Facile Modification of a Noncovalently Fused-Ring Electron Acceptor Enables Efficient Organic Solar Cells

Electron acceptors with nonfused aromatic cores (NCAs) have aroused increasing interest in organic solar cells due to the low synthetic complexity and flexible chemical modification, but the corresponding device performance still lags behind. Herein, we designed and synthesized two new quinoxaline-b...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 38; pp. 45806 - 45814
Main Authors Huang, Jinfeng, Li, Sunsun, Qin, Jinzhao, Xu, Lei, Zhu, Xiaozhang, Yang, Lian-Ming
Format Journal Article
LanguageEnglish
Published American Chemical Society 29.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electron acceptors with nonfused aromatic cores (NCAs) have aroused increasing interest in organic solar cells due to the low synthetic complexity and flexible chemical modification, but the corresponding device performance still lags behind. Herein, we designed and synthesized two new quinoxaline-based NCAs, namely, QOC6-4H and QOC6-4Cl. Although both NCAs show good backbone coplanarity, QOC6-4Cl with chlorinated end groups exhibits higher extinction coefficient, enhanced crystallinity, and more compact π–π stacking, which is correlated with the stronger intermolecular interactions induced by chlorine atoms. Benefiting from the broader and stronger optical absorption, improved carrier mobilities, and suppressed charge recombination, a notable power conversion efficiency (PCE) of 12.32% with a distinctly higher short-current density (J sc) of 22.91 mA cm–2 and a fill factor (FF) of 69.01% could be obtained for the PBDB-T:QOC6-4Cl-based device. The PCEs of PBDB-T:QOC6-4H were only lower than 8%, which could mainly be attributed to the unsymmetric charge transport. Our work proves that the chlorination of end groups is a facile and effective strategy to enhance the intermolecular interactions and thus the photovoltaic performance of NCAs, and a careful modulation of the intermolecular interactions plays a vital role in further developing both high-performance and low-cost organic photovoltaic materials.
AbstractList Electron acceptors with nonfused aromatic cores (NCAs) have aroused increasing interest in organic solar cells due to the low synthetic complexity and flexible chemical modification, but the corresponding device performance still lags behind. Herein, we designed and synthesized two new quinoxaline-based NCAs, namely, QOC6-4H and QOC6-4Cl. Although both NCAs show good backbone coplanarity, QOC6-4Cl with chlorinated end groups exhibits higher extinction coefficient, enhanced crystallinity, and more compact π–π stacking, which is correlated with the stronger intermolecular interactions induced by chlorine atoms. Benefiting from the broader and stronger optical absorption, improved carrier mobilities, and suppressed charge recombination, a notable power conversion efficiency (PCE) of 12.32% with a distinctly higher short-current density (J sc) of 22.91 mA cm–2 and a fill factor (FF) of 69.01% could be obtained for the PBDB-T:QOC6-4Cl-based device. The PCEs of PBDB-T:QOC6-4H were only lower than 8%, which could mainly be attributed to the unsymmetric charge transport. Our work proves that the chlorination of end groups is a facile and effective strategy to enhance the intermolecular interactions and thus the photovoltaic performance of NCAs, and a careful modulation of the intermolecular interactions plays a vital role in further developing both high-performance and low-cost organic photovoltaic materials.
Author Xu, Lei
Li, Sunsun
Huang, Jinfeng
Zhu, Xiaozhang
Yang, Lian-Ming
Qin, Jinzhao
AuthorAffiliation Chinese Academy of Sciences
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry
State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry
– name: Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry
– name: Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry
– name: University of Chinese Academy of Sciences
– name: Chinese Academy of Sciences
– name: Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
Author_xml – sequence: 1
  givenname: Jinfeng
  orcidid: 0000-0002-4608-3425
  surname: Huang
  fullname: Huang, Jinfeng
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Sunsun
  surname: Li
  fullname: Li, Sunsun
  email: iamssli@njtech.edu.cn
  organization: Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
– sequence: 3
  givenname: Jinzhao
  surname: Qin
  fullname: Qin, Jinzhao
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
– sequence: 5
  givenname: Xiaozhang
  orcidid: 0000-0002-6812-0856
  surname: Zhu
  fullname: Zhu, Xiaozhang
  email: xzzhu@iccas.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Lian-Ming
  orcidid: 0000-0002-1014-1064
  surname: Yang
  fullname: Yang, Lian-Ming
  email: yanglm@iccas.ac.cn
  organization: Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry
BookMark eNp1kEtLAzEUhYMo-Ny6zlKEqXlM5rGU0qqgFnysh9s7SUlJk5pMhf57I1PcubqXy3cO95xzcuyD14RcczbhTPA7wAQbO-HIecnFETnjbVkWjVDi-G8vy1NyntKasUoKps6InQNap-lL6K2xCIMNngZDgb4Gj-EbnPaD29P5Lum-eLN-RWdO4xAzdo-ot0OIdOZh6XSiM5MtbBbQRVyBt0jfg4NIp9q5dElODLikrw7zgnzOZx_Tx-J58fA0vX8uQLJ6KCRWWiluDCI0Wvaqbc2ylq3pUVdlC6yuuJCVLFWpVI6KywpMI1BAX_etFvKC3Iy-2xi-djoN3cYmzB-A12GXOqFq0QrZNiyjkxHFGFKK2nTbaDcQ9x1n3W-n3dhpd-g0C25HQb5367CLPif5D_4BEuN7rA
CitedBy_id crossref_primary_10_1002_cjoc_202200652
crossref_primary_10_1007_s12274_023_5723_x
crossref_primary_10_1039_D3RA01454A
crossref_primary_10_1002_anie_202219245
crossref_primary_10_1002_marc_202200085
crossref_primary_10_1021_acsaem_3c02009
crossref_primary_10_1039_D2QM00162D
crossref_primary_10_1016_j_cej_2022_139926
crossref_primary_10_1016_j_dyepig_2023_111478
crossref_primary_10_1002_agt2_281
crossref_primary_10_1002_ange_202219245
crossref_primary_10_1016_j_dyepig_2022_110680
crossref_primary_10_1002_cssc_202102563
crossref_primary_10_1021_acsaem_2c01179
crossref_primary_10_1002_adma_202404660
crossref_primary_10_1016_j_nanoen_2023_108661
crossref_primary_10_1039_D4TA02180K
crossref_primary_10_1016_j_cej_2023_142743
crossref_primary_10_1002_solr_202300997
crossref_primary_10_1039_D2RA08091E
crossref_primary_10_1039_D3CC04699K
crossref_primary_10_1021_acs_jpcc_3c04584
crossref_primary_10_1021_acs_jpclett_4c00153
crossref_primary_10_1039_D2IM00037G
crossref_primary_10_3762_bjoc_19_124
crossref_primary_10_1039_D3NJ05123D
crossref_primary_10_1021_acsaem_2c03023
crossref_primary_10_1002_adfm_202112433
crossref_primary_10_1039_D3NJ05159E
Cites_doi 10.1063/1.3488459
10.1039/C7TA05774A
10.1021/acs.accounts.0c00009
10.1021/acsami.0c00837
10.1039/C8TA11059J
10.1038/s41560-021-00820-x
10.1021/acs.jpcc.1c01967
10.1038/s41467-021-23870-x
10.1021/ja403667s
10.1002/polb.23103
10.1002/aenm.201802021
10.1039/C7TA04144F
10.1021/jacs.7b02677
10.1038/s41467-019-11001-6
10.1002/adma.201602776
10.1016/S1369-7021(13)70013-0
10.1016/j.scib.2020.01.001
10.1038/s41560-017-0016-9
10.1080/14786430701203184
10.1002/anie.202100390
10.1038/s41467-020-16621-x
10.1002/anie.202009666
10.1038/natrevmats.2018.3
10.1039/C4CS00250D
10.1021/acsami.8b00216
10.1021/acs.chemmater.9b04971
10.1002/aenm.201900041
10.1063/1.4981242
10.1146/annurev-physchem-040513-103615
10.1007/s11426-019-9618-7
10.1002/adma.202100830
10.1007/s11426-019-9478-2
10.1002/aenm.201900999
10.1002/adma.201703080
10.1039/C8TA03753A
10.1038/s41467-019-08508-3
10.1002/adma.201600281
10.1002/anie.198408313
10.1149/2.0241905jes
10.1021/jz300123k
10.1016/j.tsf.2007.11.070
10.1016/j.joule.2019.01.004
10.1039/C9TC05013B
10.1021/acsami.8b15923
10.1016/j.nanoen.2017.11.016
10.1002/anie.202106753
10.1038/s41467-019-08386-9
10.1039/D1NJ01978C
10.1002/adma.201900904
10.1002/anie.202010856
10.1063/1.4869784
10.1002/adma.201705208
10.1021/acs.chemmater.9b01886
10.1002/smtd.201900531
10.1016/S0040-6031(03)00364-2
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsami.1c11412
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 45814
ExternalDocumentID 10_1021_acsami_1c11412
c480907040
GroupedDBID -
.K2
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
5ZA
6J9
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a307t-3c6e551ffcca8e3d599fb739fdce649a0761236345455c11cb6af82c2ad7d9e23
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 21:03:24 EDT 2024
Fri Aug 23 01:30:47 EDT 2024
Fri Oct 01 07:27:39 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords organic solar cells
nonfused electron acceptors
chlorination
molecular ordering
quinoxaline-based core
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a307t-3c6e551ffcca8e3d599fb739fdce649a0761236345455c11cb6af82c2ad7d9e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1014-1064
0000-0002-6812-0856
0000-0002-4608-3425
PQID 2572923980
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2572923980
crossref_primary_10_1021_acsami_1c11412
acs_journals_10_1021_acsami_1c11412
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210929
2021-09-29
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 09
  year: 2021
  text: 20210929
  day: 29
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Magaña S. E. (ref41/cit41) 2016; 52
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1063/1.3488459
– ident: ref21/cit21
  doi: 10.1039/C7TA05774A
– ident: ref37/cit37
  doi: 10.1021/acs.accounts.0c00009
– ident: ref56/cit56
  doi: 10.1021/acsami.0c00837
– ident: ref48/cit48
  doi: 10.1039/C8TA11059J
– volume: 52
  start-page: 1
  year: 2016
  ident: ref41/cit41
  publication-title: Gems Gemol.
  contributor:
    fullname: Magaña S. E.
– ident: ref9/cit9
  doi: 10.1038/s41560-021-00820-x
– ident: ref29/cit29
  doi: 10.1021/acs.jpcc.1c01967
– ident: ref45/cit45
  doi: 10.1038/s41467-021-23870-x
– ident: ref31/cit31
  doi: 10.1021/ja403667s
– ident: ref43/cit43
  doi: 10.1002/polb.23103
– ident: ref38/cit38
  doi: 10.1002/aenm.201802021
– ident: ref26/cit26
  doi: 10.1039/C7TA04144F
– ident: ref52/cit52
  doi: 10.1021/jacs.7b02677
– ident: ref17/cit17
  doi: 10.1038/s41467-019-11001-6
– ident: ref49/cit49
  doi: 10.1002/adma.201602776
– ident: ref4/cit4
  doi: 10.1016/S1369-7021(13)70013-0
– ident: ref8/cit8
  doi: 10.1016/j.scib.2020.01.001
– ident: ref2/cit2
  doi: 10.1038/s41560-017-0016-9
– ident: ref50/cit50
  doi: 10.1080/14786430701203184
– ident: ref27/cit27
  doi: 10.1002/anie.202100390
– ident: ref53/cit53
  doi: 10.1038/s41467-020-16621-x
– ident: ref6/cit6
  doi: 10.1002/anie.202009666
– ident: ref5/cit5
  doi: 10.1038/natrevmats.2018.3
– ident: ref13/cit13
  doi: 10.1039/C4CS00250D
– ident: ref28/cit28
  doi: 10.1021/acsami.8b00216
– ident: ref19/cit19
  doi: 10.1021/acs.chemmater.9b04971
– ident: ref39/cit39
  doi: 10.1002/aenm.201900041
– ident: ref44/cit44
  doi: 10.1063/1.4981242
– ident: ref46/cit46
  doi: 10.1146/annurev-physchem-040513-103615
– ident: ref30/cit30
  doi: 10.1007/s11426-019-9618-7
– ident: ref10/cit10
  doi: 10.1002/adma.202100830
– ident: ref54/cit54
  doi: 10.1007/s11426-019-9478-2
– ident: ref7/cit7
  doi: 10.1002/aenm.201900999
– ident: ref3/cit3
  doi: 10.1002/adma.201703080
– ident: ref25/cit25
  doi: 10.1039/C8TA03753A
– ident: ref14/cit14
  doi: 10.1038/s41467-019-08508-3
– ident: ref51/cit51
  doi: 10.1002/adma.201600281
– ident: ref32/cit32
  doi: 10.1002/anie.198408313
– ident: ref33/cit33
  doi: 10.1149/2.0241905jes
– ident: ref40/cit40
  doi: 10.1021/jz300123k
– ident: ref42/cit42
  doi: 10.1016/j.tsf.2007.11.070
– ident: ref12/cit12
  doi: 10.1016/j.joule.2019.01.004
– ident: ref18/cit18
  doi: 10.1039/C9TC05013B
– ident: ref24/cit24
  doi: 10.1021/acsami.8b15923
– ident: ref47/cit47
  doi: 10.1016/j.nanoen.2017.11.016
– ident: ref16/cit16
  doi: 10.1002/anie.202106753
– ident: ref11/cit11
  doi: 10.1038/s41467-019-08386-9
– ident: ref55/cit55
  doi: 10.1039/D1NJ01978C
– ident: ref1/cit1
  doi: 10.1002/adma.201900904
– ident: ref23/cit23
  doi: 10.1002/anie.202010856
– ident: ref36/cit36
  doi: 10.1063/1.4869784
– ident: ref15/cit15
  doi: 10.1002/adma.201705208
– ident: ref20/cit20
  doi: 10.1021/acs.chemmater.9b01886
– ident: ref22/cit22
  doi: 10.1002/smtd.201900531
– ident: ref34/cit34
  doi: 10.1016/S0040-6031(03)00364-2
SSID ssj0063205
Score 2.523299
Snippet Electron acceptors with nonfused aromatic cores (NCAs) have aroused increasing interest in organic solar cells due to the low synthetic complexity and flexible...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 45806
SubjectTerms Organic Electronic Devices
Title Facile Modification of a Noncovalently Fused-Ring Electron Acceptor Enables Efficient Organic Solar Cells
URI http://dx.doi.org/10.1021/acsami.1c11412
https://search.proquest.com/docview/2572923980
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kXvTgW6wvVhQ8pba7ee2xlIQitAdrobewTxBLIk1y0F_vbB5oLaL3DEnmPTuz3yB0F5BwEAgpnZAL4bieBJuzuLeaCNrnWlGu7XnHZOqP5-7jwlt8nXf87OCTwQOXuV2FM5CQudt1wtsEgqIts4ajWetzfUqqYUWoyF0nhIjVwjNu0NsgJPP1ILTug6vAEu_XKEd5hUdo50lee2UhevJjE63xz28-QHtNdomHtTocoi2dHqHdb5iDx-gl5hI8AZ5kyk4JVYLBmcEcT7NUZqB4EIaW7zguc62cJ6DBUbMqBw-lHYLJVjiqblzlOKoAKIAA13c6JZ7ZUhmP9HKZn6B5HD2Pxk6zb8HhYOmFQ6WvIYEyBqQaaqo8xowIKDNKat9l3B55EOpTF7IuD35NCp-bkEjCVaCYJvQUddIs1WcIc6GI7BsFxZRxmSBMCJ95oW801GNC8S66BR4ljb3kSdUKJ4OkZlzSMK6L7lsxJW81-MavT960UkzAPmzTg6c6K_MEXBJhFuSwf_6vd16gHWLHVmzjiV2iTrEq9RXkHYW4rlTuE8W41BM
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQOQAHdkRZjUDiFNra2XxEVaKytELQStwirxKiShBpD_D1jN2EVUhwjWLHmfFsnvEbhE4iEnciIaUXcyE8P5Agcxb3VhNB21wryrU97-gPwt7Iv7wP7udQq74LA4soYabSJfE_0AU6LXhmO-J0JDjwtqvwfBCBqbO-UPeuVr0hJa5mEQJz34vBcNUojT_GW1sky6-26KsqdvYlXUE37ytzZSWPZ9OJOJOv30Ab_7H0VbRc-Zr4fLY51tCcztfR0icEwg30kHIJegH3C2VrhhybcGEwx4MilwVsQzBK4xecTkutvFsYg5OqcQ4-l7YkpnjGibt_VeLEwVHAADy74SnxnQ2ccVePx-UmGqXJsNvzqu4LHge5n3hUhhrcKWOAx7GmKmDMiIgyo6QOfcbtAQihIfXBBwvg16QIuYmJJFxFimlCt1AjL3K9jTAXisi2URBaGZ8JwoQIWRCHRkN0JhRvomOgUVZJT5m5xDjpZDPCZRXhmui05lb2NIPi-PXNo5qZGUiLTYHwXBfTMgMFRZiFPGzv_Ombh2ihN-xfZ9cXg6tdtEhsQYtNSbE91Jg8T_U-eCQTceB24RvwYdx-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iIPrgLa5nRMGn6jbplcdl3bJei6gL-1Zygri0Yncf9Nc7SVvxQNC3Upo2zWSuzMw3CB3HJPFjIaWXcCG8IJTAcxb3VhNB21wryrU977gZRP1hcDkKR3Udt62FgUmU8KbSBfEtVz8rUyMM-Gdw33bF8SUY8baz8FwYw4W1h7r3jfiNKHF5i-CcB14CyqtBavwx3uojWX7VR1_FsdMx6TJ6-JidSy15Op1OxKl8-wbc-M_pr6Cl2ubEnWqTrKIZna-hxU9IhOvoMeUS5AO-KZTNHXLkwoXBHA-KXBawHUE5jV9xOi218u5gDO7VDXRwR9rUmOIF91wdVol7DpYCBuCq0lPie-tA464ej8sNNEx7D92-V3dh8Djw_8SjMtJgVhkDtE40VSFjRsSUGSV1FDBuD0IIjWgAtlgIvyZFxE1CJOEqVkwTuolm8yLXWwhzoYhsGwUulgmYIEyIiIVJZDR4aULxFjqCNcpqLiozFyAnflYtXFYvXAudNBTLnitIjl-fPGwImgHX2FAIz3UxLTMQVIRZ6MP29p--eYDmb8_T7PpicLWDFojNa7GRKbaLZicvU70HhslE7LuN-A4Rgt74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Modification+of+a+Noncovalently+Fused-Ring+Electron+Acceptor+Enables+Efficient+Organic+Solar+Cells&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Huang%2C+Jinfeng&rft.au=Li%2C+Sunsun&rft.au=Qin%2C+Jinzhao&rft.au=Xu%2C+Lei&rft.date=2021-09-29&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=38&rft.spage=45806&rft.epage=45814&rft_id=info:doi/10.1021%2Facsami.1c11412&rft.externalDocID=c480907040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon