Multistage ROS-Responsive and Natural Polyphenol-Driven Prodrug Hydrogels for Diabetic Wound Healing
The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticl...
Saved in:
Published in | ACS applied materials & interfaces Vol. 14; no. 47; pp. 52643 - 52658 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
30.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue. |
---|---|
AbstractList | The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue.The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue. The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue. |
Author | Liu, Qingxian Ni, Zhipeng Yu, Haojie Wang, Li Lu, Hui Huang, Yudi Zhou, Haiying |
AuthorAffiliation | Department of Neurology and Endocrinology Department of Orthopedics, the First Affiliated Hospital, College of Medicine State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University |
AuthorAffiliation_xml | – name: Department of Orthopedics, the First Affiliated Hospital, College of Medicine – name: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering – name: Department of Neurology and Endocrinology – name: Zhejiang University |
Author_xml | – sequence: 1 givenname: Zhipeng surname: Ni fullname: Ni, Zhipeng organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering – sequence: 2 givenname: Haojie orcidid: 0000-0002-7405-7881 surname: Yu fullname: Yu, Haojie email: hjyu@zju.edu.cn organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering – sequence: 3 givenname: Li orcidid: 0000-0001-9356-9930 surname: Wang fullname: Wang, Li organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering – sequence: 4 givenname: Yudi surname: Huang fullname: Huang, Yudi organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering – sequence: 5 givenname: Hui surname: Lu fullname: Lu, Hui organization: Zhejiang University – sequence: 6 givenname: Haiying surname: Zhou fullname: Zhou, Haiying organization: Zhejiang University – sequence: 7 givenname: Qingxian surname: Liu fullname: Liu, Qingxian organization: Department of Neurology and Endocrinology |
BookMark | eNp1kEFLAzEQRoMo2FavnnMUYetmN5t0j9KqFaotVfG4zGaTmpImNckK_feutHgQepph5nvD8Pro1DorEboi6ZCkGbkFEWCjh5kgBRuxE9QjJaXJKCuy07-e0nPUD2GdpizP0qKHmufWRB0irCRezl-TpQxbZ4P-lhhsg18gth4MXjiz235K60wy8d3S4oV3jW9XeLprvFtJE7ByHk801DJqgT9c2-FTCUbb1QU6U2CCvDzUAXp_uH8bT5PZ_PFpfDdLIE95TGihWCHKlKpcME4zNeq-BKZULUYKVJNTEJyLQtCS1qyoFWtYWRPOgStBVZEP0PX-7ta7r1aGWG10ENIYsNK1ocp4zgnhJSddlO6jwrsQvFSV0BGidjZ60KYiafUrtdpLrQ5SO2z4D9t6vQG_Ow7c7IFuXq1d620n4Fj4BwEIjOE |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_128027 crossref_primary_10_1021_acsagscitech_4c00783 crossref_primary_10_1016_j_ejmech_2023_115619 crossref_primary_10_1016_j_ijbiomac_2024_130225 crossref_primary_10_1002_adfm_202404563 crossref_primary_10_1016_j_cej_2023_146238 crossref_primary_10_1186_s40779_023_00473_9 crossref_primary_10_1002_adfm_202414294 crossref_primary_10_1016_j_cej_2024_150373 crossref_primary_10_1093_rb_rbae053 crossref_primary_10_1016_j_cej_2024_158984 crossref_primary_10_1016_j_mtbio_2023_100582 crossref_primary_10_1016_j_ijbiomac_2024_138945 crossref_primary_10_1093_rb_rbae058 crossref_primary_10_3389_fbioe_2023_1241660 crossref_primary_10_1002_adfm_202501016 crossref_primary_10_3390_ma17020278 crossref_primary_10_1016_j_jconrel_2023_09_004 crossref_primary_10_1016_j_mtbio_2024_101310 crossref_primary_10_1016_j_cis_2023_102982 crossref_primary_10_1016_j_ijbiomac_2024_129988 crossref_primary_10_1002_VIW_20230026 crossref_primary_10_1016_j_ijbiomac_2023_126854 crossref_primary_10_1016_j_cej_2024_151756 crossref_primary_10_1039_D3MA00682D crossref_primary_10_1016_j_cej_2023_146788 crossref_primary_10_1063_5_0245545 crossref_primary_10_1016_j_bioadv_2024_214075 crossref_primary_10_1002_ange_202423654 crossref_primary_10_1016_j_pmatsci_2024_101293 crossref_primary_10_1039_D3TB02685J crossref_primary_10_1016_j_compositesb_2024_111771 crossref_primary_10_1016_j_jddst_2025_106848 crossref_primary_10_1021_acsami_3c19019 crossref_primary_10_1002_VIW_20230110 crossref_primary_10_2217_fmb_2023_0175 crossref_primary_10_1021_acsmaterialslett_3c00806 crossref_primary_10_1039_D3BM01039B crossref_primary_10_1016_j_mtbio_2023_100729 crossref_primary_10_1021_acsmaterialslett_3c00925 crossref_primary_10_1002_anie_202423654 crossref_primary_10_1016_j_bioadv_2024_214143 crossref_primary_10_1186_s13045_023_01512_7 crossref_primary_10_1016_j_envres_2023_117087 crossref_primary_10_1007_s43939_025_00178_x crossref_primary_10_3390_pharmaceutics15122735 crossref_primary_10_1016_j_ijbiomac_2025_140961 crossref_primary_10_1002_agt2_688 crossref_primary_10_1016_j_eurpolymj_2025_113723 crossref_primary_10_1166_jbt_2023_3339 crossref_primary_10_1016_j_ijbiomac_2024_132935 crossref_primary_10_3390_polym16192818 crossref_primary_10_1016_j_ejps_2024_106865 crossref_primary_10_1016_j_carbpol_2024_122492 crossref_primary_10_1002_adhm_202304365 crossref_primary_10_1021_acs_biomac_4c00720 crossref_primary_10_1016_j_cej_2024_153661 crossref_primary_10_1016_j_actbio_2024_05_005 crossref_primary_10_3390_molecules30030686 crossref_primary_10_1016_j_cej_2025_160379 crossref_primary_10_1016_j_jmst_2024_12_042 crossref_primary_10_1002_adfm_202314202 crossref_primary_10_1002_pol_20230667 crossref_primary_10_1016_j_cis_2025_103425 |
Cites_doi | 10.1016/j.tibtech.2018.10.011 10.1002/adfm.202203964 10.1016/j.copbio.2011.08.007 10.1016/j.bioactmat.2021.01.039 10.1016/j.jid.2016.08.009 10.1002/anie.201000044 10.1002/advs.201700527 10.1016/j.tips.2020.08.003 10.1016/j.carbpol.2022.120180 10.1016/j.jaad.2015.08.070 10.1016/S0040-4020(02)00489-1 10.1126/scitranslmed.3009337 10.1016/j.carbpol.2020.116845 10.1016/j.phrs.2008.06.004 10.1021/acsami.6b10491 10.1016/j.bioactmat.2021.04.007 10.1007/s12325-014-0140-x 10.7150/thno.22958 10.1002/jbm.a.37154 10.1016/j.jid.2019.08.449 10.1021/acsbiomaterials.0c01190 10.1016/j.cej.2021.128564 10.1002/adma.202200521 10.1002/adhm.201200423 10.1021/jacs.1c10659 10.1039/D0MH01317J 10.1152/physrev.2003.83.3.835 10.1002/smll.201900322 10.1186/s13018-021-02445-y 10.1002/advs.202105223 10.1002/adfm.202009442 10.1021/acs.accounts.9b00292 10.1039/D1TB00880C 10.1039/D1TB00728A 10.1016/j.autneu.2019.102610 10.1021/acsanm.1c04049 10.1002/adhm.202001122 10.1039/c1sm05809f 10.1002/adhm.202101421 10.1007/s11892-018-0970-z 10.1126/scitranslmed.abe4839 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.2c15686 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 52658 |
ExternalDocumentID | 10_1021_acsami_2c15686 b300106768 |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a307t-45f65c904f3c6742f8063a6ffbc8fafd34ac77c5c494b65bf6d69b177a7fc4f53 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 15:36:26 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jul 01 00:55:30 EDT 2025 Fri Dec 02 05:39:16 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | prodrug diabetic wound anti-inflammation ROS-responsive polyphosphazene |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a307t-45f65c904f3c6742f8063a6ffbc8fafd34ac77c5c494b65bf6d69b177a7fc4f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9356-9930 0000-0002-7405-7881 |
PQID | 2737117971 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2737117971 crossref_citationtrail_10_1021_acsami_2c15686 crossref_primary_10_1021_acsami_2c15686 acs_journals_10_1021_acsami_2c15686 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221130 2022-11-30 |
PublicationDateYYYYMMDD | 2022-11-30 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221130 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1016/j.tibtech.2018.10.011 – ident: ref11/cit11 doi: 10.1002/adfm.202203964 – ident: ref14/cit14 doi: 10.1016/j.copbio.2011.08.007 – ident: ref25/cit25 doi: 10.1016/j.bioactmat.2021.01.039 – ident: ref5/cit5 doi: 10.1016/j.jid.2016.08.009 – ident: ref13/cit13 doi: 10.1002/anie.201000044 – ident: ref32/cit32 doi: 10.1002/advs.201700527 – ident: ref38/cit38 doi: 10.1016/j.tips.2020.08.003 – ident: ref22/cit22 doi: 10.1016/j.carbpol.2022.120180 – ident: ref8/cit8 doi: 10.1016/j.jaad.2015.08.070 – ident: ref34/cit34 doi: 10.1016/S0040-4020(02)00489-1 – ident: ref2/cit2 doi: 10.1126/scitranslmed.3009337 – ident: ref21/cit21 doi: 10.1016/j.carbpol.2020.116845 – ident: ref3/cit3 doi: 10.1016/j.phrs.2008.06.004 – ident: ref23/cit23 doi: 10.1021/acsami.6b10491 – ident: ref24/cit24 doi: 10.1016/j.bioactmat.2021.04.007 – ident: ref28/cit28 doi: 10.1007/s12325-014-0140-x – ident: ref9/cit9 doi: 10.7150/thno.22958 – ident: ref37/cit37 doi: 10.1002/jbm.a.37154 – ident: ref7/cit7 doi: 10.1016/j.jid.2019.08.449 – ident: ref27/cit27 doi: 10.1021/acsbiomaterials.0c01190 – ident: ref16/cit16 doi: 10.1016/j.cej.2021.128564 – ident: ref19/cit19 doi: 10.1002/adma.202200521 – ident: ref31/cit31 doi: 10.1002/adhm.201200423 – ident: ref33/cit33 doi: 10.1021/jacs.1c10659 – ident: ref12/cit12 doi: 10.1039/D0MH01317J – ident: ref39/cit39 doi: 10.1152/physrev.2003.83.3.835 – ident: ref17/cit17 doi: 10.1002/smll.201900322 – ident: ref41/cit41 doi: 10.1186/s13018-021-02445-y – ident: ref10/cit10 doi: 10.1002/advs.202105223 – ident: ref18/cit18 doi: 10.1002/adfm.202009442 – ident: ref30/cit30 doi: 10.1021/acs.accounts.9b00292 – ident: ref40/cit40 doi: 10.1039/D1TB00880C – ident: ref20/cit20 doi: 10.1039/D1TB00728A – ident: ref6/cit6 doi: 10.1016/j.autneu.2019.102610 – ident: ref29/cit29 doi: 10.1021/acsanm.1c04049 – ident: ref15/cit15 doi: 10.1002/adhm.202001122 – ident: ref35/cit35 doi: 10.1039/c1sm05809f – ident: ref26/cit26 doi: 10.1002/adhm.202101421 – ident: ref36/cit36 doi: 10.1007/s11892-018-0970-z – ident: ref1/cit1 doi: 10.1126/scitranslmed.abe4839 |
SSID | ssj0063205 |
Score | 2.6106677 |
Snippet | The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52643 |
SubjectTerms | Biological and Medical Applications of Materials and Interfaces |
Title | Multistage ROS-Responsive and Natural Polyphenol-Driven Prodrug Hydrogels for Diabetic Wound Healing |
URI | http://dx.doi.org/10.1021/acsami.2c15686 https://www.proquest.com/docview/2737117971 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeCgKJU6CPNGmP0wBNSAzEQ3CrUreZEFOL1g1p_HqctAMGQnBP1MiJ7c-1_ZmQQwQBAL6bMITCDuNe6jLlOIpJnQoXtEyUzehedkXnnl88Bo-f_zu-Z_A990RBaUbheICRRihmyZwnQmnCrFb7dmJzhe_ZYkWMyDkL0WNN6Bl_7DdOCMppJzRtg61jOV-qWI5Ky0do6kmej0fD5BjefrI1_nnmZbJYo0vaqp7DCpnJ8lWy8IVzcI2ktuUWMWEvozdXt-ymLpJ9zajKU9pVloiDXhf9sSn_KvrsdGAsIr1GUzsY9WhnnA6KHrpUiniXVhU1T0AfzHwmarqa8DPr5P787K7dYfWoBaZQyYeMB1oEEDlc-yAwWtYhylQJrRMItdKpzxVICQHwiCciSLRIRWSYq5TUwHXgb5BGXuTZpmkCTyLuKB2AtGRsEYShoeAJHBVFmcya5ADFE9eqUsY2C-65cSWzuJZZk7DJDcVQs5WboRn9X9cffax_qXg6fl25P7nwGFXJ5EdUnhWjMkYkJw1DnnS3_nXGbTLvmWYISwS5QxrDwSjbRYgyTPbs63wH_2HiPA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwELYQPQAHWl4CCq0RoJ5Mk6xjJwcOCIqW14J4CG6pM7FXiFWCNrtF2z_Tv9Kf1rE34SmkXpC4RlbseCYz32hmviFkDUEAQMNPGUJhj_Eg85nyPMWkyYQPRqbKZXSPWqJ5wfevwqsR8qfuhcFDlPim0iXxH9gF_O_4zE7ECQADjkhUVZQHenCHMVq5ubeDAl0Pgt0f59tNVo0RYAoVuMd4aEQIscdNAwRGgiZCt6yEMSlERpmswRVICSHwmKciTI3IRGxZmZQ0wI0dC4E2_gMin8BGd1vbZ7WpF43A1Uj6MecsQkdZs0K-OK_1fVA-9X1PTb_zZ7sfyd_7m3BlLDcb_V66Ab-fkUS-46v6RCYrLE23hso_RUZ0Pk0mHjEszpDMNRgjAm5renp8xk6rkuBfmqo8oy3laEfoSdEZ2GK3osN2utb-0xN0LN1-mzYHWbdoI4CgiO7psH7oGuilnUZFbQ8XbjNLLt7kM-fIaF7ket62vKcx95QJQTrquRiiyBIOhZ6KYy31AllFcSSVYSgTl_MP_GQoo6SS0QJhtWIkUHGz2xEhnVfXf7tffztkJXl15UqtZwkaDpsNUrku-mWCuFVaPkDpL_7XGb-Sseb50WFyuNc6-EzGA9sG4igwl8hor9vXywjOeukX94NQ8vOt1ewfZ1FGkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF5VRUL0wG8rWv4WAeK0xXbWu_aBQ5QQpRRC1FLRm7se70aokV3FCSi8Dq_CgzGzsSsKqtRLJa7Wyl7vzM58o5n5hrGXCAIAOmEuEAoHQkZFKEwQGKFdoUJwOjc-o_txpIZH8v1xfLzGfra9MLiJGt9U-yQ-3eqzwjUMA-EbfE5TcSLAoCNRTSXlvl1-xzitfrvXR6G-iqLBu8-9oWhGCQiDSjwXMnYqhjSQrgMKo0GXoGs2yrkcEmdc0ZEGtIYYZCpzFedOFSolZiajHUhHoyHQzt-gHCFFeN3eYWvuVSfydZJhKqVI0Fm2zJD_7Jf8H9QX_d9F8-992uAO-3V-Gr6U5XR3Mc934cdfRJH_-XHdZbcbTM27q0twj63Z8j7b-INp8QErfKMxIuGJ5QefDsVBUxr8zXJTFnxkPP0IH1fTJRW9VVPRn5Ef4GN0MLPFhA-XxayaIJDgiPL5qo7oK_AvNJWKUy8XfmaTHV3Lb26x9bIq7UNqfc9TGRgXg_YUdCkkCREPxYFJU6vtNnuB4sgaA1FnPvcfhdlKRlkjo20mWuXIoOFop1Eh00vXvz5ff7ZiJ7l05fNW1zI0IJQVMqWtFnWG-FUTL6AOd660x2fs5rg_yD7sjfYfsVsRdYN4JszHbH0-W9gniNHm-VN_Rzg7uW4t-w0o9kkU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistage+ROS-Responsive+and+Natural+Polyphenol-Driven+Prodrug+Hydrogels+for+Diabetic+Wound+Healing&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ni%2C+Zhipeng&rft.au=Yu%2C+Haojie&rft.au=Wang%2C+Li&rft.au=Huang%2C+Yudi&rft.date=2022-11-30&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=47&rft.spage=52643&rft.epage=52658&rft_id=info:doi/10.1021%2Facsami.2c15686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_2c15686 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |