Computational Prediction of Superlubric Layered Heterojunctions

Structural superlubricity has attracted increasing interest in modern tribology. However, experimental identification of superlubric interfaces among the vast number of heterojunctions is a trial-and-error and time-consuming approach. In this work, based on the requirements on the in-plane stiffness...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 28; pp. 33600 - 33608
Main Authors Gao, Enlai, Wu, Bozhao, Wang, Yelingyi, Jia, Xiangzheng, Ouyang, Wengen, Liu, Ze
Format Journal Article
LanguageEnglish
Published American Chemical Society 21.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural superlubricity has attracted increasing interest in modern tribology. However, experimental identification of superlubric interfaces among the vast number of heterojunctions is a trial-and-error and time-consuming approach. In this work, based on the requirements on the in-plane stiffnesses of layered materials and the interfacial interactions at the sliding incommensurate interfaces of heterojunctions for structural superlubricity, we propose criteria for predicting structural superlubricity between heterojunctions. Based on these criteria, we identify 61 heterojunctions with potential superlubricity features from 208 candidates by screening the data of first-principles calculations. This work provides a universal route for accelerating the discovery of new superlubric heterojunctions.
AbstractList Structural superlubricity has attracted increasing interest in modern tribology. However, experimental identification of superlubric interfaces among the vast number of heterojunctions is a trial-and-error and time-consuming approach. In this work, based on the requirements on the in-plane stiffnesses of layered materials and the interfacial interactions at the sliding incommensurate interfaces of heterojunctions for structural superlubricity, we propose criteria for predicting structural superlubricity between heterojunctions. Based on these criteria, we identify 61 heterojunctions with potential superlubricity features from 208 candidates by screening the data of first-principles calculations. This work provides a universal route for accelerating the discovery of new superlubric heterojunctions.
Author Liu, Ze
Wang, Yelingyi
Gao, Enlai
Jia, Xiangzheng
Wu, Bozhao
Ouyang, Wengen
AuthorAffiliation Department of Engineering Mechanics, School of Civil Engineering
AuthorAffiliation_xml – name: Department of Engineering Mechanics, School of Civil Engineering
Author_xml – sequence: 1
  givenname: Enlai
  orcidid: 0000-0003-1960-0260
  surname: Gao
  fullname: Gao, Enlai
– sequence: 2
  givenname: Bozhao
  surname: Wu
  fullname: Wu, Bozhao
– sequence: 3
  givenname: Yelingyi
  surname: Wang
  fullname: Wang, Yelingyi
– sequence: 4
  givenname: Xiangzheng
  surname: Jia
  fullname: Jia, Xiangzheng
– sequence: 5
  givenname: Wengen
  orcidid: 0000-0001-8700-1978
  surname: Ouyang
  fullname: Ouyang, Wengen
– sequence: 6
  givenname: Ze
  orcidid: 0000-0002-9906-5351
  surname: Liu
  fullname: Liu, Ze
  email: ze.liu@whu.edu.cn
BookMark eNp1kM9LwzAUgINMcJtePfcoQmeSpkt7EhnOCQMF9RxekxfoaJuaNIf993Z2ePP0fn3v8fgWZNa5Dgm5ZXTFKGcPoAO09YppKgpJL8iclUKkBc_57C8X4oosQjhQus44zefkcePaPg4w1K6DJnn3aGp9KhJnk4_Yo29i5Wud7OGI4zDZ4YDeHWL3S4VrcmmhCXhzjkvytX3-3OzS_dvL6-Zpn0JG5ZAy5FZXWVUgWG1QjN-UpVxbIyiABC0FlcJmUsAJLDlSuzZQVFVhSpMZky3J3XS39-47YhhUWweNTQMduhgUz0UhWM7LfERXE6q9C8GjVb2vW_BHxag6mVKTKXU2NS7cTwtjXx1c9KOJ8B_8A1PPbuI
CitedBy_id crossref_primary_10_3390_lubricants12040138
crossref_primary_10_1103_RevModPhys_96_011002
crossref_primary_10_1016_j_triboint_2024_109896
crossref_primary_10_1016_j_apsusc_2022_155760
crossref_primary_10_1016_j_apsadv_2021_100175
crossref_primary_10_1515_nanoph_2022_0185
crossref_primary_10_1016_j_mtnano_2023_100361
crossref_primary_10_1002_adma_202305072
crossref_primary_10_1016_j_jmst_2023_12_080
crossref_primary_10_1007_s40544_024_0901_8
crossref_primary_10_1016_j_cej_2022_138249
crossref_primary_10_1016_j_commatsci_2022_111302
crossref_primary_10_1016_j_susc_2022_122207
crossref_primary_10_1088_1361_6528_ac475a
Cites_doi 10.1016/j.jmps.2010.08.001
10.1103/PhysRevB.69.155406
10.1039/c0cp02614j
10.1038/natrevmats.2016.61
10.1103/PhysRevB.13.5188
10.1021/acsnano.7b02240
10.1103/PhysRevB.53.2101
10.1103/PhysRevB.71.235415
10.1103/PhysRev.140.A1133
10.1038/nnano.2013.217
10.1103/PhysRevX.8.011050
10.1039/C8NR07963C
10.1063/1.4974085
10.1021/acs.jctc.9b00908
10.1103/PhysRevB.86.245434
10.1209/epl/i2003-10139-6
10.1021/acsami.0c05422
10.1103/PhysRevLett.103.196401
10.1016/0043-1648(93)90207-3
10.1364/PRJ.5.000662
10.1103/PhysRevLett.100.046102
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.80.235428
10.1126/science.aaa4157
10.1038/s41467-020-18429-1
10.1103/PhysRevB.41.11837
10.1103/PhysRevB.48.10583
10.1126/science.272.5265.1158
10.1103/PhysRevLett.114.055501
10.1126/science.aad1080
10.1021/acs.jctc.6b00147
10.1103/RevModPhys.81.109
10.1038/nmat876
10.1103/PhysRev.136.B864
10.1103/RevModPhys.85.529
10.1038/s41565-017-0035-5
10.1038/nphys2954
10.1021/nl903868w
10.1063/1.3382344
10.1103/PhysRevB.68.104102
10.1021/ct200602x
10.1103/PhysRevB.85.205418
10.1103/PhysRevB.86.075444
10.1103/PhysRevMaterials.2.051003
10.1038/s41467-020-15446-y
10.1002/adma.201701474
10.1021/acs.nanolett.8b02848
10.1088/0022-3719/16/9/005
10.1103/PhysRevLett.92.126101
10.1021/jz301758c
10.1021/acs.nanolett.0c04722
10.1103/PhysRevLett.108.205503
10.1038/ncomms14029
10.1016/j.carbon.2020.12.041
10.1021/acs.jpcc.6b01496
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.99.165412
10.1038/s41563-018-0144-z
10.1103/PhysRevB.89.121103
10.1103/PhysRevLett.113.135504
10.1088/0953-8984/28/27/275201
10.1021/jp307469u
10.1103/PhysRevB.54.11169
10.1016/0039-6028(93)91022-H
10.1103/PhysRevB.94.081405
10.1016/j.commatsci.2012.12.026
10.1021/acs.nanolett.7b00871
10.1038/s41598-017-10522-8
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsami.1c04870
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 33608
ExternalDocumentID 10_1021_acsami_1c04870
b183670487
GroupedDBID -
.K2
23M
3RI
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
5ZA
6J9
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a307t-1e2fcb3b8eafcde49449976fd40aa7ac74074f374ae2fc92e0f6da8bb8d9d3dd3
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 07:20:35 EDT 2024
Fri Aug 23 01:30:38 EDT 2024
Fri Jul 23 06:39:08 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords first-principles calculations
structural superlubricity
2D heterojunction
friction
computational prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a307t-1e2fcb3b8eafcde49449976fd40aa7ac74074f374ae2fc92e0f6da8bb8d9d3dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9906-5351
0000-0003-1960-0260
0000-0001-8700-1978
PQID 2548415295
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2548415295
crossref_primary_10_1021_acsami_1c04870
acs_journals_10_1021_acsami_1c04870
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210721
2021-07-21
PublicationDateYYYYMMDD 2021-07-21
PublicationDate_xml – month: 07
  year: 2021
  text: 20210721
  day: 21
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
Klimeš J. (ref65/cit65) 2009; 22
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
Liu D. (ref53/cit53) 2021
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1016/j.jmps.2010.08.001
– ident: ref28/cit28
  doi: 10.1103/PhysRevB.69.155406
– ident: ref45/cit45
  doi: 10.1039/c0cp02614j
– ident: ref54/cit54
  doi: 10.1038/natrevmats.2016.61
– ident: ref68/cit68
  doi: 10.1103/PhysRevB.13.5188
– ident: ref43/cit43
  doi: 10.1021/acsnano.7b02240
– ident: ref15/cit15
  doi: 10.1103/PhysRevB.53.2101
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.71.235415
– ident: ref61/cit61
  doi: 10.1103/PhysRev.140.A1133
– ident: ref13/cit13
  doi: 10.1038/nnano.2013.217
– ident: ref37/cit37
  doi: 10.1103/PhysRevX.8.011050
– ident: ref24/cit24
  doi: 10.1039/C8NR07963C
– ident: ref48/cit48
  doi: 10.1063/1.4974085
– ident: ref42/cit42
  doi: 10.1021/acs.jctc.9b00908
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.86.245434
– ident: ref16/cit16
  doi: 10.1209/epl/i2003-10139-6
– ident: ref47/cit47
  doi: 10.1021/acsami.0c05422
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.103.196401
– ident: ref2/cit2
  doi: 10.1016/0043-1648(93)90207-3
– volume: 22
  start-page: 022201
  year: 2009
  ident: ref65/cit65
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Klimeš J.
– ident: ref55/cit55
  doi: 10.1364/PRJ.5.000662
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.100.046102
– ident: ref63/cit63
  doi: 10.1103/PhysRevB.50.17953
– ident: ref17/cit17
  doi: 10.1103/PhysRevB.80.235428
– ident: ref9/cit9
  doi: 10.1126/science.aaa4157
– ident: ref20/cit20
  doi: 10.1038/s41467-020-18429-1
– ident: ref1/cit1
  doi: 10.1103/PhysRevB.41.11837
– ident: ref3/cit3
  doi: 10.1103/PhysRevB.48.10583
– ident: ref6/cit6
  doi: 10.1126/science.272.5265.1158
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.114.055501
– ident: ref49/cit49
  doi: 10.1126/science.aad1080
– ident: ref41/cit41
  doi: 10.1021/acs.jctc.6b00147
– ident: ref50/cit50
  doi: 10.1103/RevModPhys.81.109
– ident: ref27/cit27
  doi: 10.1038/nmat876
– start-page: pp. 145–166
  volume-title: Superlubricity
  year: 2021
  ident: ref53/cit53
  contributor:
    fullname: Liu D.
– ident: ref60/cit60
  doi: 10.1103/PhysRev.136.B864
– ident: ref32/cit32
  doi: 10.1103/RevModPhys.85.529
– ident: ref38/cit38
  doi: 10.1038/s41565-017-0035-5
– ident: ref59/cit59
  doi: 10.1038/nphys2954
– ident: ref51/cit51
  doi: 10.1021/nl903868w
– ident: ref40/cit40
  doi: 10.1063/1.3382344
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.68.104102
– ident: ref67/cit67
  doi: 10.1021/ct200602x
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.85.205418
– ident: ref7/cit7
  doi: 10.1103/PhysRevB.86.075444
– ident: ref58/cit58
  doi: 10.1103/PhysRevMaterials.2.051003
– ident: ref25/cit25
  doi: 10.1038/s41467-020-15446-y
– ident: ref57/cit57
  doi: 10.1002/adma.201701474
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.8b02848
– ident: ref36/cit36
  doi: 10.1088/0022-3719/16/9/005
– ident: ref5/cit5
  doi: 10.1103/PhysRevLett.92.126101
– ident: ref21/cit21
  doi: 10.1021/jz301758c
– ident: ref34/cit34
  doi: 10.1021/acs.nanolett.0c04722
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.108.205503
– ident: ref12/cit12
  doi: 10.1038/ncomms14029
– ident: ref56/cit56
  doi: 10.1016/j.carbon.2020.12.041
– ident: ref39/cit39
  doi: 10.1021/acs.jpcc.6b01496
– ident: ref64/cit64
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref19/cit19
  doi: 10.1103/PhysRevB.99.165412
– ident: ref23/cit23
  doi: 10.1038/s41563-018-0144-z
– ident: ref66/cit66
  doi: 10.1103/PhysRevB.89.121103
– ident: ref33/cit33
  doi: 10.1103/PhysRevLett.113.135504
– ident: ref44/cit44
  doi: 10.1088/0953-8984/28/27/275201
– ident: ref70/cit70
  doi: 10.1021/jp307469u
– ident: ref62/cit62
  doi: 10.1103/PhysRevB.54.11169
– ident: ref4/cit4
  doi: 10.1016/0039-6028(93)91022-H
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.94.081405
– ident: ref69/cit69
  doi: 10.1016/j.commatsci.2012.12.026
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.7b00871
– ident: ref22/cit22
  doi: 10.1038/s41598-017-10522-8
SSID ssj0063205
Score 2.4682462
Snippet Structural superlubricity has attracted increasing interest in modern tribology. However, experimental identification of superlubric interfaces among the vast...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 33600
SubjectTerms Surfaces, Interfaces, and Applications
Title Computational Prediction of Superlubric Layered Heterojunctions
URI http://dx.doi.org/10.1021/acsami.1c04870
https://search.proquest.com/docview/2548415295
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EL3rwLdYXEQVPW5PdbXZzklIsRVSEWugt7POg0pYmOeivdzYPtBbRY2BDksnsfPPtDN8gdGm4pTZSMVaMJxggQGAlrcYmcZIS6sBHPFF8eIwHI3Y37oy_zjt-VvBJdC115kfhRBp8jQM5XyMAip5mdXvDJubGlJTNisDIGRaAWI0849L9HoR0tghCizG4BJb-VqVylJV6hL6f5LVd5KqtP5bVGv985220WWeXQbdyhx20Yie7aOOb5uAeuqnmONRngMHT3Fdq_EUwdcGwmNn5W6EgOAb38t3P8QwGvmFm-gL4V7roPhr1b597A1xPUcAS9m-OI0ucVlQJK502loGJEshBnGGhlFxqDpSOOcqZ9AsTYkMXGymUEiYx1Bh6gFYn04k9RIERTrBIc6I7wKgVExIgNjSCGcElTVwLXcCXp_UuyNKywE2itDJHWpujha4a46ezSlLj15Xnzb9Jwet9KUNO7LTIUqC1wqceSefoX888RuvEN6OEHJPoBK3m88KeQjaRq7PSkT4B1hfG5A
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4QPagH30Z81mjiaaHtLuz2ZAyRoAIhARJuzT4PaoBQetBf72xpVTQmemyzbaezM_PNdKYzCF1pZogJZB1LyiIMEMCxFEZhHVlBQmJBRlyg2OnWW0P6MKqNSqha_AsDRCRwpyRL4n92FwiqcM5NxAkUiByDGH21xgDqnC_U6Bemt07CrGYRAnOKOQBX0aXxx_UOi1SyjEXLpjjDl-YW6n1QlpWVPFfSuayot29NG_9B-jbazH1N73YhHDuoZMa7aONLB8I9dLOY6pB_EfR6M5e3cQfexHr9dGpmL6kEU-m1xaub6um1XPnM5AnQMBPYfTRs3g0aLZzPVMACtHmOAxNaJYnkRlilDQVOReCRWE19IZhQDAI8agmjwi2MQuPbuhZcSq4jTbQmB2hlPBmbQ-RpbjkNFAtVDeJrSbkAwPU1p5ozQSJbRpfw5nGuE0mcpbvDIF6wI87ZUUbXxR7E00WDjV9XXhRbFIMOuMSGGJtJmsQQ5HLniES1oz898xyttQaddty-7z4eo_XQlan4DIfBCVqZz1JzCn7GXJ5lsvUOez_PTw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIPrgtzg_Kwo-ZbZN1qRPMqZj6hyDbbC3ks8HlW2s7YP-9V66Tpwi6GNL2qaXu_vd5S53CF1qZogJZIQlZTEGCOBYCqOwjq0gIbHAI85RfOpErQF9GNaG5TludxYGJpHCm9IiiO-keqJtWWEguIb7ritOoIDtGPjpKzUWUCeN9UZvrn4jEhZ5i-CcU8wBvOaVGn887_BIpYt4tKiOC4xpbqL-5-yK1JKXap7Jqnr_Vrjxn9PfQhulzenVZ0yyjZbMaAetf6lEuItuZt0dyp1Brzt18Rt34Y2t18snZvqaS1CZXlu8ue6eXsul0YyfARULxt1Dg-Zdv9HCZW8FLECqMxyY0CpJJDfCKm0oUCsGy8Rq6gvBhGLg6FFLGBVuYBwa30ZacCm5jjXRmuyj5dF4ZA6Qp7nlNFAsVDXwsyXlAoDX15xqzgSJbQVdwJ8npWykSRH2DoNkRo6kJEcFXc3XIZnMCm38OvJ8vkwJyIILcIiRGedpAs4udwZJXDv80zfP0Gr3tpm07zuPR2gtdNkqPsNhcIyWs2luTsDcyORpwV4fMgrRyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Prediction+of+Superlubric+Layered+Heterojunctions&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Gao%2C+Enlai&rft.au=Wu%2C+Bozhao&rft.au=Wang%2C+Yelingyi&rft.au=Jia%2C+Xiangzheng&rft.date=2021-07-21&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=13&rft.issue=28&rft.spage=33600&rft.epage=33608&rft_id=info:doi/10.1021%2Facsami.1c04870&rft.externalDocID=b183670487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon