Constraints on the Formation of the Giant Daheishan Porphyry Mo Deposit (NE China) from Whole-Rock and Accessory Mineral Geochemistry

Abstract There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in th...

Full description

Saved in:
Bibliographic Details
Published inJournal of petrology Vol. 62; no. 4
Main Authors Xing, Kai, Shu, Qihai, Lentz, David R
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1·09 Mt Mo with an average Mo grade of 0·07 %. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from –1·1 to 1·4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of +1·8 to +4·1 (+2·7 on average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1·3–26·4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0·7–1·1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g. >5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from those for other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1·09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit such as Daheishan, whereas a specific magma composition (e.g. with unusually high Mo and/or S concentrations) might be less critical.
AbstractList Abstract There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1·09 Mt Mo with an average Mo grade of 0·07 %. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from –1·1 to 1·4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of +1·8 to +4·1 (+2·7 on average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1·3–26·4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0·7–1·1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g. >5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from those for other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1·09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit such as Daheishan, whereas a specific magma composition (e.g. with unusually high Mo and/or S concentrations) might be less critical.
There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1·09 Mt Mo with an average Mo grade of 0·07 %. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from –1·1 to 1·4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of +1·8 to +4·1 (+2·7 on average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1·3–26·4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0·7–1·1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g. >5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from those for other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1·09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit such as Daheishan, whereas a specific magma composition (e.g. with unusually high Mo and/or S concentrations) might be less critical.
Author Xing, Kai
Lentz, David R
Shu, Qihai
Author_xml – sequence: 1
  givenname: Kai
  surname: Xing
  fullname: Xing, Kai
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
– sequence: 2
  givenname: Qihai
  orcidid: 0000-0002-7203-6008
  surname: Shu
  fullname: Shu, Qihai
  email: qshu@cugb.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
– sequence: 3
  givenname: David R
  surname: Lentz
  fullname: Lentz, David R
  organization: Department of Earth Sciences, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
BookMark eNqNkMtOwzAQRS1UJMrjA9h5CRIBO892WfUFUnkIgVhGk3TcGBJPZJtFPoD_JoWKBQvEajRXc-bq3kM2MGSQsVMpLqUYR1cteks1bbor3EAh5GiPDWWciiCMZTJgQyHCMIiSSBywQ-dehZC9LobsY0rGeQvaeMfJcF8hX5BtwOt-I_UlLDUYz2dQoXYVGP5Atq062_Fb4jNsyWnPz-7mfFppA-dcWWr4S0U1Bo9UvnEwaz4pS3SOtow2aKHmS6Sywkb37t0x21dQOzzZzSP2vJg_Ta-D1f3yZjpZBRCJxAdKFiqK0zBNM4hGCgCSNJEyLTNRZoWMM0x6GxDrIkyVKjDCOBz3s489lqgwOmLZ99_SknMWVV5q_xV1W0GdS5Fv28x_2sx3bfak_EW2Vjdguz-Zi2-G3tt_nH8CAOiSDg
CitedBy_id crossref_primary_10_1007_s11430_024_1450_5
crossref_primary_10_1016_j_oregeorev_2023_105864
crossref_primary_10_1016_j_oregeorev_2022_105267
crossref_primary_10_1016_j_oregeorev_2023_105822
crossref_primary_10_3389_feart_2022_850440
crossref_primary_10_3724_j_issn_1007_2802_20240045
crossref_primary_10_3390_min12050606
crossref_primary_10_1016_j_oregeorev_2023_105862
crossref_primary_10_3390_min14070718
crossref_primary_10_1016_j_oregeorev_2022_105269
crossref_primary_10_3724_j_issn_1007_2802_20240044
crossref_primary_10_1002_gj_4698
crossref_primary_10_3390_min13040491
crossref_primary_10_1134_S1075701524010070
crossref_primary_10_1007_s00126_023_01188_6
crossref_primary_10_1093_petrology_egae109
crossref_primary_10_1016_j_lithos_2025_108059
crossref_primary_10_3390_min14111104
crossref_primary_10_1080_00206814_2022_2109214
crossref_primary_10_1016_j_oregeorev_2021_104526
crossref_primary_10_31857_S0016777024010068
crossref_primary_10_1016_j_sesci_2024_01_001
crossref_primary_10_1016_j_oregeorev_2022_105035
crossref_primary_10_1016_j_oregeorev_2024_106046
crossref_primary_10_3390_geosciences12010029
crossref_primary_10_5382_econgeo_4989
crossref_primary_10_1016_j_gexplo_2023_107211
crossref_primary_10_1016_j_oregeorev_2022_104858
crossref_primary_10_1016_j_oregeorev_2022_104817
crossref_primary_10_2138_am_2022_8805
crossref_primary_10_1016_j_oregeorev_2023_105803
crossref_primary_10_1016_j_oregeorev_2022_105004
crossref_primary_10_1016_j_oregeorev_2022_105001
crossref_primary_10_1144_geochem2023_067
crossref_primary_10_1016_j_oregeorev_2021_104435
crossref_primary_10_1016_j_oregeorev_2023_105521
crossref_primary_10_1016_j_oregeorev_2024_106013
crossref_primary_10_1002_gj_4673
crossref_primary_10_1016_j_oregeorev_2023_105483
crossref_primary_10_1016_j_gexplo_2021_106938
crossref_primary_10_1016_j_lithos_2022_106898
crossref_primary_10_1016_j_oregeorev_2022_104823
crossref_primary_10_3389_feart_2023_1185964
crossref_primary_10_5382_econgeo_5052
crossref_primary_10_1016_j_oregeorev_2021_104509
crossref_primary_10_1016_j_oregeorev_2024_105898
crossref_primary_10_1016_j_oregeorev_2024_105931
crossref_primary_10_1016_j_oregeorev_2021_104664
crossref_primary_10_1016_j_oregeorev_2023_105355
crossref_primary_10_1016_j_oregeorev_2022_105172
crossref_primary_10_1016_j_oregeorev_2023_105473
crossref_primary_10_1360_SSTe_2024_0065
crossref_primary_10_1007_s00410_023_02034_8
crossref_primary_10_1111_1755_6724_15185
crossref_primary_10_3389_feart_2023_1162994
crossref_primary_10_1016_j_oregeorev_2024_106182
crossref_primary_10_1093_petrology_egac013
crossref_primary_10_1016_j_gsf_2023_101718
crossref_primary_10_3390_min13070951
crossref_primary_10_1016_j_chemgeo_2022_121238
crossref_primary_10_1038_s41598_025_92108_3
crossref_primary_10_1016_j_oregeorev_2022_104716
Cites_doi 10.1038/347662a0
10.2113/gsecongeo.85.3.633
10.1016/j.lithos.2016.03.010
10.1016/S0016-7037(99)00210-0
10.2113/econgeo.107.2.295
10.1038/srep44523
10.1039/b513945g
10.1016/j.oregeorev.2014.09.004
10.2113/econgeo.106.7.1075
10.1016/j.jseaes.2010.11.014
10.1016/B978-0-08-095975-7.01116-5
10.1007/s00410-017-1417-2
10.1093/petrology/egu071
10.1093/petrology/25.4.956
10.2113/gsecongeo.102.7.1335
10.1016/j.epsl.2012.08.008
10.1038/ngeo1940
10.1016/j.oregeorev.2016.04.017
10.2138/am-2018-6224
10.1007/s00126-019-00867-7
10.1016/j.lithos.2016.12.003
10.1016/j.oregeorev.2018.01.026
10.1007/s004100100266
10.1016/j.epsl.2005.12.034
10.1016/j.oregeorev.2011.07.009
10.1016/j.oregeorev.2017.05.018
10.1016/S0016-7037(01)00545-2
10.1111/rge.12140
10.2113/econgeo.112.2.221
10.2138/am-1997-11-1217
10.1016/j.lithos.2019.105207
10.1093/petrology/egaa034
10.2113/econgeo.111.7.1783
10.5382/SP.22
10.2113/gsecongeo.83.2.266
10.2138/am-2017-5907
10.1007/s00410-010-0537-8
10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
10.1016/j.chemgeo.2010.05.013
10.2138/am.2012.3812
10.1130/G23637A.1
10.1016/j.gca.2011.08.042
10.2113/gsecongeo.105.1.3
10.1007/s00410-002-0402-5
10.1130/G47169.1
10.1093/petrology/egv044
10.1016/j.chemgeo.2013.12.015
10.5382/SP.22.06
10.1007/s00126-017-0787-8
10.1093/petrology/egi084
10.1016/j.gca.2015.07.016
10.1126/science.1174156
10.1016/0012-821X(87)90173-7
10.1038/ngeo2028
10.5382/econgeo.4823
10.1007/BF00310958
10.2113/econgeo.110.1.241
10.1130/G36734.1
10.2113/econgeo.108.5.987
10.1016/j.epsl.2010.12.017
10.2113/gsecongeo.93.2.138
10.1016/S0375-6742(02)00204-2
10.5382/econgeo.4673
10.1515/9781501509636-011
10.2113/econgeo.112.2.295
10.1016/j.lithos.2018.04.022
10.1016/0016-7037(96)00056-7
10.1016/j.epsl.2017.05.010
10.1016/j.gca.2006.06.162
10.1111/j.1751-3928.2002.tb00127.x
10.1016/S0040-1951(00)00179-7
10.1111/rge.12047
10.1093/petrology/egl035
10.1093/petrology/egv010
10.1016/j.lithos.2016.09.018
10.1007/s00410-011-0606-7
10.1016/j.gca.2010.07.022
10.1016/j.jseaes.2018.03.025
10.1080/08120099.2013.865676
10.1016/j.gr.2017.02.005
10.1007/s00710-014-0359-x
10.1093/petrology/egx016
10.1007/s004100050467
10.1080/00206814.2014.900728
10.1130/G21813.1
10.1093/petrology/egq037
10.1016/j.chemgeo.2008.08.004
10.1016/j.oregeorev.2019.103129
10.1016/j.lithos.2014.12.011
10.1016/j.jseaes.2014.04.020
10.1016/j.oregeorev.2017.09.020
10.1007/s00410-008-0351-8
10.1016/j.gca.2015.04.036
10.5382/econgeo.4694
10.2113/econgeo.108.4.605
10.1016/S0009-2541(02)00151-1
10.1038/s41467-019-14113-1
10.2113/econgeo.109.5.1315
10.1111/j.1751-3928.2001.tb00083.x
10.1130/G37301.1
10.1016/S0009-2541(99)00218-1
10.1130/G46998.1
10.1017/S0263593300007987
10.2475/ajs.283.10.993
10.1016/S0009-2541(01)00274-1
10.1016/j.oregeorev.2015.02.004
10.1093/petrology/egy020
10.2113/gsecongeo.102.4.537
10.5382/econgeo.2018.4572
10.1130/G45362.1
10.1130/G33037.1
10.1016/j.lithos.2018.07.017
10.1007/978-1-4899-2617-3_15
10.1080/00206814.2016.1150213
10.1016/j.lithos.2017.12.027
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
DBID AAYXX
CITATION
DOI 10.1093/petrology/egab018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1460-2415
ExternalDocumentID 10_1093_petrology_egab018
10.1093/petrology/egab018
GroupedDBID -DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29L
2WC
4.4
482
48X
5GY
5VS
5WA
5WD
6.Y
70D
9M8
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABDTM
ABEUO
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMRT
ACPQN
ACUFI
ACUTJ
ACYTK
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ANFBD
APIBT
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQDIO
BQUQU
BSWAC
BTQHN
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
ELUNK
ESX
F9B
FA8
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HF~
HH5
HVGLF
HW0
HZ~
H~9
IOX
J21
JAVBF
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
OCL
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
S10
TCN
TEORI
TJP
TLC
TN5
TR2
UHB
UQL
VH1
VJK
W8F
WH7
WHG
X7H
XJT
XOL
YAYTL
YKOAZ
YSK
YXANX
ZCA
ZKB
ZKX
ZY4
~02
~91
AAYXX
ABAZT
ABDFA
ABEJV
ABGNP
ABJIA
ABPQP
ABVGC
ABVLG
ABXZS
ACUXJ
ADNBA
ADYJX
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-a305t-f1bf3462667a38faaa565116c70c7b147e5ccea0db26ffbe3e429fbe53091efe3
ISSN 0022-3530
IngestDate Tue Jul 01 02:08:08 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Wed Aug 28 03:17:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords magma oxidation state
sulfur and Mo contents
magma water content
Daheishan porphyry Mo deposit
accessory minerals
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a305t-f1bf3462667a38faaa565116c70c7b147e5ccea0db26ffbe3e429fbe53091efe3
ORCID 0000-0002-7203-6008
ParticipantIDs crossref_citationtrail_10_1093_petrology_egab018
crossref_primary_10_1093_petrology_egab018
oup_primary_10_1093_petrology_egab018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of petrology
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Parat (2021051715310409300_egab018-B84) 2011; 162
Wang (2021051715310409300_egab018-B113) 2014; 109
Carten (2021051715310409300_egab018-B18) 1988; 83
Richards (2021051715310409300_egab018-B93) 2007; 102
Richards (2021051715310409300_egab018-B92) 2015; 233
Stock (2021051715310409300_egab018-B107) 2018; 59
Evans (2021051715310409300_egab018-B41) 2012; 40
Shu (2021051715310409300_egab018-B101) 2019; 54
Ulmer (2021051715310409300_egab018-B112) 2008; 72
Naney (2021051715310409300_egab018-B79) 1983; 283
Romick (2021051715310409300_egab018-B96) 1992; 112
Müntener (2021051715310409300_egab018-B78) 2001; 141
Rudnick (2021051715310409300_egab018-B98) 2014
Xing (2021051715310409300_egab018-B118) 2020; 105
Han (2021051715310409300_egab018-B45) 2014; 64
Sun (2021051715310409300_egab018-B110) 1989
Sillitoe (2021051715310409300_egab018-B102) 2010; 105
Jagoutz (2021051715310409300_egab018-B51) 2011; 303
Konecke (2021051715310409300_egab018-B56) 2017; 102
Lu (2021051715310409300_egab018-B69) 2016
Castillo (2021051715310409300_egab018-B19) 1999; 134
Wu (2021051715310409300_egab018-B116) 2000; 328
Xu (2021051715310409300_egab018-B120) 2017; 91
Imai (2021051715310409300_egab018-B49) 2001; 51
Smythe (2021051715310409300_egab018-B104) 2015; 170
Zhong (2021051715310409300_egab018-B128) 2018; 53
Alonso-Perez (2021051715310409300_egab018-B1) 2009; 157
Xu (2021051715310409300_egab018-B119) 2015; 109
Chang (2021051715310409300_egab018-B22) 2019
Mungall (2021051715310409300_egab018-B77) 2002; 30
Sinclair (2021051715310409300_egab018-B103) 2007
Annen (2021051715310409300_egab018-B3) 2006; 47
Prowatke (2021051715310409300_egab018-B88) 2006; 70
Macpherson (2021051715310409300_egab018-B70) 2006; 243
Chen (2021051715310409300_egab018-B26) 2017; 81
Moyen (2021051715310409300_egab018-B75) 2017; 277
Zhang (2021051715310409300_egab018-B125) 2016; 58
Pearce (2021051715310409300_egab018-B86) 1984; 25
Zhang (2021051715310409300_egab018-B121) 2017; 112
Chang (2021051715310409300_egab018-B21) 2019
Audétat (2021051715310409300_egab018-B5) 2010; 51
Pan (2021051715310409300_egab018-B83) 2018; 103
Chiaradia (2021051715310409300_egab018-B28) 2020; 11
Shu (2021051715310409300_egab018-B1809815) 2021
Armstrong (2021051715310409300_egab018-B4) 1991
Liu (2021051715310409300_egab018-B64) 2008; 257
Bruand (2021051715310409300_egab018-B14) 2016; 44
Defant (2021051715310409300_egab018-B33) 1990; 347
Chen (2021051715310409300_egab018-B25) 2018; 94
Duan (2021051715310409300_egab018-B40) 2018; 310–311
Deng (2021051715310409300_egab018-B34) 2017; 50
Richards (2021051715310409300_egab018-B95) 2017; 112
Park (2021051715310409300_egab018-B85) 2015; 56
Core (2021051715310409300_egab018-B31) 2006; 34
Goldoff (2021051715310409300_egab018-B44) 2012; 97
Cooke (2021051715310409300_egab018-B30) 2014
Steinberger (2021051715310409300_egab018-B105) 2013; 108
Audétat (2021051715310409300_egab018-B9) 2006; 47
Mengason (2021051715310409300_egab018-B72) 2011; 75
Zhou (2021051715310409300_egab018-B130) 2018; 316-317
Audétat (2021051715310409300_egab018-B8) 2017; 88
Loucks (2021051715310409300_egab018-B67) 2020; 61
Pan (2021051715310409300_egab018-B82) 2016; 254–255
Zheng (2021051715310409300_egab018-B127) 2019; 47
Mercer (2021051715310409300_egab018-B74) 2020; 116
Mpodozis (2021051715310409300_egab018-B76) 2012
Burnham (2021051715310409300_egab018-B15) 2014; 366
Kelley (2021051715310409300_egab018-B54) 2009; 325
Loucks (2021051715310409300_egab018-B66) 2014; 61
Wilkinson (2021051715310409300_egab018-B115) 2017; 8345
Chiaradia (2021051715310409300_egab018-B29) 2017; 7
Jugo (2021051715310409300_egab018-B52) 2010; 74
Peng (2021051715310409300_egab018-B87) 1997; 82
Tiepolo (2021051715310409300_egab018-B111) 2002; 191
Chiaradia (2021051715310409300_egab018-B27) 2014; 7
Wilkinson (2021051715310409300_egab018-B114) 2013; 6
Zheng (2021051715310409300_egab018-B126) 2018; 68
Audétat (2021051715310409300_egab018-B7) 2019; 114
Davidson (2021051715310409300_egab018-B32) 2007; 35
Candela (2021051715310409300_egab018-B17) 1990; 85
Ouyang (2021051715310409300_egab018-B81) 2020; 115
Andrade (2021051715310409300_egab018-B2) 2002; 182
Li (2021051715310409300_egab018-B63) 2015; 162
Richards (2021051715310409300_egab018-B91) 2011; 106
Shu (2021051715310409300_egab018-B100) 2016; 111
Belousova (2021051715310409300_egab018-B11) 2002; 76
Holzheid (2021051715310409300_egab018-B46) 2001; 65
Richards (2021051715310409300_egab018-B94) 2012; 107
Chelle-Michou (2021051715310409300_egab018-B23) 2017; 172
Sha (2021051715310409300_egab018-B99) 1999; 63
Kouzmanov (2021051715310409300_egab018-B57) 2012
Deng (2021051715310409300_egab018-B35) 2019
Stern (2021051715310409300_egab018-B106) 2007; 102
Fei (2021051715310409300_egab018-B42) 2018; 302–303
Keto (2021051715310409300_egab018-B55) 1987; 84
Zhang (2021051715310409300_egab018-B122) 2017; 58
Zhang (2021051715310409300_egab018-B124) 2010; 276
Dilles (2021051715310409300_egab018-B36) 2015; 110
Foster (2021051715310409300_egab018-B43) 2006; 21
Hu (2021051715310409300_egab018-B47) 2014; 90
Blevin (2021051715310409300_egab018-B12) 1992; 83
Li (2021051715310409300_egab018-B60) 2018; 160
Qu (2021051715310409300_egab018-B90) 2019; 348–349
Ding (2021051715310409300_egab018-B37) 2015; 69
Sun (2021051715310409300_egab018-B109) 2015; 65
Li (2021051715310409300_egab018-B61) 2017; 272–273
Pyle (2021051715310409300_egab018-B89) 2002
Lerchbaumer (2021051715310409300_egab018-B59) 2013; 108
Li (2021051715310409300_egab018-B62) 2012; 355–356
Zhou (2021051715310409300_egab018-B129) 2014; 56
Černy (2021051715310409300_egab018-B20) 2005
Mao (2021051715310409300_egab018-B71) 2011; 43
Imai (2021051715310409300_egab018-B50) 2002; 52
Mercer (2021051715310409300_egab018-B73) 2015; 56
Brandon (2021051715310409300_egab018-B13) 1996; 60
Loader (2021051715310409300_egab018-B65) 2017; 472
Ballard (2021051715310409300_egab018-B10) 2002; 144
Stormer (2021051715310409300_egab018-B108) 1993; 78
Rooney (2021051715310409300_egab018-B97) 2011; 161
Burnham (2021051715310409300_egab018-B16) 1979
Kamber (2021051715310409300_egab018-B53) 2000; 166
Wu (2021051715310409300_egab018-B117) 2011; 41
Lu (2021051715310409300_egab018-B68) 2015; 43
Nathwani (2021051715310409300_egab018-B80) 2020; 48
Audétat (2021051715310409300_egab018-B6) 2015; 56
Zhang (2021051715310409300_egab018-B123) 2018; 113
Du (2021051715310409300_egab018-B39) 2020; 48
Lang (2021051715310409300_egab018-B58) 1998; 93
References_xml – volume: 347
  start-page: 662
  year: 1990
  ident: 2021051715310409300_egab018-B33
  article-title: Derivation of some modern arc magmas by melting of young subducted lithosphere
  publication-title: Nature
  doi: 10.1038/347662a0
– volume: 85
  start-page: 633
  year: 1990
  ident: 2021051715310409300_egab018-B17
  article-title: The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melt and ilmenite
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.85.3.633
– volume: 254–255
  start-page: 118
  year: 2016
  ident: 2021051715310409300_egab018-B82
  article-title: Apatite trace element and halogen compositions as petrogenetic–metallogenic indicators: examples from four granite plutons in the Sanjiang region, SW China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2016.03.010
– volume: 63
  start-page: 3861
  year: 1999
  ident: 2021051715310409300_egab018-B99
  article-title: Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis—some mineralogical and petrological constraints
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(99)00210-0
– volume: 107
  start-page: 295
  year: 2012
  ident: 2021051715310409300_egab018-B94
  article-title: High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan
  publication-title: Economic Geology
  doi: 10.2113/econgeo.107.2.295
– volume: 7
  year: 2017
  ident: 2021051715310409300_egab018-B29
  article-title: Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment
  publication-title: Scientific Reports
  doi: 10.1038/srep44523
– volume: 21
  start-page: 288
  year: 2006
  ident: 2021051715310409300_egab018-B43
  article-title: In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS
  publication-title: Journal of Analytical Atomic Spectrometry
  doi: 10.1039/b513945g
– volume: 65
  start-page: 97
  year: 2015
  ident: 2021051715310409300_egab018-B109
  article-title: Porphyry deposits and oxidized magmas
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.09.004
– volume: 106
  start-page: 1075
  year: 2011
  ident: 2021051715310409300_egab018-B91
  article-title: High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water
  publication-title: Economic Geology
  doi: 10.2113/econgeo.106.7.1075
– volume: 41
  start-page: 1
  year: 2011
  ident: 2021051715310409300_egab018-B117
  article-title: Geochronology of the Phanerozoic granitoids in northeastern China
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2010.11.014
– start-page: 357
  volume-title: Treatise on Geochemistry
  year: 2014
  ident: 2021051715310409300_egab018-B30
  doi: 10.1016/B978-0-08-095975-7.01116-5
– volume: 172
  start-page: 105
  year: 2017
  ident: 2021051715310409300_egab018-B23
  article-title: Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-017-1417-2
– start-page: 329
  volume-title: Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits
  year: 2016
  ident: 2021051715310409300_egab018-B69
– volume: 56
  start-page: 59
  year: 2015
  ident: 2021051715310409300_egab018-B85
  article-title: The role of late sulfide saturation in the formation of a Cu- and Au-rich magma: Insights from the platinum-group geochemistry of Niuatahi–Motutahi lavas, Tonga rear arc
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egu071
– volume: 25
  start-page: 956
  year: 1984
  ident: 2021051715310409300_egab018-B86
  article-title: Trace element discrimination diagrams for the tectonic interpretation of granitic rocks
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/25.4.956
– volume: 102
  start-page: 1335
  year: 2007
  ident: 2021051715310409300_egab018-B106
  article-title: Magmatic anhydrite in plutonic rocks at the El Teniente Cu–Mo deposit, Chile, and the role of sulfur- and copper-rich magmas in its formation
  publication-title: Economic Geology and Geology
  doi: 10.2113/gsecongeo.102.7.1335
– volume: 355–356
  start-page: 327
  year: 2012
  ident: 2021051715310409300_egab018-B62
  article-title: Partitioning of V, Mn Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2012.08.008
– volume: 6
  start-page: 917
  year: 2013
  ident: 2021051715310409300_egab018-B114
  article-title: Triggers for the formation of porphyry ore deposits in magmatic arcs
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo1940
– volume: 81
  start-page: 602
  year: 2017
  ident: 2021051715310409300_egab018-B26
  article-title: The Mo deposits of Northeast China: a powerful indicator of tectonic settings and associated evolutionary trends
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2016.04.017
– volume: 103
  start-page: 1417
  year: 2018
  ident: 2021051715310409300_egab018-B83
  article-title: Titanite major and trace element compositions as petrogenetic and metallogenic indicators of Mo ore deposits: Examples from four granite plutons in the southern Yidun arc, SW China
  publication-title: American Mineralogist
  doi: 10.2138/am-2018-6224
– volume: 54
  start-page: 645
  year: 2019
  ident: 2021051715310409300_egab018-B101
  article-title: Zircon trace elements and magma fertility: insights from porphyry (–skarn) Mo deposits in NE China
  publication-title: Mineralium Deposita
  doi: 10.1007/s00126-019-00867-7
– start-page: 1
  volume-title: Composition of the continental crust
  year: 2014
  ident: 2021051715310409300_egab018-B98
– volume: 272–273
  start-page: 291
  year: 2017
  ident: 2021051715310409300_egab018-B61
  article-title: The formation of Luoboling porphyry Cu–Mo deposit: Constraints from zircon and apatite
  publication-title: Lithos
  doi: 10.1016/j.lithos.2016.12.003
– volume: 94
  start-page: 93
  year: 2018
  ident: 2021051715310409300_egab018-B25
  article-title: In situ major-, trace-elements and Sr–Nd isotopes of apatite from the Luming porphyry Mo deposit, NE China: constraints on the petrogenetic–metallogenic features
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2018.01.026
– volume: 141
  start-page: 643
  year: 2001
  ident: 2021051715310409300_egab018-B78
  article-title: The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100100266
– volume: 243
  start-page: 581
  year: 2006
  ident: 2021051715310409300_egab018-B70
  article-title: Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2005.12.034
– volume: 105
  start-page: 382
  year: 2020
  ident: 2021051715310409300_egab018-B118
  article-title: Zircon and Apatite Geochemical Constraints on the Formation of the Huojihe Porphyry Mo Deposit in the Lesser Xing’an Range, NE China
  publication-title: American Mineralogist
– volume: 43
  start-page: 264
  year: 2011
  ident: 2021051715310409300_egab018-B71
  article-title: Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: Characteristics and tectonic settings
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2011.07.009
– volume: 88
  start-page: 436
  year: 2017
  ident: 2021051715310409300_egab018-B8
  article-title: The genesis of Climax-type porphyry Mo deposits: insights from fluid inclusions and melt inclusions
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2017.05.018
– volume: 65
  start-page: 1933
  year: 2001
  ident: 2021051715310409300_egab018-B46
  article-title: Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(01)00545-2
– volume: 68
  start-page: 1
  year: 2018
  ident: 2021051715310409300_egab018-B126
  article-title: Geochronological and Geochemical Constraints on the Petrogenesis and Geodynamic Setting of the Daheishan Porphyry Mo Deposit, Northeast China
  publication-title: Resource Geology
  doi: 10.1111/rge.12140
– volume: 112
  start-page: 221
  year: 2017
  ident: 2021051715310409300_egab018-B121
  article-title: What caused the formation of the giant Bingham Canyon porphyry Cu–Mo–Au deposit? Insights from melt inclusions and magmatic sulfides
  publication-title: Economic Geology
  doi: 10.2113/econgeo.112.2.221
– volume: 82
  start-page: 1210
  year: 1997
  ident: 2021051715310409300_egab018-B87
  article-title: Factors controlling sulfur concentrations in volcanic apatite
  publication-title: American Mineralogist
  doi: 10.2138/am-1997-11-1217
– volume: 348–349
  start-page: 105207
  year: 2019
  ident: 2021051715310409300_egab018-B90
  article-title: Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range, NE China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2019.105207
– volume: 61
  start-page: egaa034
  year: 2020
  ident: 2021051715310409300_egab018-B67
  article-title: New magmatic oxybarometer using trace elements in zircon
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egaa034
– volume: 111
  start-page: 1783
  year: 2016
  ident: 2021051715310409300_egab018-B100
  article-title: Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re–Os dates of porphyry Mo deposits in the northern Xilamulun district
  publication-title: Economic Geology
  doi: 10.2113/econgeo.111.7.1783
– start-page: 337
  year: 2005
  ident: 2021051715310409300_egab018-B20
  article-title: Granite-related ore deposits
  publication-title: Economic Geology 100th Anniversary Volume
– start-page: 1
  volume-title: Mineral deposits of China: An introduction
  year: 2019
  ident: 2021051715310409300_egab018-B21
  doi: 10.5382/SP.22
– volume: 83
  start-page: 266
  year: 1988
  ident: 2021051715310409300_egab018-B18
  article-title: Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.83.2.266
– volume: 102
  start-page: 548
  year: 2017
  ident: 2021051715310409300_egab018-B56
  article-title: Covariability of S6+, S4+, and S2– in apatite as a function of oxidation state: implications for a new oxybarometer
  publication-title: American Mineralogist
  doi: 10.2138/am-2017-5907
– volume: 161
  start-page: 373
  year: 2011
  ident: 2021051715310409300_egab018-B97
  article-title: Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation?
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-010-0537-8
– volume: 30
  start-page: 915
  year: 2002
  ident: 2021051715310409300_egab018-B77
  article-title: Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits
  publication-title: Geology
  doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
– volume: 276
  start-page: 144
  year: 2010
  ident: 2021051715310409300_egab018-B124
  article-title: Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: implications for subduction-induced delamination
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2010.05.013
– volume: 97
  start-page: 1103
  year: 2012
  ident: 2021051715310409300_egab018-B44
  article-title: Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens
  publication-title: American Mineralogist
  doi: 10.2138/am.2012.3812
– volume: 35
  start-page: 787
  year: 2007
  ident: 2021051715310409300_egab018-B32
  article-title: Amphibole ‘sponge’ in arc crust?
  publication-title: Geology
  doi: 10.1130/G23637A.1
– volume: 75
  start-page: 7018
  year: 2011
  ident: 2021051715310409300_egab018-B72
  article-title: Molybdenum, tungsten and manganese partitioning in the system pyrrhotite–Fe–S–O melt–rhyolite melt: impact of sulfide segregation on arc magma evolution
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2011.08.042
– volume: 105
  start-page: 3
  year: 2010
  ident: 2021051715310409300_egab018-B102
  article-title: Porphyry copper systems
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.105.1.3
– volume: 144
  start-page: 347
  year: 2002
  ident: 2021051715310409300_egab018-B10
  article-title: Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-002-0402-5
– volume: 48
  start-page: 519
  year: 2020
  ident: 2021051715310409300_egab018-B39
  article-title: Early sulfide saturation is not detrimental to porphyry Cu–Au formation
  publication-title: Geology
  doi: 10.1130/G47169.1
– volume: 56
  start-page: 1519
  year: 2015
  ident: 2021051715310409300_egab018-B6
  article-title: Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egv044
– volume: 366
  start-page: 52
  year: 2014
  ident: 2021051715310409300_egab018-B15
  article-title: The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2013.12.015
– start-page: 189
  volume-title: Skarn deposits of China
  year: 2019
  ident: 2021051715310409300_egab018-B22
  doi: 10.5382/SP.22.06
– volume: 53
  start-page: 855
  year: 2018
  ident: 2021051715310409300_egab018-B128
  article-title: Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite)
  publication-title: Mineralium Deposita
  doi: 10.1007/s00126-017-0787-8
– start-page: 573
  volume-title: Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems
  year: 2012
  ident: 2021051715310409300_egab018-B57
– volume: 47
  start-page: 505
  year: 2006
  ident: 2021051715310409300_egab018-B3
  article-title: The genesis of intermediate and silicic magmas in deep crustal hot zones
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egi084
– volume: 170
  start-page: 173
  year: 2015
  ident: 2021051715310409300_egab018-B104
  article-title: Cerium oxidation state in silicate melts: Combined fO2, temperature and compositional effects
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2015.07.016
– volume: 325
  start-page: 605
  year: 2009
  ident: 2021051715310409300_egab018-B54
  article-title: Water and the oxidation state of subduction zone magmas
  publication-title: Science
  doi: 10.1126/science.1174156
– volume: 84
  start-page: 27
  year: 1987
  ident: 2021051715310409300_egab018-B55
  article-title: Nd and Sr isotopic variations of Early Paleozoic oceans
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(87)90173-7
– volume: 8345
  start-page: 67
  year: 2017
  ident: 2021051715310409300_egab018-B115
  article-title: Porphyry indicator minerals and their mineral chemistry as vectoring and fertility tools
  publication-title: Geological Survey of Canada, Open File
– volume: 7
  start-page: 43
  year: 2014
  ident: 2021051715310409300_egab018-B27
  article-title: Copper enrichment in arc magmas controlled by overriding plate thickness
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo2028
– volume: 72
  start-page: A966
  year: 2008
  ident: 2021051715310409300_egab018-B112
  article-title: Differentiation of mantle-derived calc-alkaline magmas at mid to lower crustal levels: Experimental and petrologic constraints
  publication-title: Geochimica et Cosmochimica Acta
– year: 2021
  ident: 2021051715310409300_egab018-B1809815
  article-title: Mesozoic Mo mineralization in northeastern China did not require regional-scale pre-enrichment
  publication-title: Economic Geology, doi:10.5382/econgeo.4823
  doi: 10.5382/econgeo.4823
– volume: 112
  start-page: 101
  year: 1992
  ident: 2021051715310409300_egab018-B96
  article-title: The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/BF00310958
– volume: 78
  start-page: 641
  year: 1993
  ident: 2021051715310409300_egab018-B108
  article-title: Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite
  publication-title: American Mineralogist
– volume: 110
  start-page: 241
  year: 2015
  ident: 2021051715310409300_egab018-B36
  article-title: Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas
  publication-title: Economic Geology
  doi: 10.2113/econgeo.110.1.241
– volume: 43
  start-page: 583
  year: 2015
  ident: 2021051715310409300_egab018-B68
  article-title: Fluid flux melting generated post-collisional high-Sr/Y copper-ore-forming water-rich magmas in Tibet
  publication-title: Geology
  doi: 10.1130/G36734.1
– volume: 108
  start-page: 987
  year: 2013
  ident: 2021051715310409300_egab018-B59
  article-title: The metal content of silicate melts and aqueous fluids in subeconomically Mo mineralized granites: implications for porphyry Mo genesis
  publication-title: Economic Geology
  doi: 10.2113/econgeo.108.5.987
– volume: 303
  start-page: 25
  year: 2011
  ident: 2021051715310409300_egab018-B51
  article-title: The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2010.12.017
– volume: 93
  start-page: 138
  year: 1998
  ident: 2021051715310409300_egab018-B58
  article-title: Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.93.2.138
– volume: 76
  start-page: 45
  year: 2002
  ident: 2021051715310409300_egab018-B11
  article-title: Apatite as an indicator mineral for mineral exploration: trace-element composition and their relationship to host rock type
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/S0375-6742(02)00204-2
– volume: 114
  start-page: 1033
  year: 2019
  ident: 2021051715310409300_egab018-B7
  article-title: The metal content of magmatic–hydrothermal fluids and its relationship to mineralization potential
  publication-title: Economic Geology
  doi: 10.5382/econgeo.4673
– start-page: 337
  volume-title: Phosphates—Geochemical, Geobiological, and Materials Importance. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry
  year: 2002
  ident: 2021051715310409300_egab018-B89
  doi: 10.1515/9781501509636-011
– volume: 112
  start-page: 295
  year: 2017
  ident: 2021051715310409300_egab018-B95
  article-title: Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu ± Mo ± Au and intrusion-related iron oxide Cu–Au deposits in northern Chile
  publication-title: Economic Geology
  doi: 10.2113/econgeo.112.2.295
– volume: 310–311
  start-page: 369
  year: 2018
  ident: 2021051715310409300_egab018-B40
  article-title: Using apatite to discriminate synchronous ore-associated and barren granitoid rocks: a case study from the Edong metallogenic district, South China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2018.04.022
– volume: 60
  start-page: 1739
  year: 1996
  ident: 2021051715310409300_egab018-B13
  article-title: Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(96)00056-7
– volume: 472
  start-page: 107
  year: 2017
  ident: 2021051715310409300_egab018-B65
  article-title: The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2017.05.010
– volume: 70
  start-page: 4513
  year: 2006
  ident: 2021051715310409300_egab018-B88
  article-title: Trace element partitioning between apatite and silicate melts
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2006.06.162
– volume: 52
  start-page: 147
  year: 2002
  ident: 2021051715310409300_egab018-B50
  article-title: Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K–Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks
  publication-title: Resource Geology
  doi: 10.1111/j.1751-3928.2002.tb00127.x
– volume: 328
  start-page: 89
  year: 2000
  ident: 2021051715310409300_egab018-B116
  article-title: Phanerozoic continental crustal growth: Sr–Nd isotopic evidence from the granites in northeastern China
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(00)00179-7
– volume: 64
  start-page: 379
  year: 2014
  ident: 2021051715310409300_egab018-B45
  article-title: Re–Os age of molybdenite from the Daheishan Mo deposit in the Eastern Central Asian Orogenic Belt, NE China
  publication-title: Resource Geology
  doi: 10.1111/rge.12047
– volume: 47
  start-page: 2021
  year: 2006
  ident: 2021051715310409300_egab018-B9
  article-title: Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA)
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egl035
– volume: 56
  start-page: 645
  year: 2015
  ident: 2021051715310409300_egab018-B73
  article-title: Pre-eruptive conditions of the Hideaway Park topaz rhyolite: insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egv010
– volume: 277
  start-page: 154
  year: 2017
  ident: 2021051715310409300_egab018-B75
  article-title: Collision vs subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth
  publication-title: Lithos
  doi: 10.1016/j.lithos.2016.09.018
– volume: 162
  start-page: 463
  year: 2011
  ident: 2021051715310409300_egab018-B84
  article-title: S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-011-0606-7
– volume: 74
  start-page: 5926
  year: 2010
  ident: 2021051715310409300_egab018-B52
  article-title: Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2010.07.022
– volume: 160
  start-page: 38
  year: 2018
  ident: 2021051715310409300_egab018-B60
  article-title: In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2018.03.025
– volume: 61
  start-page: 5
  year: 2014
  ident: 2021051715310409300_egab018-B66
  article-title: Distinctive composition of copper-ore-forming arc magmas
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1080/08120099.2013.865676
– volume: 50
  start-page: 216
  year: 2017
  ident: 2021051715310409300_egab018-B34
  article-title: Tectonic evolution, superimposed orogeny, and composite metallogenic system in China
  publication-title: Gondwana Research
  doi: 10.1016/j.gr.2017.02.005
– volume: 109
  start-page: 181
  year: 2015
  ident: 2021051715310409300_egab018-B119
  article-title: LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang–Red River alkaline igneous belt
  publication-title: Mineralogy and Petrology
  doi: 10.1007/s00710-014-0359-x
– volume: 58
  start-page: 277
  year: 2017
  ident: 2021051715310409300_egab018-B122
  article-title: Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad–Henderson and Silver Creek, Colorado, USA
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egx016
– volume: 134
  start-page: 33
  year: 1999
  ident: 2021051715310409300_egab018-B19
  article-title: Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s004100050467
– volume: 56
  start-page: 929
  year: 2014
  ident: 2021051715310409300_egab018-B129
  article-title: Geochronology of magmatism and mineralization of the Daheishan giant porphyry molybdenum deposit, Jilin Province, Northeast China: constraints on ore genesis and implications for geodynamic setting
  publication-title: International Geology Review
  doi: 10.1080/00206814.2014.900728
– volume: 34
  start-page: 41
  year: 2006
  ident: 2021051715310409300_egab018-B31
  article-title: Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah
  publication-title: Geology
  doi: 10.1130/G21813.1
– start-page: 103
  volume-title: Temporal-spatial distribution of metallic ore deposits in China and their geodynamic settings
  year: 2019
  ident: 2021051715310409300_egab018-B35
– volume: 51
  start-page: 1739
  year: 2010
  ident: 2021051715310409300_egab018-B5
  article-title: Source and evolution of molybdenum in the porphyry-Mo(–Nb) deposit at Cave Peak, Texas
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egq037
– volume: 257
  start-page: 34
  year: 2008
  ident: 2021051715310409300_egab018-B64
  article-title: In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2008.08.004
– volume: 116
  start-page: 103129
  year: 2020
  ident: 2021051715310409300_egab018-B74
  article-title: Apatite trace element geochemistry and cathodoluminescent textures—A comparison between regional magmatism and the Pea Ridge IOAREE and Boss IOCG deposits, southeastern Missouri iron metallogenic province, USA
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2019.103129
– volume: 233
  start-page: 27
  year: 2015
  ident: 2021051715310409300_egab018-B92
  article-title: The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny
  publication-title: Lithos
  doi: 10.1016/j.lithos.2014.12.011
– start-page: 223
  volume-title: Geological Association of Canada, Mineral Deposits Division, Special Publication
  year: 2007
  ident: 2021051715310409300_egab018-B103
– volume: 90
  start-page: 88
  year: 2014
  ident: 2021051715310409300_egab018-B47
  article-title: A porphyry–skarn metallogenic system in the Lesser Xing’an Range, NE China: implications from U–Pb and Re–Os geochronology and Sr–Nd–Hf isotopes of the Luming Mo and Xulaojiugou Pb–Zn deposits
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2014.04.020
– volume: 91
  start-page: 296
  year: 2017
  ident: 2021051715310409300_egab018-B120
  article-title: Cu-rich porphyry magmas produced by fractional crystallization of oxidized fertile basaltic magmas (Sangnan, East Junggar, PR China)
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2017.09.020
– volume: 157
  start-page: 541
  year: 2009
  ident: 2021051715310409300_egab018-B1
  article-title: Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids
  publication-title: Contributions to Mineralogy and Petrology
  doi: 10.1007/s00410-008-0351-8
– volume: 162
  start-page: 25
  year: 2015
  ident: 2021051715310409300_egab018-B63
  article-title: Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2015.04.036
– volume: 115
  start-page: 79
  year: 2020
  ident: 2021051715310409300_egab018-B81
  article-title: Geochemistry and crystallization conditions of magmas related to porphyry Mo mineralization in northeastern China
  publication-title: Economic Geology
  doi: 10.5382/econgeo.4694
– volume: 108
  start-page: 605
  year: 2013
  ident: 2021051715310409300_egab018-B105
  article-title: Source plutons driving porphyry copper ore formation: Combining geomagnetic data, thermal constraints, and chemical mass balance to quantify the magma chamber beneath the Bingham Canyon deposit
  publication-title: Economic Geology
  doi: 10.2113/econgeo.108.4.605
– volume: 191
  start-page: 105
  year: 2002
  ident: 2021051715310409300_egab018-B111
  article-title: Trace element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients
  publication-title: Chemical Geology
  doi: 10.1016/S0009-2541(02)00151-1
– volume: 11
  start-page: 248
  year: 2020
  ident: 2021051715310409300_egab018-B28
  article-title: Gold endowments of porphyry deposits controlled by precipitation efficiency
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-14113-1
– volume: 109
  start-page: 1315
  year: 2014
  ident: 2021051715310409300_egab018-B113
  article-title: Increased magmatic water content—the key to Oligo-Miocene porphyry Cu–Mo ± Au formation in the eastern Gangdese belt
  publication-title: Economic Geology
  doi: 10.2113/econgeo.109.5.1315
– start-page: 71
  volume-title: Geochemistry of Hydrothermal Ore Deposits
  year: 1979
  ident: 2021051715310409300_egab018-B16
– volume: 51
  start-page: 71
  year: 2001
  ident: 2021051715310409300_egab018-B49
  article-title: Generation and evolution of ore fluids for Porphyry Cu–Au mineralization of the Santo Tomas II (Philex) Deposit
  publication-title: Resource Geology
  doi: 10.1111/j.1751-3928.2001.tb00083.x
– volume: 44
  start-page: 91
  year: 2016
  ident: 2021051715310409300_egab018-B14
  article-title: An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance
  publication-title: Geology
  doi: 10.1130/G37301.1
– volume: 166
  start-page: 241
  year: 2000
  ident: 2021051715310409300_egab018-B53
  article-title: Role of ‘hidden’ deeply subducted slabs in mantle depletion
  publication-title: Chemical Geology
  doi: 10.1016/S0009-2541(99)00218-1
– volume: 48
  start-page: 323
  year: 2020
  ident: 2021051715310409300_egab018-B80
  article-title: Multi-stage arc magma evolution recorded by apatite in volcanic rocks
  publication-title: Geology
  doi: 10.1130/G46998.1
– volume: 83
  start-page: 305
  year: 1992
  ident: 2021051715310409300_egab018-B12
  article-title: The role of magma sources, oxidation states and fractionation in determining the granitoid metallogeny of eastern Australia
  publication-title: Earth and Environmental Science Transactions of the Royal Society of Edinburgh
  doi: 10.1017/S0263593300007987
– volume: 283
  start-page: 993
  year: 1983
  ident: 2021051715310409300_egab018-B79
  article-title: Phase equilibria of rock-forming ferromagnesian silicates in granitic systems
  publication-title: American Journal of Science
  doi: 10.2475/ajs.283.10.993
– volume: 182
  start-page: 85
  year: 2002
  ident: 2021051715310409300_egab018-B2
  article-title: Iron (II) oxide determination in rocks and minerals
  publication-title: Chemical Geology
  doi: 10.1016/S0009-2541(01)00274-1
– volume: 69
  start-page: 104
  year: 2015
  ident: 2021051715310409300_egab018-B37
  article-title: Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: implications for petrogenesis and metallogenesis
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.02.004
– volume: 59
  start-page: 2463
  year: 2018
  ident: 2021051715310409300_egab018-B107
  article-title: Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy
  publication-title: Journal of Petrology
  doi: 10.1093/petrology/egy020
– volume: 102
  start-page: 537
  year: 2007
  ident: 2021051715310409300_egab018-B93
  article-title: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.102.4.537
– volume: 113
  start-page: 803
  year: 2018
  ident: 2021051715310409300_egab018-B123
  article-title: Magmatic–hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China: a melt and fluid inclusion study
  publication-title: Economic Geology
  doi: 10.5382/econgeo.2018.4572
– start-page: 329
  volume-title: Cenozoic tectonics and porphyry copper systems of the Chilean Andes
  year: 2012
  ident: 2021051715310409300_egab018-B76
– volume: 47
  start-page: 135
  year: 2019
  ident: 2021051715310409300_egab018-B127
  article-title: Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting
  publication-title: Geology
  doi: 10.1130/G45362.1
– volume: 40
  start-page: 783
  year: 2012
  ident: 2021051715310409300_egab018-B41
  article-title: Oxidation state of subarc mantle
  publication-title: Geology
  doi: 10.1130/G33037.1
– volume: 316-317
  start-page: 212
  year: 2018
  ident: 2021051715310409300_egab018-B130
  article-title: What triggers fertile porphyritic Mo magmas in subduction setting: a case study from the giant Daheishan Mo deposit, NE China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2018.07.017
– start-page: 261
  volume-title: Electron Probe Quantitation
  year: 1991
  ident: 2021051715310409300_egab018-B4
  doi: 10.1007/978-1-4899-2617-3_15
– start-page: 313
  volume-title: Magmatism in the Ocean Basins. Geological Society, London, Special Publications
  year: 1989
  ident: 2021051715310409300_egab018-B110
– volume: 58
  start-page: 1158
  year: 2016
  ident: 2021051715310409300_egab018-B125
  article-title: Ore-forming granites from Jurassic porphyry Mo deposits, east–central Jilin Province, China: geochemistry, geochronology, and petrogenesis
  publication-title: International Geology Review
  doi: 10.1080/00206814.2016.1150213
– volume: 302–303
  start-page: 158
  year: 2018
  ident: 2021051715310409300_egab018-B42
  article-title: Highly differentiated magmas linked with polymetallic mineralization: a case study from the Cuihongshan granitic intrusions, Lesser Xing’an Range, NE China
  publication-title: Lithos
  doi: 10.1016/j.lithos.2017.12.027
SSID ssj0014150
Score 2.5697942
Snippet Abstract There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly...
There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
Title Constraints on the Formation of the Giant Daheishan Porphyry Mo Deposit (NE China) from Whole-Rock and Accessory Mineral Geochemistry
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx2Avo_ti3dpxDx3sA622JVvJYxlpS7sUNlqWtyDZchMY8QjOQ_u-_7t3sqw4o93avThB2Iej--V038fYrlCpGpi04NS7m8tU97kuC8sTqa0QGm05TQ790Wl2dC6Px-m41-tmLS1r8zm_urGu5H-4imvIV6qSvQdnA1FcwO_IX7wih_F6Jx7TtE034yE4_T8dtMWIbfD_EPlfI3OnluYso8SraGcXl_hvRmHjcrbcRJ5hM0qbvASu5OQHDc7l31FcuvjCvhusSAH50cw1qiZvet5Oi7tFxUWNfLHmth_7CSonehZcO9MlrXybTVdrX_EkvAoZ9z6n0bsmkriT0dItFfCBF9tIWJlFnNSGrgjOkg7U5I2Svel6Fd6b-H2hTeSF91of7T_Ot5B12MTbxSQQmXgSD9jDBK2MxMn1YD3F-JJRaDaPv6INig_EXiCx50msqTVUKtnRUs422RO_97DfYOUp69n5M_bo0I1vvnzOfncQA9UcECAQEANV6RYcYiAgBlrEwKgCjxh4fzoEh5cPQGiBFVoA0QIBLeDRAl20vGDnB8OzL0fcD-LgGo-DmpexKYVE0zdTWvRLrTWaAXGc5SrKlYmlsimS1VFhkqwsjRUWtRz8xD0bxLa04iXbmFdz-4pBKrQsFFVX20ymymiD8kAV_ULhY4NcbrGo3cdJ7rvU07b8nNzKvS32MTzyq2nR8reb3yFz_n3f6_sQfcMer-C_zTbqxdLuoK5am7cOUdeERp8m
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+the+Formation+of+the+Giant+Daheishan+Porphyry+Mo+Deposit+%28NE+China%29+from+Whole-Rock+and+Accessory+Mineral+Geochemistry&rft.jtitle=Journal+of+petrology&rft.au=Xing%2C+Kai&rft.au=Shu%2C+Qihai&rft.au=Lentz%2C+David+R&rft.date=2021-04-01&rft.issn=0022-3530&rft.eissn=1460-2415&rft.volume=62&rft.issue=4&rft_id=info:doi/10.1093%2Fpetrology%2Fegab018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_petrology_egab018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3530&client=summon