NxtXDsnN_SmAOU8FwYHkWBLiT7E_2AXMMv4Lq2IY0ozrVI5AmOUVVhasuDg8Crfel3b0jGL6Jg7hofAlbM0_vg_xSKZfMWir1uxxpf6NFy-j0yHldyV-j1Rkk_fSBv_MfQZmBramuQgWxyzUFDxHEx-YiCch9ucMKA9IH5f51GRLD1Tklorq5GDt02OljnpxITH5OKxFSri1_19ctlpD3a7r88vj4P2AOFL7ZEaNvygycSTBbiuH_mHDWNYb8HgqOk9Q0aRjR4EikiGlmtzj1LGJLpQjJouelaectC7UxHaKAqvqMk8pJUIId9kFWUJexFG406sloBEzOahI1whPdwlmBKUqgrjYVWqKqVutQhbOCvBUF-SQB-FW2aQTVUwnKoi7OTyCboZ-cavX27m4gtQP9JDDx6rTj8J0KTzqCaZX_5Tnxsw3vDPmkHz-Px0BSasNIQlrRhBV2G0d99Xa2iD9MS6XndvWi_XSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBuzivEQX1oXNNm6bzTZzDu4IVBj6UJE1hOLphN3E--Rf8i_4ST9JWnCLoS2lLm4Qk53zncHK-g9C2T4QCoImsGhPCcn2XWILDI2MxkSJmdiR1ovDllXdy5541aTPP49a5MDCIFFpKTRBfS3U3inOGAXsf3uuqOLa0daXKUTRGmU102YLDo9tC_XoOMecWwTl3LR_Aq2Bq_PG_xiOZDuPRsDo2GNOYRsHn6MzRkodKvycq8uUbceM_hz-DpnKbEx9mm2QWjahkDk1-YSKcR_cFcUB7gIO-yafCWZqmxPVWVisHbi84WOi4k2Ce4OvnVqRw0AgO8E2nPdjtvr--PQ_aA4AxtYfr0PCTIRVPF9Bd4zg4OrHyugsWB4nvWTKOHfAkYKlkRDyH-5QyJsGVYtT2wMPylQtenorBVlFwBYnmEa3GAP02qyoinEVUSjqJWkI4Zg6PXOEJ6YO2YEpQqqqMRzWpapR6tTLaglkJc7lJQxMSJ3aYTVWYT1UZ7RRrFHYzEo5fv9wsljAEOdHBD56oTj8NwbTzqSGbX_5Tnxto_KbeCC9Or85X0ATRJ1l04Qi6ikq9x75aA1OkJ9bN1vsAW6DZxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemically+Tunable+Organic+Dielectric+Layer+on+an+Oxide+TFT%3A+Poly%28p-xylylene%29+Derivatives&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Kim%2C+Jaehyun&rft.au=Jang%2C+Seong+Cheol&rft.au=Bae%2C+Kihyeon&rft.au=Park%2C+Jimin&rft.date=2021-09-15&rft.eissn=1944-8252&rft.volume=13&rft.issue=36&rft.spage=43123&rft.epage=43133&rft_id=info:doi/10.1021%2Facsami.1c13865&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon