Targeted Delivery of RGD-CD146+CD271+ Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood–Spinal Cord Barrier Repair after Spinal Cord Injury
Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exoso...
Saved in:
Published in | ACS nano Vol. 17; no. 18; pp. 18008 - 18024 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI. |
---|---|
AbstractList | Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI. Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI. |
Author | Duan, Chunyue Liu, Yudong Xu, Jiaqi He, Rundong Hu, Jianzhong Zhao, Jinyun Lu, Hongbin Xie, Yong Yuan, Feifei Jiang, Liyuan Wu, Tianding Liu, Quanbo Qin, Yiming Sun, Yi |
AuthorAffiliation | Hunan Engineering Research Center of Sports and Health Department of Spine Surgery and Orthopaedics Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province Department of Sports Medicine National Clinical Research Center for Geriatric Disorders |
AuthorAffiliation_xml | – name: Hunan Engineering Research Center of Sports and Health – name: Department of Spine Surgery and Orthopaedics – name: Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province – name: Department of Sports Medicine – name: National Clinical Research Center for Geriatric Disorders |
Author_xml | – sequence: 1 givenname: Yong surname: Xie fullname: Xie, Yong organization: National Clinical Research Center for Geriatric Disorders – sequence: 2 givenname: Yi surname: Sun fullname: Sun, Yi organization: National Clinical Research Center for Geriatric Disorders – sequence: 3 givenname: Yudong surname: Liu fullname: Liu, Yudong organization: National Clinical Research Center for Geriatric Disorders – sequence: 4 givenname: Jinyun surname: Zhao fullname: Zhao, Jinyun organization: National Clinical Research Center for Geriatric Disorders – sequence: 5 givenname: Quanbo surname: Liu fullname: Liu, Quanbo organization: National Clinical Research Center for Geriatric Disorders – sequence: 6 givenname: Jiaqi surname: Xu fullname: Xu, Jiaqi organization: National Clinical Research Center for Geriatric Disorders – sequence: 7 givenname: Yiming surname: Qin fullname: Qin, Yiming organization: National Clinical Research Center for Geriatric Disorders – sequence: 8 givenname: Rundong surname: He fullname: He, Rundong organization: National Clinical Research Center for Geriatric Disorders – sequence: 9 givenname: Feifei surname: Yuan fullname: Yuan, Feifei organization: National Clinical Research Center for Geriatric Disorders – sequence: 10 givenname: Tianding surname: Wu fullname: Wu, Tianding organization: National Clinical Research Center for Geriatric Disorders – sequence: 11 givenname: Chunyue surname: Duan fullname: Duan, Chunyue organization: National Clinical Research Center for Geriatric Disorders – sequence: 12 givenname: Liyuan orcidid: 0000-0002-6363-5869 surname: Jiang fullname: Jiang, Liyuan email: jiangliyuan01@hotmail.com organization: National Clinical Research Center for Geriatric Disorders – sequence: 13 givenname: Hongbin surname: Lu fullname: Lu, Hongbin email: hongbinlu@hotmail.com organization: National Clinical Research Center for Geriatric Disorders – sequence: 14 givenname: Jianzhong surname: Hu fullname: Hu, Jianzhong email: jianzhonghu@hotmail.com organization: National Clinical Research Center for Geriatric Disorders |
BookMark | eNp9Uctu1DAUjVAr0Qdrtl4ijdL6kbGdJU1KW6mIqg-JXeQ41-BRYg-2g5gd_9B_6IfxJRjNgFAlWN3XOUe65xwWe847KIrXBJ8QTMmp0tEp50-YxlVF2YvigNSMl1jyj3t_-iV5WRzGuMJ4KaTgB8XTvQqfIMGAWhjtVwgb5A26vWjLpiUVXzQtFWSBLudJOfQw9Xa0Wo2o8WFA7yGC0583U17cJZhQA-NYthCyzoDOv_noJ4joJvjJp9ycjd4PP74_3q2t-61xpkKwENAtrJUNSJmUh78BV241h81xsW_UGOHVrh4VD-_O75vL8vrDxVXz9rpUDPNU0p4SqQ1lrFL9AAM3kM0QcmlEjwXlatDUSC0ryYRhTFWC1n1tiCJyEFpqdlS82equg_8yQ0zdZKPObykHfo4dlZwJXteYZ-hyC9XBxxjAdNomlax3KSg7dgR3v3Lpdrl0u1wy7_QZbx3spMLmP4zFlpEP3crPIZsT_4n-Ca_MpHI |
CitedBy_id | crossref_primary_10_1021_acsnano_4c14675 crossref_primary_10_1021_acsanm_4c03645 crossref_primary_10_1016_j_biopha_2023_116043 crossref_primary_10_1016_j_mtbio_2025_101639 crossref_primary_10_1002_advs_202412526 crossref_primary_10_1021_jacsau_4c00338 crossref_primary_10_1016_j_bioactmat_2024_04_015 crossref_primary_10_1021_acsnano_4c00666 crossref_primary_10_1016_j_ejphar_2025_177349 crossref_primary_10_1186_s12951_025_03108_4 crossref_primary_10_3892_etm_2025_12811 crossref_primary_10_1016_j_jnrt_2024_100176 crossref_primary_10_1186_s13287_024_04006_6 crossref_primary_10_3390_cells13050435 crossref_primary_10_1002_advs_202402114 crossref_primary_10_1016_j_cis_2025_103462 crossref_primary_10_1016_j_matdes_2023_112617 crossref_primary_10_1021_acsbiomaterials_4c00622 crossref_primary_10_1016_j_cjtee_2024_10_007 crossref_primary_10_1002_advs_202406398 crossref_primary_10_2147_IJN_S502591 crossref_primary_10_1016_j_ijbiomac_2024_133420 crossref_primary_10_1186_s12951_025_03097_4 crossref_primary_10_4103_NRR_NRR_D_24_00844 crossref_primary_10_1186_s12951_024_02737_5 crossref_primary_10_1186_s13287_024_03828_8 crossref_primary_10_3389_fphar_2024_1473599 crossref_primary_10_1111_cns_70163 crossref_primary_10_3390_ijms25042406 crossref_primary_10_1021_acsami_4c19064 |
Cites_doi | 10.1016/j.omtm.2020.12.004 10.1021/acsnano.9b01892 10.1165/rcmb.2016-0053OC 10.1007/s00424-016-1920-8 10.1186/s12951-019-0461-7 10.7150/thno.56367 10.1007/s13311-011-0029-1 10.1038/nrdp.2017.18 10.1080/15548627.2020.1851897 10.4103/1673-5374.360245 10.1016/j.phymed.2020.153179 10.1016/j.jconrel.2022.05.027 10.1073/pnas.1401595111 10.1111/imm.12275 10.1007/s12035-022-03041-9 10.1016/j.brainres.2010.05.011 10.1186/1471-2202-12-39 10.1172/JCI151382 10.1016/j.jconrel.2020.09.019 10.1002/jev2.12056 10.1002/jcb.26496 10.1038/s41392-022-01134-4 10.1016/j.redox.2023.102615 10.3390/cells10081872 10.1093/brain/awp322 10.1523/JNEUROSCI.6409-11.2012 10.7150/thno.84971 10.1016/j.tins.2021.01.003 10.14670/HH-18-038 10.1016/j.redox.2021.101932 10.1021/mp3002733 10.1016/j.neuroscience.2016.08.037 10.1002/jnr.10759 10.1152/ajpcell.00458.2009 10.1152/physrev.00017.2017 10.1152/ajpcell.2000.279.4.C1285 10.1016/j.bioactmat.2022.11.011 10.1038/s41580-022-00460-3 10.1021/nn404945r 10.1073/pnas.1710848114 10.1002/jev2.12137 10.1007/s00441-012-1440-6 10.1073/pnas.1521230113 10.1089/neu.2020.7413 10.1126/sciadv.abn7357 10.1002/ctm2.650 10.1080/03008207.2022.2060826 10.1016/j.ymthe.2019.08.009 10.1002/med.21270 10.1038/ncomms10523 10.2174/1574888X17666220330005937 10.3389/fncel.2022.954597 10.3389/fcell.2021.703989 10.2174/092986712800784748 10.1073/pnas.0908869107 10.1177/147323000903700201 10.3390/ijms21030993 10.14245/ns.2244624.312 10.1016/j.expneurol.2015.03.001 10.1186/s13046-016-0432-x |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.3c04423 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 18024 |
ExternalDocumentID | 10_1021_acsnano_3c04423 d047785208 |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA ADHGD BAANH CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a306t-2b218cf2334abded6fe044785f7b0726adc2f8c84837f33a4729b9f1a18d7c8c3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 06:42:09 EDT 2025 Tue Jul 01 02:59:11 EDT 2025 Thu Apr 24 22:50:24 EDT 2025 Wed Sep 27 04:26:03 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Nerve Growth Factor Receptor Umbilical Cord Mesenchymal Stem Cell Melanoma Cell Adhesion Molecule Blood−Spinal Cord Barrier Exosome Spinal Cord Injury |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a306t-2b218cf2334abded6fe044785f7b0726adc2f8c84837f33a4729b9f1a18d7c8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6363-5869 |
PQID | 2863769906 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2863769906 crossref_citationtrail_10_1021_acsnano_3c04423 crossref_primary_10_1021_acsnano_3c04423 acs_journals_10_1021_acsnano_3c04423 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230926 |
PublicationDateYYYYMMDD | 2023-09-26 |
PublicationDate_xml | – month: 09 year: 2023 text: 20230926 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Means E. D. (ref35/cit35) 1978; 9 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref58/cit58 doi: 10.1016/j.omtm.2020.12.004 – ident: ref28/cit28 doi: 10.1021/acsnano.9b01892 – volume: 9 start-page: 353 issue: 6 year: 1978 ident: ref35/cit35 publication-title: Surg. Neurol. – ident: ref46/cit46 doi: 10.1165/rcmb.2016-0053OC – ident: ref32/cit32 doi: 10.1007/s00424-016-1920-8 – ident: ref24/cit24 doi: 10.1186/s12951-019-0461-7 – ident: ref27/cit27 doi: 10.7150/thno.56367 – ident: ref36/cit36 doi: 10.1007/s13311-011-0029-1 – ident: ref1/cit1 doi: 10.1038/nrdp.2017.18 – ident: ref34/cit34 doi: 10.1080/15548627.2020.1851897 – ident: ref59/cit59 doi: 10.4103/1673-5374.360245 – ident: ref53/cit53 doi: 10.1016/j.phymed.2020.153179 – ident: ref13/cit13 doi: 10.1016/j.jconrel.2022.05.027 – ident: ref40/cit40 doi: 10.1073/pnas.1401595111 – ident: ref29/cit29 doi: 10.1111/imm.12275 – ident: ref50/cit50 doi: 10.1007/s12035-022-03041-9 – ident: ref6/cit6 doi: 10.1016/j.brainres.2010.05.011 – ident: ref18/cit18 doi: 10.1186/1471-2202-12-39 – ident: ref38/cit38 doi: 10.1172/JCI151382 – ident: ref57/cit57 doi: 10.1016/j.jconrel.2020.09.019 – ident: ref11/cit11 doi: 10.1002/jev2.12056 – ident: ref19/cit19 doi: 10.1002/jcb.26496 – ident: ref25/cit25 doi: 10.1038/s41392-022-01134-4 – ident: ref41/cit41 doi: 10.1016/j.redox.2023.102615 – ident: ref9/cit9 doi: 10.3390/cells10081872 – ident: ref42/cit42 doi: 10.1093/brain/awp322 – ident: ref54/cit54 doi: 10.1523/JNEUROSCI.6409-11.2012 – ident: ref20/cit20 doi: 10.7150/thno.84971 – ident: ref61/cit61 doi: 10.1016/j.tins.2021.01.003 – ident: ref30/cit30 doi: 10.14670/HH-18-038 – ident: ref39/cit39 doi: 10.1016/j.redox.2021.101932 – ident: ref23/cit23 doi: 10.1021/mp3002733 – ident: ref8/cit8 doi: 10.1016/j.neuroscience.2016.08.037 – ident: ref37/cit37 doi: 10.1002/jnr.10759 – ident: ref52/cit52 doi: 10.1152/ajpcell.00458.2009 – ident: ref55/cit55 doi: 10.1016/j.redox.2021.101932 – ident: ref4/cit4 doi: 10.1152/physrev.00017.2017 – ident: ref51/cit51 doi: 10.1152/ajpcell.2000.279.4.C1285 – ident: ref63/cit63 doi: 10.1016/j.bioactmat.2022.11.011 – ident: ref12/cit12 doi: 10.1038/s41580-022-00460-3 – ident: ref21/cit21 doi: 10.1021/nn404945r – ident: ref16/cit16 doi: 10.1073/pnas.1710848114 – ident: ref33/cit33 doi: 10.1002/jev2.12137 – ident: ref2/cit2 doi: 10.1007/s00441-012-1440-6 – ident: ref15/cit15 doi: 10.1073/pnas.1521230113 – ident: ref3/cit3 doi: 10.1089/neu.2020.7413 – ident: ref45/cit45 doi: 10.1126/sciadv.abn7357 – ident: ref26/cit26 doi: 10.1002/ctm2.650 – ident: ref43/cit43 doi: 10.1080/03008207.2022.2060826 – ident: ref56/cit56 doi: 10.1016/j.ymthe.2019.08.009 – ident: ref48/cit48 doi: 10.1002/med.21270 – ident: ref31/cit31 doi: 10.1038/ncomms10523 – ident: ref14/cit14 doi: 10.2174/1574888X17666220330005937 – ident: ref10/cit10 doi: 10.3389/fncel.2022.954597 – ident: ref62/cit62 doi: 10.3389/fcell.2021.703989 – ident: ref22/cit22 doi: 10.2174/092986712800784748 – ident: ref49/cit49 doi: 10.1073/pnas.0908869107 – ident: ref17/cit17 doi: 10.1177/147323000903700201 – ident: ref47/cit47 doi: 10.3390/ijms21030993 – ident: ref5/cit5 doi: 10.14245/ns.2244624.312 – ident: ref7/cit7 doi: 10.1016/j.expneurol.2015.03.001 – ident: ref44/cit44 doi: 10.1186/s13046-016-0432-x |
SSID | ssj0057876 |
Score | 2.5947106 |
Snippet | Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the... Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18008 |
Title | Targeted Delivery of RGD-CD146+CD271+ Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood–Spinal Cord Barrier Repair after Spinal Cord Injury |
URI | http://dx.doi.org/10.1021/acsnano.3c04423 https://www.proquest.com/docview/2863769906 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTtRAFJ4o3ugF-BsBNUPChQnpup1pZ6aX0IJggjEum3DXzG9Udluy7RLxynfwHXwwnoQz0y6ChOhd03ROpjNnzk_P1-8gtGmU44qwLKLSQIJijIyylPBIa5EJzSjjoVxw-JHtj5MPx-nxH7Lovyv4JH4ndVPJqh5QPUzA999HDwgT3OdZ2_loYXS93rGugAwJMkQRVyw-twR4N6Sbm27ophUOrmVvpQNlNYGR0CNKTgbzVg30j9t8jf-e9WO03AeYeLvTiCfonq2eokfXaAefod9HAf5tDS7sxOMyznHt8Of3RZQXYNK28oLweAuH7_t4PPXwWdhJnEOeig_930r6y_kUboxaO8W5nUyiAiSfgbzd73VTT22DPwWUH1zseGD8xc9fo1PffquTsSNnvk8ehuBffp3h0KYcX3_goPoGW_0cjfd2j_L9qO_XEElIPNqIKIgXtCOUJlIZa5iz8PJcpKAOQ06YNJo4oYUnsXeUygQCe5W5WMbCcC00fYGWqrqyLxF2MZVKWxFTlSXCkiy1sU1Tw5Kho9zyVbQJK1z2560pQymdxGW_7GW_7KtosNjlUvec5771xuTuAW-vBpx2dB93P7qxUJsSjqSvs8jK1vOmJIKB2QY3z9b-b5rr6KHvYu9hKIS9QkvtbG5fQ6zTqjdByy8BBBP7mw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF6VcoAe-EeU30UqElLlEO_a6_WBQ2u3JLSpEEmk3sx6f1QgsavYAcKJd-AFOPEevApPwuzGCS2oEpdK3KyVdzTeGc98o5mdQWhD5SbKCYs9KhQEKEoJLw5J5EnJYy4ZZZFLF_QOWGcYvDwMD1fQt8VdGGCiAkqVS-L_7i7gP4O1QhRli8p2ABCgKaPc07OPEKRVz7spSPQJIbs7g6TjNXMEPAGAuPZIDn5MGkJpIHKlFTMaaEQ8BDbbEWFCSWK45La5uqFUBAA489j4wucqklxSoHsBXQToQ2x4t5X0F7beqjub560hLgfwsmwe9BfD1vvJ6rT3O238nUfbvYp-LM_CFbK8b03rvCU__9Em8n8-rGvoSgOn8dZc_6-jFV3cQGsnmizeRN8HrthdK5zqka1CmeHS4NcvUi9JwYBvJimJ_E3sshl4OLbFwqC3OIFvwD17N0sezcaw0K_1GCd6NPJSoPwB6O18KqtyrCv8ytU0wsO2vQbw88vX_rEdNjansS0mdioghlBHvJ1gN5Qdn3yhW7wDxb6FhudyULfRalEW-g7Cxqcil5r7NI8Drkkcal-HoWJB29BIR-toAySaNdalylzhAPGzRsxZI-Z11FooVyabDu920Mjo7A1PlxuO581Nzn718UJbMzBANqskCl1Oq4xwBk4KQA27-29sPkKXOoPefrbfPdi7hy4TQI22AIew-2i1nkz1A0B5df7Q_WgYvTlvZf0FARBejg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKKyE4lLdoeRmpSEhVlo2dOM6BQ5t06VJaVWxX6i11_BCP3WS1yQLLif_AX0D8E_5Ifwljb3bVgipxqcQtsuyR4xnPQ_N5BqENlZsoJyz2qFAQoCglvDgkkSclj7lklEUuXbB_wHb7wevj8HgJ_Zi_hYFNVECpckl8e6tHyjQVBvwXMF6IomxR2Q7ADWiglHt6-hkCteplNwWuPiOks3OU7HpNLwFPgFNceyQHWyYNoTQQudKKGQ00Ih7CVtsRYUJJYrjktsC6oVQE4HTmsfGFz1UkuaRA9wpasUlCG-JtJb25vrciz2a5a4jNwYFZFBD6a8PWAsrqvAU8bwCcVevcQL8W5-HALB9bkzpvya9_lIr83w_sJlpt3Gq8NbsHt9CSLm6j62eKLd5BP48c6F0rnOqBRaNMcWnw21epl6SgyDeTlET-JnZZDdwfWtAwyC9O4B_wvn2jJd9NhzDQq_UQJ3ow8FKg_Ano7Xwpq3KoK3zosI3wsW2fA5x--94b2aZjMxrbYmy7A2IIecT7MXbN2fHZCd3iAwj4XdS_lIO6h5aLstD3ETY-FbnU3Kd5HHBN4lD7OgwVC9qGRjpaQxvA0azRMlXmAATEzxo2Zw2b11BrLmCZbCq924Yjg4sXPF8sGM2KnFw89elcYjNQRDa7JApdTqqMcAbGCpwbtv5v23yCrh6mnexN92DvAbpGwHm0OBzCHqLlejzRj8DZq_PH7q5hdHLZsvobfGdhEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+Delivery+of+RGD-CD146%2BCD271%2B+Human+Umbilical+Cord+Mesenchymal+Stem+Cell-Derived+Exosomes+Promotes+Blood-Spinal+Cord+Barrier+Repair+after+Spinal+Cord+Injury&rft.jtitle=ACS+nano&rft.au=Xie%2C+Yong&rft.au=Sun%2C+Yi&rft.au=Liu%2C+Yudong&rft.au=Zhao%2C+Jinyun&rft.date=2023-09-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=17&rft.issue=18&rft.spage=18008&rft_id=info:doi/10.1021%2Facsnano.3c04423&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |