Multistage ROS-Responsive and Natural Polyphenol-Driven Prodrug Hydrogels for Diabetic Wound Healing

The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticl...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 47; pp. 52643 - 52658
Main Authors Ni, Zhipeng, Yu, Haojie, Wang, Li, Huang, Yudi, Lu, Hui, Zhou, Haiying, Liu, Qingxian
Format Journal Article
LanguageEnglish
Published American Chemical Society 30.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly­(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue.
AbstractList The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue.The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue.
The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly­(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1β) and increasing the gene expression of TGF-β1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue.
Author Liu, Qingxian
Ni, Zhipeng
Yu, Haojie
Wang, Li
Lu, Hui
Huang, Yudi
Zhou, Haiying
AuthorAffiliation Department of Neurology and Endocrinology
Department of Orthopedics, the First Affiliated Hospital, College of Medicine
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering
Zhejiang University
AuthorAffiliation_xml – name: Department of Orthopedics, the First Affiliated Hospital, College of Medicine
– name: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering
– name: Department of Neurology and Endocrinology
– name: Zhejiang University
Author_xml – sequence: 1
  givenname: Zhipeng
  surname: Ni
  fullname: Ni, Zhipeng
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering
– sequence: 2
  givenname: Haojie
  orcidid: 0000-0002-7405-7881
  surname: Yu
  fullname: Yu, Haojie
  email: hjyu@zju.edu.cn
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering
– sequence: 3
  givenname: Li
  orcidid: 0000-0001-9356-9930
  surname: Wang
  fullname: Wang, Li
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering
– sequence: 4
  givenname: Yudi
  surname: Huang
  fullname: Huang, Yudi
  organization: State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering
– sequence: 5
  givenname: Hui
  surname: Lu
  fullname: Lu, Hui
  organization: Zhejiang University
– sequence: 6
  givenname: Haiying
  surname: Zhou
  fullname: Zhou, Haiying
  organization: Zhejiang University
– sequence: 7
  givenname: Qingxian
  surname: Liu
  fullname: Liu, Qingxian
  organization: Department of Neurology and Endocrinology
BookMark eNp1kEFLAzEQRoMo2FavnnMUYetmN5t0j9KqFaotVfG4zGaTmpImNckK_feutHgQepph5nvD8Pro1DorEboi6ZCkGbkFEWCjh5kgBRuxE9QjJaXJKCuy07-e0nPUD2GdpizP0qKHmufWRB0irCRezl-TpQxbZ4P-lhhsg18gth4MXjiz235K60wy8d3S4oV3jW9XeLprvFtJE7ByHk801DJqgT9c2-FTCUbb1QU6U2CCvDzUAXp_uH8bT5PZ_PFpfDdLIE95TGihWCHKlKpcME4zNeq-BKZULUYKVJNTEJyLQtCS1qyoFWtYWRPOgStBVZEP0PX-7ta7r1aGWG10ENIYsNK1ocp4zgnhJSddlO6jwrsQvFSV0BGidjZ60KYiafUrtdpLrQ5SO2z4D9t6vQG_Ow7c7IFuXq1d620n4Fj4BwEIjOE
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_128027
crossref_primary_10_1021_acsagscitech_4c00783
crossref_primary_10_1016_j_ejmech_2023_115619
crossref_primary_10_1016_j_ijbiomac_2024_130225
crossref_primary_10_1002_adfm_202404563
crossref_primary_10_1016_j_cej_2023_146238
crossref_primary_10_1186_s40779_023_00473_9
crossref_primary_10_1002_adfm_202414294
crossref_primary_10_1016_j_cej_2024_150373
crossref_primary_10_1093_rb_rbae053
crossref_primary_10_1016_j_cej_2024_158984
crossref_primary_10_1016_j_mtbio_2023_100582
crossref_primary_10_1016_j_ijbiomac_2024_138945
crossref_primary_10_1093_rb_rbae058
crossref_primary_10_3389_fbioe_2023_1241660
crossref_primary_10_1002_adfm_202501016
crossref_primary_10_3390_ma17020278
crossref_primary_10_1016_j_jconrel_2023_09_004
crossref_primary_10_1016_j_mtbio_2024_101310
crossref_primary_10_1016_j_cis_2023_102982
crossref_primary_10_1016_j_ijbiomac_2024_129988
crossref_primary_10_1002_VIW_20230026
crossref_primary_10_1016_j_ijbiomac_2023_126854
crossref_primary_10_1016_j_cej_2024_151756
crossref_primary_10_1039_D3MA00682D
crossref_primary_10_1016_j_cej_2023_146788
crossref_primary_10_1063_5_0245545
crossref_primary_10_1016_j_bioadv_2024_214075
crossref_primary_10_1002_ange_202423654
crossref_primary_10_1016_j_pmatsci_2024_101293
crossref_primary_10_1039_D3TB02685J
crossref_primary_10_1016_j_compositesb_2024_111771
crossref_primary_10_1016_j_jddst_2025_106848
crossref_primary_10_1021_acsami_3c19019
crossref_primary_10_1002_VIW_20230110
crossref_primary_10_2217_fmb_2023_0175
crossref_primary_10_1021_acsmaterialslett_3c00806
crossref_primary_10_1039_D3BM01039B
crossref_primary_10_1016_j_mtbio_2023_100729
crossref_primary_10_1021_acsmaterialslett_3c00925
crossref_primary_10_1002_anie_202423654
crossref_primary_10_1016_j_bioadv_2024_214143
crossref_primary_10_1186_s13045_023_01512_7
crossref_primary_10_1016_j_envres_2023_117087
crossref_primary_10_1007_s43939_025_00178_x
crossref_primary_10_3390_pharmaceutics15122735
crossref_primary_10_1016_j_ijbiomac_2025_140961
crossref_primary_10_1002_agt2_688
crossref_primary_10_1016_j_eurpolymj_2025_113723
crossref_primary_10_1166_jbt_2023_3339
crossref_primary_10_1016_j_ijbiomac_2024_132935
crossref_primary_10_3390_polym16192818
crossref_primary_10_1016_j_ejps_2024_106865
crossref_primary_10_1016_j_carbpol_2024_122492
crossref_primary_10_1002_adhm_202304365
crossref_primary_10_1021_acs_biomac_4c00720
crossref_primary_10_1016_j_cej_2024_153661
crossref_primary_10_1016_j_actbio_2024_05_005
crossref_primary_10_3390_molecules30030686
crossref_primary_10_1016_j_cej_2025_160379
crossref_primary_10_1016_j_jmst_2024_12_042
crossref_primary_10_1002_adfm_202314202
crossref_primary_10_1002_pol_20230667
crossref_primary_10_1016_j_cis_2025_103425
Cites_doi 10.1016/j.tibtech.2018.10.011
10.1002/adfm.202203964
10.1016/j.copbio.2011.08.007
10.1016/j.bioactmat.2021.01.039
10.1016/j.jid.2016.08.009
10.1002/anie.201000044
10.1002/advs.201700527
10.1016/j.tips.2020.08.003
10.1016/j.carbpol.2022.120180
10.1016/j.jaad.2015.08.070
10.1016/S0040-4020(02)00489-1
10.1126/scitranslmed.3009337
10.1016/j.carbpol.2020.116845
10.1016/j.phrs.2008.06.004
10.1021/acsami.6b10491
10.1016/j.bioactmat.2021.04.007
10.1007/s12325-014-0140-x
10.7150/thno.22958
10.1002/jbm.a.37154
10.1016/j.jid.2019.08.449
10.1021/acsbiomaterials.0c01190
10.1016/j.cej.2021.128564
10.1002/adma.202200521
10.1002/adhm.201200423
10.1021/jacs.1c10659
10.1039/D0MH01317J
10.1152/physrev.2003.83.3.835
10.1002/smll.201900322
10.1186/s13018-021-02445-y
10.1002/advs.202105223
10.1002/adfm.202009442
10.1021/acs.accounts.9b00292
10.1039/D1TB00880C
10.1039/D1TB00728A
10.1016/j.autneu.2019.102610
10.1021/acsanm.1c04049
10.1002/adhm.202001122
10.1039/c1sm05809f
10.1002/adhm.202101421
10.1007/s11892-018-0970-z
10.1126/scitranslmed.abe4839
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsami.2c15686
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 52658
ExternalDocumentID 10_1021_acsami_2c15686
b300106768
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a307t-45f65c904f3c6742f8063a6ffbc8fafd34ac77c5c494b65bf6d69b177a7fc4f53
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 15:36:26 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jul 01 00:55:30 EDT 2025
Fri Dec 02 05:39:16 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords prodrug
diabetic wound
anti-inflammation
ROS-responsive
polyphosphazene
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a307t-45f65c904f3c6742f8063a6ffbc8fafd34ac77c5c494b65bf6d69b177a7fc4f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9356-9930
0000-0002-7405-7881
PQID 2737117971
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2737117971
crossref_citationtrail_10_1021_acsami_2c15686
crossref_primary_10_1021_acsami_2c15686
acs_journals_10_1021_acsami_2c15686
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221130
2022-11-30
PublicationDateYYYYMMDD 2022-11-30
PublicationDate_xml – month: 11
  year: 2022
  text: 20221130
  day: 30
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1016/j.tibtech.2018.10.011
– ident: ref11/cit11
  doi: 10.1002/adfm.202203964
– ident: ref14/cit14
  doi: 10.1016/j.copbio.2011.08.007
– ident: ref25/cit25
  doi: 10.1016/j.bioactmat.2021.01.039
– ident: ref5/cit5
  doi: 10.1016/j.jid.2016.08.009
– ident: ref13/cit13
  doi: 10.1002/anie.201000044
– ident: ref32/cit32
  doi: 10.1002/advs.201700527
– ident: ref38/cit38
  doi: 10.1016/j.tips.2020.08.003
– ident: ref22/cit22
  doi: 10.1016/j.carbpol.2022.120180
– ident: ref8/cit8
  doi: 10.1016/j.jaad.2015.08.070
– ident: ref34/cit34
  doi: 10.1016/S0040-4020(02)00489-1
– ident: ref2/cit2
  doi: 10.1126/scitranslmed.3009337
– ident: ref21/cit21
  doi: 10.1016/j.carbpol.2020.116845
– ident: ref3/cit3
  doi: 10.1016/j.phrs.2008.06.004
– ident: ref23/cit23
  doi: 10.1021/acsami.6b10491
– ident: ref24/cit24
  doi: 10.1016/j.bioactmat.2021.04.007
– ident: ref28/cit28
  doi: 10.1007/s12325-014-0140-x
– ident: ref9/cit9
  doi: 10.7150/thno.22958
– ident: ref37/cit37
  doi: 10.1002/jbm.a.37154
– ident: ref7/cit7
  doi: 10.1016/j.jid.2019.08.449
– ident: ref27/cit27
  doi: 10.1021/acsbiomaterials.0c01190
– ident: ref16/cit16
  doi: 10.1016/j.cej.2021.128564
– ident: ref19/cit19
  doi: 10.1002/adma.202200521
– ident: ref31/cit31
  doi: 10.1002/adhm.201200423
– ident: ref33/cit33
  doi: 10.1021/jacs.1c10659
– ident: ref12/cit12
  doi: 10.1039/D0MH01317J
– ident: ref39/cit39
  doi: 10.1152/physrev.2003.83.3.835
– ident: ref17/cit17
  doi: 10.1002/smll.201900322
– ident: ref41/cit41
  doi: 10.1186/s13018-021-02445-y
– ident: ref10/cit10
  doi: 10.1002/advs.202105223
– ident: ref18/cit18
  doi: 10.1002/adfm.202009442
– ident: ref30/cit30
  doi: 10.1021/acs.accounts.9b00292
– ident: ref40/cit40
  doi: 10.1039/D1TB00880C
– ident: ref20/cit20
  doi: 10.1039/D1TB00728A
– ident: ref6/cit6
  doi: 10.1016/j.autneu.2019.102610
– ident: ref29/cit29
  doi: 10.1021/acsanm.1c04049
– ident: ref15/cit15
  doi: 10.1002/adhm.202001122
– ident: ref35/cit35
  doi: 10.1039/c1sm05809f
– ident: ref26/cit26
  doi: 10.1002/adhm.202101421
– ident: ref36/cit36
  doi: 10.1007/s11892-018-0970-z
– ident: ref1/cit1
  doi: 10.1126/scitranslmed.abe4839
SSID ssj0063205
Score 2.6106677
Snippet The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52643
SubjectTerms Biological and Medical Applications of Materials and Interfaces
Title Multistage ROS-Responsive and Natural Polyphenol-Driven Prodrug Hydrogels for Diabetic Wound Healing
URI http://dx.doi.org/10.1021/acsami.2c15686
https://www.proquest.com/docview/2737117971
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeCgKJU6CPNGmP0wBNSAzEQ3CrUreZEFOL1g1p_HqctAMGQnBP1MiJ7c-1_ZmQQwQBAL6bMITCDuNe6jLlOIpJnQoXtEyUzehedkXnnl88Bo-f_zu-Z_A990RBaUbheICRRihmyZwnQmnCrFb7dmJzhe_ZYkWMyDkL0WNN6Bl_7DdOCMppJzRtg61jOV-qWI5Ky0do6kmej0fD5BjefrI1_nnmZbJYo0vaqp7DCpnJ8lWy8IVzcI2ktuUWMWEvozdXt-ymLpJ9zajKU9pVloiDXhf9sSn_KvrsdGAsIr1GUzsY9WhnnA6KHrpUiniXVhU1T0AfzHwmarqa8DPr5P787K7dYfWoBaZQyYeMB1oEEDlc-yAwWtYhylQJrRMItdKpzxVICQHwiCciSLRIRWSYq5TUwHXgb5BGXuTZpmkCTyLuKB2AtGRsEYShoeAJHBVFmcya5ADFE9eqUsY2C-65cSWzuJZZk7DJDcVQs5WboRn9X9cffax_qXg6fl25P7nwGFXJ5EdUnhWjMkYkJw1DnnS3_nXGbTLvmWYISwS5QxrDwSjbRYgyTPbs63wH_2HiPA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwELYQPQAHWl4CCq0RoJ5Mk6xjJwcOCIqW14J4CG6pM7FXiFWCNrtF2z_Tv9Kf1rE34SmkXpC4RlbseCYz32hmviFkDUEAQMNPGUJhj_Eg85nyPMWkyYQPRqbKZXSPWqJ5wfevwqsR8qfuhcFDlPim0iXxH9gF_O_4zE7ECQADjkhUVZQHenCHMVq5ubeDAl0Pgt0f59tNVo0RYAoVuMd4aEQIscdNAwRGgiZCt6yEMSlERpmswRVICSHwmKciTI3IRGxZmZQ0wI0dC4E2_gMin8BGd1vbZ7WpF43A1Uj6MecsQkdZs0K-OK_1fVA-9X1PTb_zZ7sfyd_7m3BlLDcb_V66Ab-fkUS-46v6RCYrLE23hso_RUZ0Pk0mHjEszpDMNRgjAm5renp8xk6rkuBfmqo8oy3laEfoSdEZ2GK3osN2utb-0xN0LN1-mzYHWbdoI4CgiO7psH7oGuilnUZFbQ8XbjNLLt7kM-fIaF7ket62vKcx95QJQTrquRiiyBIOhZ6KYy31AllFcSSVYSgTl_MP_GQoo6SS0QJhtWIkUHGz2xEhnVfXf7tffztkJXl15UqtZwkaDpsNUrku-mWCuFVaPkDpL_7XGb-Sseb50WFyuNc6-EzGA9sG4igwl8hor9vXywjOeukX94NQ8vOt1ewfZ1FGkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF5VRUL0wG8rWv4WAeK0xXbWu_aBQ5QQpRRC1FLRm7se70aokV3FCSi8Dq_CgzGzsSsKqtRLJa7Wyl7vzM58o5n5hrGXCAIAOmEuEAoHQkZFKEwQGKFdoUJwOjc-o_txpIZH8v1xfLzGfra9MLiJGt9U-yQ-3eqzwjUMA-EbfE5TcSLAoCNRTSXlvl1-xzitfrvXR6G-iqLBu8-9oWhGCQiDSjwXMnYqhjSQrgMKo0GXoGs2yrkcEmdc0ZEGtIYYZCpzFedOFSolZiajHUhHoyHQzt-gHCFFeN3eYWvuVSfydZJhKqVI0Fm2zJD_7Jf8H9QX_d9F8-992uAO-3V-Gr6U5XR3Mc934cdfRJH_-XHdZbcbTM27q0twj63Z8j7b-INp8QErfKMxIuGJ5QefDsVBUxr8zXJTFnxkPP0IH1fTJRW9VVPRn5Ef4GN0MLPFhA-XxayaIJDgiPL5qo7oK_AvNJWKUy8XfmaTHV3Lb26x9bIq7UNqfc9TGRgXg_YUdCkkCREPxYFJU6vtNnuB4sgaA1FnPvcfhdlKRlkjo20mWuXIoOFop1Eh00vXvz5ff7ZiJ7l05fNW1zI0IJQVMqWtFnWG-FUTL6AOd660x2fs5rg_yD7sjfYfsVsRdYN4JszHbH0-W9gniNHm-VN_Rzg7uW4t-w0o9kkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistage+ROS-Responsive+and+Natural+Polyphenol-Driven+Prodrug+Hydrogels+for+Diabetic+Wound+Healing&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Ni%2C+Zhipeng&rft.au=Yu%2C+Haojie&rft.au=Wang%2C+Li&rft.au=Huang%2C+Yudi&rft.date=2022-11-30&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=47&rft.spage=52643&rft.epage=52658&rft_id=info:doi/10.1021%2Facsami.2c15686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsami_2c15686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon