Targeted Delivery of RGD-CD146+CD271+ Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood–Spinal Cord Barrier Repair after Spinal Cord Injury

Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exoso...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 17; no. 18; pp. 18008 - 18024
Main Authors Xie, Yong, Sun, Yi, Liu, Yudong, Zhao, Jinyun, Liu, Quanbo, Xu, Jiaqi, Qin, Yiming, He, Rundong, Yuan, Feifei, Wu, Tianding, Duan, Chunyue, Jiang, Liyuan, Lu, Hongbin, Hu, Jianzhong
Format Journal Article
LanguageEnglish
Published American Chemical Society 26.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
AbstractList Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
Author Duan, Chunyue
Liu, Yudong
Xu, Jiaqi
He, Rundong
Hu, Jianzhong
Zhao, Jinyun
Lu, Hongbin
Xie, Yong
Yuan, Feifei
Jiang, Liyuan
Wu, Tianding
Liu, Quanbo
Qin, Yiming
Sun, Yi
AuthorAffiliation Hunan Engineering Research Center of Sports and Health
Department of Spine Surgery and Orthopaedics
Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province
Department of Sports Medicine
National Clinical Research Center for Geriatric Disorders
AuthorAffiliation_xml – name: Hunan Engineering Research Center of Sports and Health
– name: Department of Spine Surgery and Orthopaedics
– name: Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province
– name: Department of Sports Medicine
– name: National Clinical Research Center for Geriatric Disorders
Author_xml – sequence: 1
  givenname: Yong
  surname: Xie
  fullname: Xie, Yong
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 2
  givenname: Yi
  surname: Sun
  fullname: Sun, Yi
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 3
  givenname: Yudong
  surname: Liu
  fullname: Liu, Yudong
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 4
  givenname: Jinyun
  surname: Zhao
  fullname: Zhao, Jinyun
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 5
  givenname: Quanbo
  surname: Liu
  fullname: Liu, Quanbo
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 6
  givenname: Jiaqi
  surname: Xu
  fullname: Xu, Jiaqi
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 7
  givenname: Yiming
  surname: Qin
  fullname: Qin, Yiming
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 8
  givenname: Rundong
  surname: He
  fullname: He, Rundong
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 9
  givenname: Feifei
  surname: Yuan
  fullname: Yuan, Feifei
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 10
  givenname: Tianding
  surname: Wu
  fullname: Wu, Tianding
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 11
  givenname: Chunyue
  surname: Duan
  fullname: Duan, Chunyue
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 12
  givenname: Liyuan
  orcidid: 0000-0002-6363-5869
  surname: Jiang
  fullname: Jiang, Liyuan
  email: jiangliyuan01@hotmail.com
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 13
  givenname: Hongbin
  surname: Lu
  fullname: Lu, Hongbin
  email: hongbinlu@hotmail.com
  organization: National Clinical Research Center for Geriatric Disorders
– sequence: 14
  givenname: Jianzhong
  surname: Hu
  fullname: Hu, Jianzhong
  email: jianzhonghu@hotmail.com
  organization: National Clinical Research Center for Geriatric Disorders
BookMark eNp9Uctu1DAUjVAr0Qdrtl4ijdL6kbGdJU1KW6mIqg-JXeQ41-BRYg-2g5gd_9B_6IfxJRjNgFAlWN3XOUe65xwWe847KIrXBJ8QTMmp0tEp50-YxlVF2YvigNSMl1jyj3t_-iV5WRzGuMJ4KaTgB8XTvQqfIMGAWhjtVwgb5A26vWjLpiUVXzQtFWSBLudJOfQw9Xa0Wo2o8WFA7yGC0583U17cJZhQA-NYthCyzoDOv_noJ4joJvjJp9ycjd4PP74_3q2t-61xpkKwENAtrJUNSJmUh78BV241h81xsW_UGOHVrh4VD-_O75vL8vrDxVXz9rpUDPNU0p4SqQ1lrFL9AAM3kM0QcmlEjwXlatDUSC0ryYRhTFWC1n1tiCJyEFpqdlS82equg_8yQ0zdZKPObykHfo4dlZwJXteYZ-hyC9XBxxjAdNomlax3KSg7dgR3v3Lpdrl0u1wy7_QZbx3spMLmP4zFlpEP3crPIZsT_4n-Ca_MpHI
CitedBy_id crossref_primary_10_1021_acsnano_4c14675
crossref_primary_10_1021_acsanm_4c03645
crossref_primary_10_1016_j_biopha_2023_116043
crossref_primary_10_1016_j_mtbio_2025_101639
crossref_primary_10_1002_advs_202412526
crossref_primary_10_1021_jacsau_4c00338
crossref_primary_10_1016_j_bioactmat_2024_04_015
crossref_primary_10_1021_acsnano_4c00666
crossref_primary_10_1016_j_ejphar_2025_177349
crossref_primary_10_1186_s12951_025_03108_4
crossref_primary_10_3892_etm_2025_12811
crossref_primary_10_1016_j_jnrt_2024_100176
crossref_primary_10_1186_s13287_024_04006_6
crossref_primary_10_3390_cells13050435
crossref_primary_10_1002_advs_202402114
crossref_primary_10_1016_j_cis_2025_103462
crossref_primary_10_1016_j_matdes_2023_112617
crossref_primary_10_1021_acsbiomaterials_4c00622
crossref_primary_10_1016_j_cjtee_2024_10_007
crossref_primary_10_1002_advs_202406398
crossref_primary_10_2147_IJN_S502591
crossref_primary_10_1016_j_ijbiomac_2024_133420
crossref_primary_10_1186_s12951_025_03097_4
crossref_primary_10_4103_NRR_NRR_D_24_00844
crossref_primary_10_1186_s12951_024_02737_5
crossref_primary_10_1186_s13287_024_03828_8
crossref_primary_10_3389_fphar_2024_1473599
crossref_primary_10_1111_cns_70163
crossref_primary_10_3390_ijms25042406
crossref_primary_10_1021_acsami_4c19064
Cites_doi 10.1016/j.omtm.2020.12.004
10.1021/acsnano.9b01892
10.1165/rcmb.2016-0053OC
10.1007/s00424-016-1920-8
10.1186/s12951-019-0461-7
10.7150/thno.56367
10.1007/s13311-011-0029-1
10.1038/nrdp.2017.18
10.1080/15548627.2020.1851897
10.4103/1673-5374.360245
10.1016/j.phymed.2020.153179
10.1016/j.jconrel.2022.05.027
10.1073/pnas.1401595111
10.1111/imm.12275
10.1007/s12035-022-03041-9
10.1016/j.brainres.2010.05.011
10.1186/1471-2202-12-39
10.1172/JCI151382
10.1016/j.jconrel.2020.09.019
10.1002/jev2.12056
10.1002/jcb.26496
10.1038/s41392-022-01134-4
10.1016/j.redox.2023.102615
10.3390/cells10081872
10.1093/brain/awp322
10.1523/JNEUROSCI.6409-11.2012
10.7150/thno.84971
10.1016/j.tins.2021.01.003
10.14670/HH-18-038
10.1016/j.redox.2021.101932
10.1021/mp3002733
10.1016/j.neuroscience.2016.08.037
10.1002/jnr.10759
10.1152/ajpcell.00458.2009
10.1152/physrev.00017.2017
10.1152/ajpcell.2000.279.4.C1285
10.1016/j.bioactmat.2022.11.011
10.1038/s41580-022-00460-3
10.1021/nn404945r
10.1073/pnas.1710848114
10.1002/jev2.12137
10.1007/s00441-012-1440-6
10.1073/pnas.1521230113
10.1089/neu.2020.7413
10.1126/sciadv.abn7357
10.1002/ctm2.650
10.1080/03008207.2022.2060826
10.1016/j.ymthe.2019.08.009
10.1002/med.21270
10.1038/ncomms10523
10.2174/1574888X17666220330005937
10.3389/fncel.2022.954597
10.3389/fcell.2021.703989
10.2174/092986712800784748
10.1073/pnas.0908869107
10.1177/147323000903700201
10.3390/ijms21030993
10.14245/ns.2244624.312
10.1016/j.expneurol.2015.03.001
10.1186/s13046-016-0432-x
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsnano.3c04423
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 18024
ExternalDocumentID 10_1021_acsnano_3c04423
d047785208
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
ADHGD
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a306t-2b218cf2334abded6fe044785f7b0726adc2f8c84837f33a4729b9f1a18d7c8c3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 06:42:09 EDT 2025
Tue Jul 01 02:59:11 EDT 2025
Thu Apr 24 22:50:24 EDT 2025
Wed Sep 27 04:26:03 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Nerve Growth Factor Receptor
Umbilical Cord Mesenchymal Stem Cell
Melanoma Cell Adhesion Molecule
Blood−Spinal Cord Barrier
Exosome
Spinal Cord Injury
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a306t-2b218cf2334abded6fe044785f7b0726adc2f8c84837f33a4729b9f1a18d7c8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6363-5869
PQID 2863769906
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2863769906
crossref_citationtrail_10_1021_acsnano_3c04423
crossref_primary_10_1021_acsnano_3c04423
acs_journals_10_1021_acsnano_3c04423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230926
PublicationDateYYYYMMDD 2023-09-26
PublicationDate_xml – month: 09
  year: 2023
  text: 20230926
  day: 26
PublicationDecade 2020
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
Means E. D. (ref35/cit35) 1978; 9
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref58/cit58
  doi: 10.1016/j.omtm.2020.12.004
– ident: ref28/cit28
  doi: 10.1021/acsnano.9b01892
– volume: 9
  start-page: 353
  issue: 6
  year: 1978
  ident: ref35/cit35
  publication-title: Surg. Neurol.
– ident: ref46/cit46
  doi: 10.1165/rcmb.2016-0053OC
– ident: ref32/cit32
  doi: 10.1007/s00424-016-1920-8
– ident: ref24/cit24
  doi: 10.1186/s12951-019-0461-7
– ident: ref27/cit27
  doi: 10.7150/thno.56367
– ident: ref36/cit36
  doi: 10.1007/s13311-011-0029-1
– ident: ref1/cit1
  doi: 10.1038/nrdp.2017.18
– ident: ref34/cit34
  doi: 10.1080/15548627.2020.1851897
– ident: ref59/cit59
  doi: 10.4103/1673-5374.360245
– ident: ref53/cit53
  doi: 10.1016/j.phymed.2020.153179
– ident: ref13/cit13
  doi: 10.1016/j.jconrel.2022.05.027
– ident: ref40/cit40
  doi: 10.1073/pnas.1401595111
– ident: ref29/cit29
  doi: 10.1111/imm.12275
– ident: ref50/cit50
  doi: 10.1007/s12035-022-03041-9
– ident: ref6/cit6
  doi: 10.1016/j.brainres.2010.05.011
– ident: ref18/cit18
  doi: 10.1186/1471-2202-12-39
– ident: ref38/cit38
  doi: 10.1172/JCI151382
– ident: ref57/cit57
  doi: 10.1016/j.jconrel.2020.09.019
– ident: ref11/cit11
  doi: 10.1002/jev2.12056
– ident: ref19/cit19
  doi: 10.1002/jcb.26496
– ident: ref25/cit25
  doi: 10.1038/s41392-022-01134-4
– ident: ref41/cit41
  doi: 10.1016/j.redox.2023.102615
– ident: ref9/cit9
  doi: 10.3390/cells10081872
– ident: ref42/cit42
  doi: 10.1093/brain/awp322
– ident: ref54/cit54
  doi: 10.1523/JNEUROSCI.6409-11.2012
– ident: ref20/cit20
  doi: 10.7150/thno.84971
– ident: ref61/cit61
  doi: 10.1016/j.tins.2021.01.003
– ident: ref30/cit30
  doi: 10.14670/HH-18-038
– ident: ref39/cit39
  doi: 10.1016/j.redox.2021.101932
– ident: ref23/cit23
  doi: 10.1021/mp3002733
– ident: ref8/cit8
  doi: 10.1016/j.neuroscience.2016.08.037
– ident: ref37/cit37
  doi: 10.1002/jnr.10759
– ident: ref52/cit52
  doi: 10.1152/ajpcell.00458.2009
– ident: ref55/cit55
  doi: 10.1016/j.redox.2021.101932
– ident: ref4/cit4
  doi: 10.1152/physrev.00017.2017
– ident: ref51/cit51
  doi: 10.1152/ajpcell.2000.279.4.C1285
– ident: ref63/cit63
  doi: 10.1016/j.bioactmat.2022.11.011
– ident: ref12/cit12
  doi: 10.1038/s41580-022-00460-3
– ident: ref21/cit21
  doi: 10.1021/nn404945r
– ident: ref16/cit16
  doi: 10.1073/pnas.1710848114
– ident: ref33/cit33
  doi: 10.1002/jev2.12137
– ident: ref2/cit2
  doi: 10.1007/s00441-012-1440-6
– ident: ref15/cit15
  doi: 10.1073/pnas.1521230113
– ident: ref3/cit3
  doi: 10.1089/neu.2020.7413
– ident: ref45/cit45
  doi: 10.1126/sciadv.abn7357
– ident: ref26/cit26
  doi: 10.1002/ctm2.650
– ident: ref43/cit43
  doi: 10.1080/03008207.2022.2060826
– ident: ref56/cit56
  doi: 10.1016/j.ymthe.2019.08.009
– ident: ref48/cit48
  doi: 10.1002/med.21270
– ident: ref31/cit31
  doi: 10.1038/ncomms10523
– ident: ref14/cit14
  doi: 10.2174/1574888X17666220330005937
– ident: ref10/cit10
  doi: 10.3389/fncel.2022.954597
– ident: ref62/cit62
  doi: 10.3389/fcell.2021.703989
– ident: ref22/cit22
  doi: 10.2174/092986712800784748
– ident: ref49/cit49
  doi: 10.1073/pnas.0908869107
– ident: ref17/cit17
  doi: 10.1177/147323000903700201
– ident: ref47/cit47
  doi: 10.3390/ijms21030993
– ident: ref5/cit5
  doi: 10.14245/ns.2244624.312
– ident: ref7/cit7
  doi: 10.1016/j.expneurol.2015.03.001
– ident: ref44/cit44
  doi: 10.1186/s13046-016-0432-x
SSID ssj0057876
Score 2.5947106
Snippet Spinal cord injury (SCI) disrupts the blood–spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the...
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18008
Title Targeted Delivery of RGD-CD146+CD271+ Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood–Spinal Cord Barrier Repair after Spinal Cord Injury
URI http://dx.doi.org/10.1021/acsnano.3c04423
https://www.proquest.com/docview/2863769906
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTtRAFJ4o3ugF-BsBNUPChQnpup1pZ6aX0IJggjEum3DXzG9Udluy7RLxynfwHXwwnoQz0y6ChOhd03ROpjNnzk_P1-8gtGmU44qwLKLSQIJijIyylPBIa5EJzSjjoVxw-JHtj5MPx-nxH7Lovyv4JH4ndVPJqh5QPUzA999HDwgT3OdZ2_loYXS93rGugAwJMkQRVyw-twR4N6Sbm27ophUOrmVvpQNlNYGR0CNKTgbzVg30j9t8jf-e9WO03AeYeLvTiCfonq2eokfXaAefod9HAf5tDS7sxOMyznHt8Of3RZQXYNK28oLweAuH7_t4PPXwWdhJnEOeig_930r6y_kUboxaO8W5nUyiAiSfgbzd73VTT22DPwWUH1zseGD8xc9fo1PffquTsSNnvk8ehuBffp3h0KYcX3_goPoGW_0cjfd2j_L9qO_XEElIPNqIKIgXtCOUJlIZa5iz8PJcpKAOQ06YNJo4oYUnsXeUygQCe5W5WMbCcC00fYGWqrqyLxF2MZVKWxFTlSXCkiy1sU1Tw5Kho9zyVbQJK1z2560pQymdxGW_7GW_7KtosNjlUvec5771xuTuAW-vBpx2dB93P7qxUJsSjqSvs8jK1vOmJIKB2QY3z9b-b5rr6KHvYu9hKIS9QkvtbG5fQ6zTqjdByy8BBBP7mw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF6VcoAe-EeU30UqElLlEO_a6_WBQ2u3JLSpEEmk3sx6f1QgsavYAcKJd-AFOPEevApPwuzGCS2oEpdK3KyVdzTeGc98o5mdQWhD5SbKCYs9KhQEKEoJLw5J5EnJYy4ZZZFLF_QOWGcYvDwMD1fQt8VdGGCiAkqVS-L_7i7gP4O1QhRli8p2ABCgKaPc07OPEKRVz7spSPQJIbs7g6TjNXMEPAGAuPZIDn5MGkJpIHKlFTMaaEQ8BDbbEWFCSWK45La5uqFUBAA489j4wucqklxSoHsBXQToQ2x4t5X0F7beqjub560hLgfwsmwe9BfD1vvJ6rT3O238nUfbvYp-LM_CFbK8b03rvCU__9Em8n8-rGvoSgOn8dZc_6-jFV3cQGsnmizeRN8HrthdK5zqka1CmeHS4NcvUi9JwYBvJimJ_E3sshl4OLbFwqC3OIFvwD17N0sezcaw0K_1GCd6NPJSoPwB6O18KqtyrCv8ytU0wsO2vQbw88vX_rEdNjansS0mdioghlBHvJ1gN5Qdn3yhW7wDxb6FhudyULfRalEW-g7Cxqcil5r7NI8Drkkcal-HoWJB29BIR-toAySaNdalylzhAPGzRsxZI-Z11FooVyabDu920Mjo7A1PlxuO581Nzn718UJbMzBANqskCl1Oq4xwBk4KQA27-29sPkKXOoPefrbfPdi7hy4TQI22AIew-2i1nkz1A0B5df7Q_WgYvTlvZf0FARBejg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELZKKyE4lLdoeRmpSEhVlo2dOM6BQ5t06VJaVWxX6i11_BCP3WS1yQLLif_AX0D8E_5Ifwljb3bVgipxqcQtsuyR4xnPQ_N5BqENlZsoJyz2qFAQoCglvDgkkSclj7lklEUuXbB_wHb7wevj8HgJ_Zi_hYFNVECpckl8e6tHyjQVBvwXMF6IomxR2Q7ADWiglHt6-hkCteplNwWuPiOks3OU7HpNLwFPgFNceyQHWyYNoTQQudKKGQ00Ih7CVtsRYUJJYrjktsC6oVQE4HTmsfGFz1UkuaRA9wpasUlCG-JtJb25vrciz2a5a4jNwYFZFBD6a8PWAsrqvAU8bwCcVevcQL8W5-HALB9bkzpvya9_lIr83w_sJlpt3Gq8NbsHt9CSLm6j62eKLd5BP48c6F0rnOqBRaNMcWnw21epl6SgyDeTlET-JnZZDdwfWtAwyC9O4B_wvn2jJd9NhzDQq_UQJ3ow8FKg_Ano7Xwpq3KoK3zosI3wsW2fA5x--94b2aZjMxrbYmy7A2IIecT7MXbN2fHZCd3iAwj4XdS_lIO6h5aLstD3ETY-FbnU3Kd5HHBN4lD7OgwVC9qGRjpaQxvA0azRMlXmAATEzxo2Zw2b11BrLmCZbCq924Yjg4sXPF8sGM2KnFw89elcYjNQRDa7JApdTqqMcAbGCpwbtv5v23yCrh6mnexN92DvAbpGwHm0OBzCHqLlejzRj8DZq_PH7q5hdHLZsvobfGdhEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+Delivery+of+RGD-CD146%2BCD271%2B+Human+Umbilical+Cord+Mesenchymal+Stem+Cell-Derived+Exosomes+Promotes+Blood-Spinal+Cord+Barrier+Repair+after+Spinal+Cord+Injury&rft.jtitle=ACS+nano&rft.au=Xie%2C+Yong&rft.au=Sun%2C+Yi&rft.au=Liu%2C+Yudong&rft.au=Zhao%2C+Jinyun&rft.date=2023-09-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=17&rft.issue=18&rft.spage=18008&rft_id=info:doi/10.1021%2Facsnano.3c04423&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon