Constraints on the Formation of the Giant Daheishan Porphyry Mo Deposit (NE China) from Whole-Rock and Accessory Mineral Geochemistry
Abstract There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in th...
Saved in:
Published in | Journal of petrology Vol. 62; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1·09 Mt Mo with an average Mo grade of 0·07 %. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from –1·1 to 1·4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of +1·8 to +4·1 (+2·7 on average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1·3–26·4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0·7–1·1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g. >5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from those for other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1·09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit such as Daheishan, whereas a specific magma composition (e.g. with unusually high Mo and/or S concentrations) might be less critical. |
---|---|
AbstractList | Abstract
There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1·09 Mt Mo with an average Mo grade of 0·07 %. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from –1·1 to 1·4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of +1·8 to +4·1 (+2·7 on average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1·3–26·4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0·7–1·1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g. >5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from those for other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1·09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit such as Daheishan, whereas a specific magma composition (e.g. with unusually high Mo and/or S concentrations) might be less critical. There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a continental arc setting related to the subduction of the Paleo-Pacific oceanic plate in the Jurassic and subsequent slab rollback in the early Cretaceous. The Jurassic Daheishan porphyry Mo deposit is one of the largest Mo deposits in NE China, which contains 1·09 Mt Mo with an average Mo grade of 0·07 %. To better understand the factors that could have controlled Mo mineralization at Daheishan, and potentially in other similar porphyry Mo deposits in NE China, the geochemical and isotopic compositions of the ore-related granite porphyry and biotite granodiorite, and the magmatic accessory minerals apatite, titanite and zircon from the Daheishan intrusions, were investigated so as to evaluate the potential roles that magma oxidation states, water contents, sulfur and metal concentrations could have played in the formation of the deposit. Magmatic apatite and titanite from the causative intrusions show similar εNd(t) values from –1·1 to 1·4, corresponding to TDM2 ages ranging from 1040 to 840 Ma, which could be accounted for by a mixing model through the interaction of mantle-derived basaltic melts with the Precambrian lower crust. The Ce and Eu anomalies of the magmatic accessory minerals have been used as proxies for magma redox state, and the results suggest that the ore-forming magmas are highly oxidized, with an estimated ΔFMQ range of +1·8 to +4·1 (+2·7 on average). This is also consistent with the high whole-rock Fe2O3/FeO ratios (1·3–26·4). The Daheishan intrusions display negligible Eu anomalies (Eu/Eu* = 0·7–1·1) and have relatively high Sr/Y ratios (40–94) with adakitic signatures; they also have relatively high Sr/Y ratios in apatite and titanite. These suggest that the fractionation of amphibole rather than plagioclase is dominant during the crystallization of the ore-related magmas, which further indicates a high magmatic water content (e.g. >5 wt%). The magmatic sulfur concentrations were calculated using available partitioning models for apatite from granitoids, and the results (9–125 ppm) are indistinguishable from those for other mineralized, subeconomic and barren intrusions. Furthermore, Monte Carlo modelling has been conducted to simulate the magmatic processes associated with the formation of the Daheishan Mo deposit, and the result reveals that a magma volume of ∼280 km3 with ∼10 ppm Mo was required to form the Mo ores containing 1·09 Mt Mo in Daheishan. The present study suggests that a relatively large volume of parental magmas with high oxygen fugacities and high water contents is essential for the generation of a giant porphyry Mo deposit such as Daheishan, whereas a specific magma composition (e.g. with unusually high Mo and/or S concentrations) might be less critical. |
Author | Xing, Kai Lentz, David R Shu, Qihai |
Author_xml | – sequence: 1 givenname: Kai surname: Xing fullname: Xing, Kai organization: State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, Beijing, China – sequence: 2 givenname: Qihai orcidid: 0000-0002-7203-6008 surname: Shu fullname: Shu, Qihai email: qshu@cugb.edu.cn organization: State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, Beijing, China – sequence: 3 givenname: David R surname: Lentz fullname: Lentz, David R organization: Department of Earth Sciences, University of New Brunswick, Fredericton, NB E3B 5A3, Canada |
BookMark | eNqNkMtOwzAQRS1UJMrjA9h5CRIBO892WfUFUnkIgVhGk3TcGBJPZJtFPoD_JoWKBQvEajRXc-bq3kM2MGSQsVMpLqUYR1cteks1bbor3EAh5GiPDWWciiCMZTJgQyHCMIiSSBywQ-dehZC9LobsY0rGeQvaeMfJcF8hX5BtwOt-I_UlLDUYz2dQoXYVGP5Atq062_Fb4jNsyWnPz-7mfFppA-dcWWr4S0U1Bo9UvnEwaz4pS3SOtow2aKHmS6Sywkb37t0x21dQOzzZzSP2vJg_Ta-D1f3yZjpZBRCJxAdKFiqK0zBNM4hGCgCSNJEyLTNRZoWMM0x6GxDrIkyVKjDCOBz3s489lqgwOmLZ99_SknMWVV5q_xV1W0GdS5Fv28x_2sx3bfak_EW2Vjdguz-Zi2-G3tt_nH8CAOiSDg |
CitedBy_id | crossref_primary_10_1007_s11430_024_1450_5 crossref_primary_10_1016_j_oregeorev_2023_105864 crossref_primary_10_1016_j_oregeorev_2022_105267 crossref_primary_10_1016_j_oregeorev_2023_105822 crossref_primary_10_3389_feart_2022_850440 crossref_primary_10_3724_j_issn_1007_2802_20240045 crossref_primary_10_3390_min12050606 crossref_primary_10_1016_j_oregeorev_2023_105862 crossref_primary_10_3390_min14070718 crossref_primary_10_1016_j_oregeorev_2022_105269 crossref_primary_10_3724_j_issn_1007_2802_20240044 crossref_primary_10_1002_gj_4698 crossref_primary_10_3390_min13040491 crossref_primary_10_1134_S1075701524010070 crossref_primary_10_1007_s00126_023_01188_6 crossref_primary_10_1093_petrology_egae109 crossref_primary_10_1016_j_lithos_2025_108059 crossref_primary_10_3390_min14111104 crossref_primary_10_1080_00206814_2022_2109214 crossref_primary_10_1016_j_oregeorev_2021_104526 crossref_primary_10_31857_S0016777024010068 crossref_primary_10_1016_j_sesci_2024_01_001 crossref_primary_10_1016_j_oregeorev_2022_105035 crossref_primary_10_1016_j_oregeorev_2024_106046 crossref_primary_10_3390_geosciences12010029 crossref_primary_10_5382_econgeo_4989 crossref_primary_10_1016_j_gexplo_2023_107211 crossref_primary_10_1016_j_oregeorev_2022_104858 crossref_primary_10_1016_j_oregeorev_2022_104817 crossref_primary_10_2138_am_2022_8805 crossref_primary_10_1016_j_oregeorev_2023_105803 crossref_primary_10_1016_j_oregeorev_2022_105004 crossref_primary_10_1016_j_oregeorev_2022_105001 crossref_primary_10_1144_geochem2023_067 crossref_primary_10_1016_j_oregeorev_2021_104435 crossref_primary_10_1016_j_oregeorev_2023_105521 crossref_primary_10_1016_j_oregeorev_2024_106013 crossref_primary_10_1002_gj_4673 crossref_primary_10_1016_j_oregeorev_2023_105483 crossref_primary_10_1016_j_gexplo_2021_106938 crossref_primary_10_1016_j_lithos_2022_106898 crossref_primary_10_1016_j_oregeorev_2022_104823 crossref_primary_10_3389_feart_2023_1185964 crossref_primary_10_5382_econgeo_5052 crossref_primary_10_1016_j_oregeorev_2021_104509 crossref_primary_10_1016_j_oregeorev_2024_105898 crossref_primary_10_1016_j_oregeorev_2024_105931 crossref_primary_10_1016_j_oregeorev_2021_104664 crossref_primary_10_1016_j_oregeorev_2023_105355 crossref_primary_10_1016_j_oregeorev_2022_105172 crossref_primary_10_1016_j_oregeorev_2023_105473 crossref_primary_10_1360_SSTe_2024_0065 crossref_primary_10_1007_s00410_023_02034_8 crossref_primary_10_1111_1755_6724_15185 crossref_primary_10_3389_feart_2023_1162994 crossref_primary_10_1016_j_oregeorev_2024_106182 crossref_primary_10_1093_petrology_egac013 crossref_primary_10_1016_j_gsf_2023_101718 crossref_primary_10_3390_min13070951 crossref_primary_10_1016_j_chemgeo_2022_121238 crossref_primary_10_1038_s41598_025_92108_3 crossref_primary_10_1016_j_oregeorev_2022_104716 |
Cites_doi | 10.1038/347662a0 10.2113/gsecongeo.85.3.633 10.1016/j.lithos.2016.03.010 10.1016/S0016-7037(99)00210-0 10.2113/econgeo.107.2.295 10.1038/srep44523 10.1039/b513945g 10.1016/j.oregeorev.2014.09.004 10.2113/econgeo.106.7.1075 10.1016/j.jseaes.2010.11.014 10.1016/B978-0-08-095975-7.01116-5 10.1007/s00410-017-1417-2 10.1093/petrology/egu071 10.1093/petrology/25.4.956 10.2113/gsecongeo.102.7.1335 10.1016/j.epsl.2012.08.008 10.1038/ngeo1940 10.1016/j.oregeorev.2016.04.017 10.2138/am-2018-6224 10.1007/s00126-019-00867-7 10.1016/j.lithos.2016.12.003 10.1016/j.oregeorev.2018.01.026 10.1007/s004100100266 10.1016/j.epsl.2005.12.034 10.1016/j.oregeorev.2011.07.009 10.1016/j.oregeorev.2017.05.018 10.1016/S0016-7037(01)00545-2 10.1111/rge.12140 10.2113/econgeo.112.2.221 10.2138/am-1997-11-1217 10.1016/j.lithos.2019.105207 10.1093/petrology/egaa034 10.2113/econgeo.111.7.1783 10.5382/SP.22 10.2113/gsecongeo.83.2.266 10.2138/am-2017-5907 10.1007/s00410-010-0537-8 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 10.1016/j.chemgeo.2010.05.013 10.2138/am.2012.3812 10.1130/G23637A.1 10.1016/j.gca.2011.08.042 10.2113/gsecongeo.105.1.3 10.1007/s00410-002-0402-5 10.1130/G47169.1 10.1093/petrology/egv044 10.1016/j.chemgeo.2013.12.015 10.5382/SP.22.06 10.1007/s00126-017-0787-8 10.1093/petrology/egi084 10.1016/j.gca.2015.07.016 10.1126/science.1174156 10.1016/0012-821X(87)90173-7 10.1038/ngeo2028 10.5382/econgeo.4823 10.1007/BF00310958 10.2113/econgeo.110.1.241 10.1130/G36734.1 10.2113/econgeo.108.5.987 10.1016/j.epsl.2010.12.017 10.2113/gsecongeo.93.2.138 10.1016/S0375-6742(02)00204-2 10.5382/econgeo.4673 10.1515/9781501509636-011 10.2113/econgeo.112.2.295 10.1016/j.lithos.2018.04.022 10.1016/0016-7037(96)00056-7 10.1016/j.epsl.2017.05.010 10.1016/j.gca.2006.06.162 10.1111/j.1751-3928.2002.tb00127.x 10.1016/S0040-1951(00)00179-7 10.1111/rge.12047 10.1093/petrology/egl035 10.1093/petrology/egv010 10.1016/j.lithos.2016.09.018 10.1007/s00410-011-0606-7 10.1016/j.gca.2010.07.022 10.1016/j.jseaes.2018.03.025 10.1080/08120099.2013.865676 10.1016/j.gr.2017.02.005 10.1007/s00710-014-0359-x 10.1093/petrology/egx016 10.1007/s004100050467 10.1080/00206814.2014.900728 10.1130/G21813.1 10.1093/petrology/egq037 10.1016/j.chemgeo.2008.08.004 10.1016/j.oregeorev.2019.103129 10.1016/j.lithos.2014.12.011 10.1016/j.jseaes.2014.04.020 10.1016/j.oregeorev.2017.09.020 10.1007/s00410-008-0351-8 10.1016/j.gca.2015.04.036 10.5382/econgeo.4694 10.2113/econgeo.108.4.605 10.1016/S0009-2541(02)00151-1 10.1038/s41467-019-14113-1 10.2113/econgeo.109.5.1315 10.1111/j.1751-3928.2001.tb00083.x 10.1130/G37301.1 10.1016/S0009-2541(99)00218-1 10.1130/G46998.1 10.1017/S0263593300007987 10.2475/ajs.283.10.993 10.1016/S0009-2541(01)00274-1 10.1016/j.oregeorev.2015.02.004 10.1093/petrology/egy020 10.2113/gsecongeo.102.4.537 10.5382/econgeo.2018.4572 10.1130/G45362.1 10.1130/G33037.1 10.1016/j.lithos.2018.07.017 10.1007/978-1-4899-2617-3_15 10.1080/00206814.2016.1150213 10.1016/j.lithos.2017.12.027 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
DBID | AAYXX CITATION |
DOI | 10.1093/petrology/egab018 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1460-2415 |
ExternalDocumentID | 10_1093_petrology_egab018 10.1093/petrology/egab018 |
GroupedDBID | -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29L 2WC 4.4 482 48X 5GY 5VS 5WA 5WD 6.Y 70D 9M8 AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAWDT ABDTM ABEUO ABIXL ABJNI ABLJU ABMNT ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABTAH ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACMRT ACPQN ACUFI ACUTJ ACYTK ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHXPO AI. AIAGR AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ANFBD APIBT APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQDIO BQUQU BSWAC BTQHN C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K E3Z EBS EE~ EJD ELUNK ESX F9B FA8 FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HF~ HH5 HVGLF HW0 HZ~ H~9 IOX J21 JAVBF KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY OCL ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO S10 TCN TEORI TJP TLC TN5 TR2 UHB UQL VH1 VJK W8F WH7 WHG X7H XJT XOL YAYTL YKOAZ YSK YXANX ZCA ZKB ZKX ZY4 ~02 ~91 AAYXX ABAZT ABDFA ABEJV ABGNP ABJIA ABPQP ABVGC ABVLG ABXZS ACUXJ ADNBA ADYJX AGORE AHGBF AJBYB AJNCP ALXQX ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-a305t-f1bf3462667a38faaa565116c70c7b147e5ccea0db26ffbe3e429fbe53091efe3 |
ISSN | 0022-3530 |
IngestDate | Tue Jul 01 02:08:08 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Wed Aug 28 03:17:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | magma oxidation state sulfur and Mo contents magma water content Daheishan porphyry Mo deposit accessory minerals |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a305t-f1bf3462667a38faaa565116c70c7b147e5ccea0db26ffbe3e429fbe53091efe3 |
ORCID | 0000-0002-7203-6008 |
ParticipantIDs | crossref_citationtrail_10_1093_petrology_egab018 crossref_primary_10_1093_petrology_egab018 oup_primary_10_1093_petrology_egab018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of petrology |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Parat (2021051715310409300_egab018-B84) 2011; 162 Wang (2021051715310409300_egab018-B113) 2014; 109 Carten (2021051715310409300_egab018-B18) 1988; 83 Richards (2021051715310409300_egab018-B93) 2007; 102 Richards (2021051715310409300_egab018-B92) 2015; 233 Stock (2021051715310409300_egab018-B107) 2018; 59 Evans (2021051715310409300_egab018-B41) 2012; 40 Shu (2021051715310409300_egab018-B101) 2019; 54 Ulmer (2021051715310409300_egab018-B112) 2008; 72 Naney (2021051715310409300_egab018-B79) 1983; 283 Romick (2021051715310409300_egab018-B96) 1992; 112 Müntener (2021051715310409300_egab018-B78) 2001; 141 Rudnick (2021051715310409300_egab018-B98) 2014 Xing (2021051715310409300_egab018-B118) 2020; 105 Han (2021051715310409300_egab018-B45) 2014; 64 Sun (2021051715310409300_egab018-B110) 1989 Sillitoe (2021051715310409300_egab018-B102) 2010; 105 Jagoutz (2021051715310409300_egab018-B51) 2011; 303 Konecke (2021051715310409300_egab018-B56) 2017; 102 Lu (2021051715310409300_egab018-B69) 2016 Castillo (2021051715310409300_egab018-B19) 1999; 134 Wu (2021051715310409300_egab018-B116) 2000; 328 Xu (2021051715310409300_egab018-B120) 2017; 91 Imai (2021051715310409300_egab018-B49) 2001; 51 Smythe (2021051715310409300_egab018-B104) 2015; 170 Zhong (2021051715310409300_egab018-B128) 2018; 53 Alonso-Perez (2021051715310409300_egab018-B1) 2009; 157 Xu (2021051715310409300_egab018-B119) 2015; 109 Chang (2021051715310409300_egab018-B22) 2019 Mungall (2021051715310409300_egab018-B77) 2002; 30 Sinclair (2021051715310409300_egab018-B103) 2007 Annen (2021051715310409300_egab018-B3) 2006; 47 Prowatke (2021051715310409300_egab018-B88) 2006; 70 Macpherson (2021051715310409300_egab018-B70) 2006; 243 Chen (2021051715310409300_egab018-B26) 2017; 81 Moyen (2021051715310409300_egab018-B75) 2017; 277 Zhang (2021051715310409300_egab018-B125) 2016; 58 Pearce (2021051715310409300_egab018-B86) 1984; 25 Zhang (2021051715310409300_egab018-B121) 2017; 112 Chang (2021051715310409300_egab018-B21) 2019 Audétat (2021051715310409300_egab018-B5) 2010; 51 Pan (2021051715310409300_egab018-B83) 2018; 103 Chiaradia (2021051715310409300_egab018-B28) 2020; 11 Shu (2021051715310409300_egab018-B1809815) 2021 Armstrong (2021051715310409300_egab018-B4) 1991 Liu (2021051715310409300_egab018-B64) 2008; 257 Bruand (2021051715310409300_egab018-B14) 2016; 44 Defant (2021051715310409300_egab018-B33) 1990; 347 Chen (2021051715310409300_egab018-B25) 2018; 94 Duan (2021051715310409300_egab018-B40) 2018; 310–311 Deng (2021051715310409300_egab018-B34) 2017; 50 Richards (2021051715310409300_egab018-B95) 2017; 112 Park (2021051715310409300_egab018-B85) 2015; 56 Core (2021051715310409300_egab018-B31) 2006; 34 Goldoff (2021051715310409300_egab018-B44) 2012; 97 Cooke (2021051715310409300_egab018-B30) 2014 Steinberger (2021051715310409300_egab018-B105) 2013; 108 Audétat (2021051715310409300_egab018-B9) 2006; 47 Mengason (2021051715310409300_egab018-B72) 2011; 75 Zhou (2021051715310409300_egab018-B130) 2018; 316-317 Audétat (2021051715310409300_egab018-B8) 2017; 88 Loucks (2021051715310409300_egab018-B67) 2020; 61 Pan (2021051715310409300_egab018-B82) 2016; 254–255 Zheng (2021051715310409300_egab018-B127) 2019; 47 Mercer (2021051715310409300_egab018-B74) 2020; 116 Mpodozis (2021051715310409300_egab018-B76) 2012 Burnham (2021051715310409300_egab018-B15) 2014; 366 Kelley (2021051715310409300_egab018-B54) 2009; 325 Loucks (2021051715310409300_egab018-B66) 2014; 61 Wilkinson (2021051715310409300_egab018-B115) 2017; 8345 Chiaradia (2021051715310409300_egab018-B29) 2017; 7 Jugo (2021051715310409300_egab018-B52) 2010; 74 Peng (2021051715310409300_egab018-B87) 1997; 82 Tiepolo (2021051715310409300_egab018-B111) 2002; 191 Chiaradia (2021051715310409300_egab018-B27) 2014; 7 Wilkinson (2021051715310409300_egab018-B114) 2013; 6 Zheng (2021051715310409300_egab018-B126) 2018; 68 Audétat (2021051715310409300_egab018-B7) 2019; 114 Davidson (2021051715310409300_egab018-B32) 2007; 35 Candela (2021051715310409300_egab018-B17) 1990; 85 Ouyang (2021051715310409300_egab018-B81) 2020; 115 Andrade (2021051715310409300_egab018-B2) 2002; 182 Li (2021051715310409300_egab018-B63) 2015; 162 Richards (2021051715310409300_egab018-B91) 2011; 106 Shu (2021051715310409300_egab018-B100) 2016; 111 Belousova (2021051715310409300_egab018-B11) 2002; 76 Holzheid (2021051715310409300_egab018-B46) 2001; 65 Richards (2021051715310409300_egab018-B94) 2012; 107 Chelle-Michou (2021051715310409300_egab018-B23) 2017; 172 Sha (2021051715310409300_egab018-B99) 1999; 63 Kouzmanov (2021051715310409300_egab018-B57) 2012 Deng (2021051715310409300_egab018-B35) 2019 Stern (2021051715310409300_egab018-B106) 2007; 102 Fei (2021051715310409300_egab018-B42) 2018; 302–303 Keto (2021051715310409300_egab018-B55) 1987; 84 Zhang (2021051715310409300_egab018-B122) 2017; 58 Zhang (2021051715310409300_egab018-B124) 2010; 276 Dilles (2021051715310409300_egab018-B36) 2015; 110 Foster (2021051715310409300_egab018-B43) 2006; 21 Hu (2021051715310409300_egab018-B47) 2014; 90 Blevin (2021051715310409300_egab018-B12) 1992; 83 Li (2021051715310409300_egab018-B60) 2018; 160 Qu (2021051715310409300_egab018-B90) 2019; 348–349 Ding (2021051715310409300_egab018-B37) 2015; 69 Sun (2021051715310409300_egab018-B109) 2015; 65 Li (2021051715310409300_egab018-B61) 2017; 272–273 Pyle (2021051715310409300_egab018-B89) 2002 Lerchbaumer (2021051715310409300_egab018-B59) 2013; 108 Li (2021051715310409300_egab018-B62) 2012; 355–356 Zhou (2021051715310409300_egab018-B129) 2014; 56 Černy (2021051715310409300_egab018-B20) 2005 Mao (2021051715310409300_egab018-B71) 2011; 43 Imai (2021051715310409300_egab018-B50) 2002; 52 Mercer (2021051715310409300_egab018-B73) 2015; 56 Brandon (2021051715310409300_egab018-B13) 1996; 60 Loader (2021051715310409300_egab018-B65) 2017; 472 Ballard (2021051715310409300_egab018-B10) 2002; 144 Stormer (2021051715310409300_egab018-B108) 1993; 78 Rooney (2021051715310409300_egab018-B97) 2011; 161 Burnham (2021051715310409300_egab018-B16) 1979 Kamber (2021051715310409300_egab018-B53) 2000; 166 Wu (2021051715310409300_egab018-B117) 2011; 41 Lu (2021051715310409300_egab018-B68) 2015; 43 Nathwani (2021051715310409300_egab018-B80) 2020; 48 Audétat (2021051715310409300_egab018-B6) 2015; 56 Zhang (2021051715310409300_egab018-B123) 2018; 113 Du (2021051715310409300_egab018-B39) 2020; 48 Lang (2021051715310409300_egab018-B58) 1998; 93 |
References_xml | – volume: 347 start-page: 662 year: 1990 ident: 2021051715310409300_egab018-B33 article-title: Derivation of some modern arc magmas by melting of young subducted lithosphere publication-title: Nature doi: 10.1038/347662a0 – volume: 85 start-page: 633 year: 1990 ident: 2021051715310409300_egab018-B17 article-title: The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melt and ilmenite publication-title: Economic Geology doi: 10.2113/gsecongeo.85.3.633 – volume: 254–255 start-page: 118 year: 2016 ident: 2021051715310409300_egab018-B82 article-title: Apatite trace element and halogen compositions as petrogenetic–metallogenic indicators: examples from four granite plutons in the Sanjiang region, SW China publication-title: Lithos doi: 10.1016/j.lithos.2016.03.010 – volume: 63 start-page: 3861 year: 1999 ident: 2021051715310409300_egab018-B99 article-title: Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis—some mineralogical and petrological constraints publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(99)00210-0 – volume: 107 start-page: 295 year: 2012 ident: 2021051715310409300_egab018-B94 article-title: High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan publication-title: Economic Geology doi: 10.2113/econgeo.107.2.295 – volume: 7 year: 2017 ident: 2021051715310409300_egab018-B29 article-title: Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment publication-title: Scientific Reports doi: 10.1038/srep44523 – volume: 21 start-page: 288 year: 2006 ident: 2021051715310409300_egab018-B43 article-title: In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS publication-title: Journal of Analytical Atomic Spectrometry doi: 10.1039/b513945g – volume: 65 start-page: 97 year: 2015 ident: 2021051715310409300_egab018-B109 article-title: Porphyry deposits and oxidized magmas publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2014.09.004 – volume: 106 start-page: 1075 year: 2011 ident: 2021051715310409300_egab018-B91 article-title: High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water publication-title: Economic Geology doi: 10.2113/econgeo.106.7.1075 – volume: 41 start-page: 1 year: 2011 ident: 2021051715310409300_egab018-B117 article-title: Geochronology of the Phanerozoic granitoids in northeastern China publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2010.11.014 – start-page: 357 volume-title: Treatise on Geochemistry year: 2014 ident: 2021051715310409300_egab018-B30 doi: 10.1016/B978-0-08-095975-7.01116-5 – volume: 172 start-page: 105 year: 2017 ident: 2021051715310409300_egab018-B23 article-title: Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-017-1417-2 – start-page: 329 volume-title: Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits year: 2016 ident: 2021051715310409300_egab018-B69 – volume: 56 start-page: 59 year: 2015 ident: 2021051715310409300_egab018-B85 article-title: The role of late sulfide saturation in the formation of a Cu- and Au-rich magma: Insights from the platinum-group geochemistry of Niuatahi–Motutahi lavas, Tonga rear arc publication-title: Journal of Petrology doi: 10.1093/petrology/egu071 – volume: 25 start-page: 956 year: 1984 ident: 2021051715310409300_egab018-B86 article-title: Trace element discrimination diagrams for the tectonic interpretation of granitic rocks publication-title: Journal of Petrology doi: 10.1093/petrology/25.4.956 – volume: 102 start-page: 1335 year: 2007 ident: 2021051715310409300_egab018-B106 article-title: Magmatic anhydrite in plutonic rocks at the El Teniente Cu–Mo deposit, Chile, and the role of sulfur- and copper-rich magmas in its formation publication-title: Economic Geology and Geology doi: 10.2113/gsecongeo.102.7.1335 – volume: 355–356 start-page: 327 year: 2012 ident: 2021051715310409300_egab018-B62 article-title: Partitioning of V, Mn Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2012.08.008 – volume: 6 start-page: 917 year: 2013 ident: 2021051715310409300_egab018-B114 article-title: Triggers for the formation of porphyry ore deposits in magmatic arcs publication-title: Nature Geoscience doi: 10.1038/ngeo1940 – volume: 81 start-page: 602 year: 2017 ident: 2021051715310409300_egab018-B26 article-title: The Mo deposits of Northeast China: a powerful indicator of tectonic settings and associated evolutionary trends publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2016.04.017 – volume: 103 start-page: 1417 year: 2018 ident: 2021051715310409300_egab018-B83 article-title: Titanite major and trace element compositions as petrogenetic and metallogenic indicators of Mo ore deposits: Examples from four granite plutons in the southern Yidun arc, SW China publication-title: American Mineralogist doi: 10.2138/am-2018-6224 – volume: 54 start-page: 645 year: 2019 ident: 2021051715310409300_egab018-B101 article-title: Zircon trace elements and magma fertility: insights from porphyry (–skarn) Mo deposits in NE China publication-title: Mineralium Deposita doi: 10.1007/s00126-019-00867-7 – start-page: 1 volume-title: Composition of the continental crust year: 2014 ident: 2021051715310409300_egab018-B98 – volume: 272–273 start-page: 291 year: 2017 ident: 2021051715310409300_egab018-B61 article-title: The formation of Luoboling porphyry Cu–Mo deposit: Constraints from zircon and apatite publication-title: Lithos doi: 10.1016/j.lithos.2016.12.003 – volume: 94 start-page: 93 year: 2018 ident: 2021051715310409300_egab018-B25 article-title: In situ major-, trace-elements and Sr–Nd isotopes of apatite from the Luming porphyry Mo deposit, NE China: constraints on the petrogenetic–metallogenic features publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2018.01.026 – volume: 141 start-page: 643 year: 2001 ident: 2021051715310409300_egab018-B78 article-title: The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100100266 – volume: 243 start-page: 581 year: 2006 ident: 2021051715310409300_egab018-B70 article-title: Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2005.12.034 – volume: 105 start-page: 382 year: 2020 ident: 2021051715310409300_egab018-B118 article-title: Zircon and Apatite Geochemical Constraints on the Formation of the Huojihe Porphyry Mo Deposit in the Lesser Xing’an Range, NE China publication-title: American Mineralogist – volume: 43 start-page: 264 year: 2011 ident: 2021051715310409300_egab018-B71 article-title: Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: Characteristics and tectonic settings publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2011.07.009 – volume: 88 start-page: 436 year: 2017 ident: 2021051715310409300_egab018-B8 article-title: The genesis of Climax-type porphyry Mo deposits: insights from fluid inclusions and melt inclusions publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2017.05.018 – volume: 65 start-page: 1933 year: 2001 ident: 2021051715310409300_egab018-B46 article-title: Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(01)00545-2 – volume: 68 start-page: 1 year: 2018 ident: 2021051715310409300_egab018-B126 article-title: Geochronological and Geochemical Constraints on the Petrogenesis and Geodynamic Setting of the Daheishan Porphyry Mo Deposit, Northeast China publication-title: Resource Geology doi: 10.1111/rge.12140 – volume: 112 start-page: 221 year: 2017 ident: 2021051715310409300_egab018-B121 article-title: What caused the formation of the giant Bingham Canyon porphyry Cu–Mo–Au deposit? Insights from melt inclusions and magmatic sulfides publication-title: Economic Geology doi: 10.2113/econgeo.112.2.221 – volume: 82 start-page: 1210 year: 1997 ident: 2021051715310409300_egab018-B87 article-title: Factors controlling sulfur concentrations in volcanic apatite publication-title: American Mineralogist doi: 10.2138/am-1997-11-1217 – volume: 348–349 start-page: 105207 year: 2019 ident: 2021051715310409300_egab018-B90 article-title: Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range, NE China publication-title: Lithos doi: 10.1016/j.lithos.2019.105207 – volume: 61 start-page: egaa034 year: 2020 ident: 2021051715310409300_egab018-B67 article-title: New magmatic oxybarometer using trace elements in zircon publication-title: Journal of Petrology doi: 10.1093/petrology/egaa034 – volume: 111 start-page: 1783 year: 2016 ident: 2021051715310409300_egab018-B100 article-title: Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re–Os dates of porphyry Mo deposits in the northern Xilamulun district publication-title: Economic Geology doi: 10.2113/econgeo.111.7.1783 – start-page: 337 year: 2005 ident: 2021051715310409300_egab018-B20 article-title: Granite-related ore deposits publication-title: Economic Geology 100th Anniversary Volume – start-page: 1 volume-title: Mineral deposits of China: An introduction year: 2019 ident: 2021051715310409300_egab018-B21 doi: 10.5382/SP.22 – volume: 83 start-page: 266 year: 1988 ident: 2021051715310409300_egab018-B18 article-title: Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit publication-title: Economic Geology doi: 10.2113/gsecongeo.83.2.266 – volume: 102 start-page: 548 year: 2017 ident: 2021051715310409300_egab018-B56 article-title: Covariability of S6+, S4+, and S2– in apatite as a function of oxidation state: implications for a new oxybarometer publication-title: American Mineralogist doi: 10.2138/am-2017-5907 – volume: 161 start-page: 373 year: 2011 ident: 2021051715310409300_egab018-B97 article-title: Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation? publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-010-0537-8 – volume: 30 start-page: 915 year: 2002 ident: 2021051715310409300_egab018-B77 article-title: Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits publication-title: Geology doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 – volume: 276 start-page: 144 year: 2010 ident: 2021051715310409300_egab018-B124 article-title: Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: implications for subduction-induced delamination publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2010.05.013 – volume: 97 start-page: 1103 year: 2012 ident: 2021051715310409300_egab018-B44 article-title: Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens publication-title: American Mineralogist doi: 10.2138/am.2012.3812 – volume: 35 start-page: 787 year: 2007 ident: 2021051715310409300_egab018-B32 article-title: Amphibole ‘sponge’ in arc crust? publication-title: Geology doi: 10.1130/G23637A.1 – volume: 75 start-page: 7018 year: 2011 ident: 2021051715310409300_egab018-B72 article-title: Molybdenum, tungsten and manganese partitioning in the system pyrrhotite–Fe–S–O melt–rhyolite melt: impact of sulfide segregation on arc magma evolution publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2011.08.042 – volume: 105 start-page: 3 year: 2010 ident: 2021051715310409300_egab018-B102 article-title: Porphyry copper systems publication-title: Economic Geology doi: 10.2113/gsecongeo.105.1.3 – volume: 144 start-page: 347 year: 2002 ident: 2021051715310409300_egab018-B10 article-title: Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-002-0402-5 – volume: 48 start-page: 519 year: 2020 ident: 2021051715310409300_egab018-B39 article-title: Early sulfide saturation is not detrimental to porphyry Cu–Au formation publication-title: Geology doi: 10.1130/G47169.1 – volume: 56 start-page: 1519 year: 2015 ident: 2021051715310409300_egab018-B6 article-title: Compositional evolution and formation conditions of magmas and fluids related to porphyry Mo mineralization at Climax, Colorado publication-title: Journal of Petrology doi: 10.1093/petrology/egv044 – volume: 366 start-page: 52 year: 2014 ident: 2021051715310409300_egab018-B15 article-title: The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2013.12.015 – start-page: 189 volume-title: Skarn deposits of China year: 2019 ident: 2021051715310409300_egab018-B22 doi: 10.5382/SP.22.06 – volume: 53 start-page: 855 year: 2018 ident: 2021051715310409300_egab018-B128 article-title: Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite) publication-title: Mineralium Deposita doi: 10.1007/s00126-017-0787-8 – start-page: 573 volume-title: Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems year: 2012 ident: 2021051715310409300_egab018-B57 – volume: 47 start-page: 505 year: 2006 ident: 2021051715310409300_egab018-B3 article-title: The genesis of intermediate and silicic magmas in deep crustal hot zones publication-title: Journal of Petrology doi: 10.1093/petrology/egi084 – volume: 170 start-page: 173 year: 2015 ident: 2021051715310409300_egab018-B104 article-title: Cerium oxidation state in silicate melts: Combined fO2, temperature and compositional effects publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2015.07.016 – volume: 325 start-page: 605 year: 2009 ident: 2021051715310409300_egab018-B54 article-title: Water and the oxidation state of subduction zone magmas publication-title: Science doi: 10.1126/science.1174156 – volume: 84 start-page: 27 year: 1987 ident: 2021051715310409300_egab018-B55 article-title: Nd and Sr isotopic variations of Early Paleozoic oceans publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(87)90173-7 – volume: 8345 start-page: 67 year: 2017 ident: 2021051715310409300_egab018-B115 article-title: Porphyry indicator minerals and their mineral chemistry as vectoring and fertility tools publication-title: Geological Survey of Canada, Open File – volume: 7 start-page: 43 year: 2014 ident: 2021051715310409300_egab018-B27 article-title: Copper enrichment in arc magmas controlled by overriding plate thickness publication-title: Nature Geoscience doi: 10.1038/ngeo2028 – volume: 72 start-page: A966 year: 2008 ident: 2021051715310409300_egab018-B112 article-title: Differentiation of mantle-derived calc-alkaline magmas at mid to lower crustal levels: Experimental and petrologic constraints publication-title: Geochimica et Cosmochimica Acta – year: 2021 ident: 2021051715310409300_egab018-B1809815 article-title: Mesozoic Mo mineralization in northeastern China did not require regional-scale pre-enrichment publication-title: Economic Geology, doi:10.5382/econgeo.4823 doi: 10.5382/econgeo.4823 – volume: 112 start-page: 101 year: 1992 ident: 2021051715310409300_egab018-B96 article-title: The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/BF00310958 – volume: 78 start-page: 641 year: 1993 ident: 2021051715310409300_egab018-B108 article-title: Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite publication-title: American Mineralogist – volume: 110 start-page: 241 year: 2015 ident: 2021051715310409300_egab018-B36 article-title: Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas publication-title: Economic Geology doi: 10.2113/econgeo.110.1.241 – volume: 43 start-page: 583 year: 2015 ident: 2021051715310409300_egab018-B68 article-title: Fluid flux melting generated post-collisional high-Sr/Y copper-ore-forming water-rich magmas in Tibet publication-title: Geology doi: 10.1130/G36734.1 – volume: 108 start-page: 987 year: 2013 ident: 2021051715310409300_egab018-B59 article-title: The metal content of silicate melts and aqueous fluids in subeconomically Mo mineralized granites: implications for porphyry Mo genesis publication-title: Economic Geology doi: 10.2113/econgeo.108.5.987 – volume: 303 start-page: 25 year: 2011 ident: 2021051715310409300_egab018-B51 article-title: The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2010.12.017 – volume: 93 start-page: 138 year: 1998 ident: 2021051715310409300_egab018-B58 article-title: Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits publication-title: Economic Geology doi: 10.2113/gsecongeo.93.2.138 – volume: 76 start-page: 45 year: 2002 ident: 2021051715310409300_egab018-B11 article-title: Apatite as an indicator mineral for mineral exploration: trace-element composition and their relationship to host rock type publication-title: Journal of Geochemical Exploration doi: 10.1016/S0375-6742(02)00204-2 – volume: 114 start-page: 1033 year: 2019 ident: 2021051715310409300_egab018-B7 article-title: The metal content of magmatic–hydrothermal fluids and its relationship to mineralization potential publication-title: Economic Geology doi: 10.5382/econgeo.4673 – start-page: 337 volume-title: Phosphates—Geochemical, Geobiological, and Materials Importance. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry year: 2002 ident: 2021051715310409300_egab018-B89 doi: 10.1515/9781501509636-011 – volume: 112 start-page: 295 year: 2017 ident: 2021051715310409300_egab018-B95 article-title: Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu ± Mo ± Au and intrusion-related iron oxide Cu–Au deposits in northern Chile publication-title: Economic Geology doi: 10.2113/econgeo.112.2.295 – volume: 310–311 start-page: 369 year: 2018 ident: 2021051715310409300_egab018-B40 article-title: Using apatite to discriminate synchronous ore-associated and barren granitoid rocks: a case study from the Edong metallogenic district, South China publication-title: Lithos doi: 10.1016/j.lithos.2018.04.022 – volume: 60 start-page: 1739 year: 1996 ident: 2021051715310409300_egab018-B13 article-title: Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(96)00056-7 – volume: 472 start-page: 107 year: 2017 ident: 2021051715310409300_egab018-B65 article-title: The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2017.05.010 – volume: 70 start-page: 4513 year: 2006 ident: 2021051715310409300_egab018-B88 article-title: Trace element partitioning between apatite and silicate melts publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2006.06.162 – volume: 52 start-page: 147 year: 2002 ident: 2021051715310409300_egab018-B50 article-title: Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K–Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks publication-title: Resource Geology doi: 10.1111/j.1751-3928.2002.tb00127.x – volume: 328 start-page: 89 year: 2000 ident: 2021051715310409300_egab018-B116 article-title: Phanerozoic continental crustal growth: Sr–Nd isotopic evidence from the granites in northeastern China publication-title: Tectonophysics doi: 10.1016/S0040-1951(00)00179-7 – volume: 64 start-page: 379 year: 2014 ident: 2021051715310409300_egab018-B45 article-title: Re–Os age of molybdenite from the Daheishan Mo deposit in the Eastern Central Asian Orogenic Belt, NE China publication-title: Resource Geology doi: 10.1111/rge.12047 – volume: 47 start-page: 2021 year: 2006 ident: 2021051715310409300_egab018-B9 article-title: Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA) publication-title: Journal of Petrology doi: 10.1093/petrology/egl035 – volume: 56 start-page: 645 year: 2015 ident: 2021051715310409300_egab018-B73 article-title: Pre-eruptive conditions of the Hideaway Park topaz rhyolite: insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit publication-title: Journal of Petrology doi: 10.1093/petrology/egv010 – volume: 277 start-page: 154 year: 2017 ident: 2021051715310409300_egab018-B75 article-title: Collision vs subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth publication-title: Lithos doi: 10.1016/j.lithos.2016.09.018 – volume: 162 start-page: 463 year: 2011 ident: 2021051715310409300_egab018-B84 article-title: S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-011-0606-7 – volume: 74 start-page: 5926 year: 2010 ident: 2021051715310409300_egab018-B52 article-title: Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2010.07.022 – volume: 160 start-page: 38 year: 2018 ident: 2021051715310409300_egab018-B60 article-title: In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2018.03.025 – volume: 61 start-page: 5 year: 2014 ident: 2021051715310409300_egab018-B66 article-title: Distinctive composition of copper-ore-forming arc magmas publication-title: Australian Journal of Earth Sciences doi: 10.1080/08120099.2013.865676 – volume: 50 start-page: 216 year: 2017 ident: 2021051715310409300_egab018-B34 article-title: Tectonic evolution, superimposed orogeny, and composite metallogenic system in China publication-title: Gondwana Research doi: 10.1016/j.gr.2017.02.005 – volume: 109 start-page: 181 year: 2015 ident: 2021051715310409300_egab018-B119 article-title: LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang–Red River alkaline igneous belt publication-title: Mineralogy and Petrology doi: 10.1007/s00710-014-0359-x – volume: 58 start-page: 277 year: 2017 ident: 2021051715310409300_egab018-B122 article-title: Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad–Henderson and Silver Creek, Colorado, USA publication-title: Journal of Petrology doi: 10.1093/petrology/egx016 – volume: 134 start-page: 33 year: 1999 ident: 2021051715310409300_egab018-B19 article-title: Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s004100050467 – volume: 56 start-page: 929 year: 2014 ident: 2021051715310409300_egab018-B129 article-title: Geochronology of magmatism and mineralization of the Daheishan giant porphyry molybdenum deposit, Jilin Province, Northeast China: constraints on ore genesis and implications for geodynamic setting publication-title: International Geology Review doi: 10.1080/00206814.2014.900728 – volume: 34 start-page: 41 year: 2006 ident: 2021051715310409300_egab018-B31 article-title: Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah publication-title: Geology doi: 10.1130/G21813.1 – start-page: 103 volume-title: Temporal-spatial distribution of metallic ore deposits in China and their geodynamic settings year: 2019 ident: 2021051715310409300_egab018-B35 – volume: 51 start-page: 1739 year: 2010 ident: 2021051715310409300_egab018-B5 article-title: Source and evolution of molybdenum in the porphyry-Mo(–Nb) deposit at Cave Peak, Texas publication-title: Journal of Petrology doi: 10.1093/petrology/egq037 – volume: 257 start-page: 34 year: 2008 ident: 2021051715310409300_egab018-B64 article-title: In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2008.08.004 – volume: 116 start-page: 103129 year: 2020 ident: 2021051715310409300_egab018-B74 article-title: Apatite trace element geochemistry and cathodoluminescent textures—A comparison between regional magmatism and the Pea Ridge IOAREE and Boss IOCG deposits, southeastern Missouri iron metallogenic province, USA publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2019.103129 – volume: 233 start-page: 27 year: 2015 ident: 2021051715310409300_egab018-B92 article-title: The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny publication-title: Lithos doi: 10.1016/j.lithos.2014.12.011 – start-page: 223 volume-title: Geological Association of Canada, Mineral Deposits Division, Special Publication year: 2007 ident: 2021051715310409300_egab018-B103 – volume: 90 start-page: 88 year: 2014 ident: 2021051715310409300_egab018-B47 article-title: A porphyry–skarn metallogenic system in the Lesser Xing’an Range, NE China: implications from U–Pb and Re–Os geochronology and Sr–Nd–Hf isotopes of the Luming Mo and Xulaojiugou Pb–Zn deposits publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2014.04.020 – volume: 91 start-page: 296 year: 2017 ident: 2021051715310409300_egab018-B120 article-title: Cu-rich porphyry magmas produced by fractional crystallization of oxidized fertile basaltic magmas (Sangnan, East Junggar, PR China) publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2017.09.020 – volume: 157 start-page: 541 year: 2009 ident: 2021051715310409300_egab018-B1 article-title: Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids publication-title: Contributions to Mineralogy and Petrology doi: 10.1007/s00410-008-0351-8 – volume: 162 start-page: 25 year: 2015 ident: 2021051715310409300_egab018-B63 article-title: Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2015.04.036 – volume: 115 start-page: 79 year: 2020 ident: 2021051715310409300_egab018-B81 article-title: Geochemistry and crystallization conditions of magmas related to porphyry Mo mineralization in northeastern China publication-title: Economic Geology doi: 10.5382/econgeo.4694 – volume: 108 start-page: 605 year: 2013 ident: 2021051715310409300_egab018-B105 article-title: Source plutons driving porphyry copper ore formation: Combining geomagnetic data, thermal constraints, and chemical mass balance to quantify the magma chamber beneath the Bingham Canyon deposit publication-title: Economic Geology doi: 10.2113/econgeo.108.4.605 – volume: 191 start-page: 105 year: 2002 ident: 2021051715310409300_egab018-B111 article-title: Trace element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients publication-title: Chemical Geology doi: 10.1016/S0009-2541(02)00151-1 – volume: 11 start-page: 248 year: 2020 ident: 2021051715310409300_egab018-B28 article-title: Gold endowments of porphyry deposits controlled by precipitation efficiency publication-title: Nature Communications doi: 10.1038/s41467-019-14113-1 – volume: 109 start-page: 1315 year: 2014 ident: 2021051715310409300_egab018-B113 article-title: Increased magmatic water content—the key to Oligo-Miocene porphyry Cu–Mo ± Au formation in the eastern Gangdese belt publication-title: Economic Geology doi: 10.2113/econgeo.109.5.1315 – start-page: 71 volume-title: Geochemistry of Hydrothermal Ore Deposits year: 1979 ident: 2021051715310409300_egab018-B16 – volume: 51 start-page: 71 year: 2001 ident: 2021051715310409300_egab018-B49 article-title: Generation and evolution of ore fluids for Porphyry Cu–Au mineralization of the Santo Tomas II (Philex) Deposit publication-title: Resource Geology doi: 10.1111/j.1751-3928.2001.tb00083.x – volume: 44 start-page: 91 year: 2016 ident: 2021051715310409300_egab018-B14 article-title: An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance publication-title: Geology doi: 10.1130/G37301.1 – volume: 166 start-page: 241 year: 2000 ident: 2021051715310409300_egab018-B53 article-title: Role of ‘hidden’ deeply subducted slabs in mantle depletion publication-title: Chemical Geology doi: 10.1016/S0009-2541(99)00218-1 – volume: 48 start-page: 323 year: 2020 ident: 2021051715310409300_egab018-B80 article-title: Multi-stage arc magma evolution recorded by apatite in volcanic rocks publication-title: Geology doi: 10.1130/G46998.1 – volume: 83 start-page: 305 year: 1992 ident: 2021051715310409300_egab018-B12 article-title: The role of magma sources, oxidation states and fractionation in determining the granitoid metallogeny of eastern Australia publication-title: Earth and Environmental Science Transactions of the Royal Society of Edinburgh doi: 10.1017/S0263593300007987 – volume: 283 start-page: 993 year: 1983 ident: 2021051715310409300_egab018-B79 article-title: Phase equilibria of rock-forming ferromagnesian silicates in granitic systems publication-title: American Journal of Science doi: 10.2475/ajs.283.10.993 – volume: 182 start-page: 85 year: 2002 ident: 2021051715310409300_egab018-B2 article-title: Iron (II) oxide determination in rocks and minerals publication-title: Chemical Geology doi: 10.1016/S0009-2541(01)00274-1 – volume: 69 start-page: 104 year: 2015 ident: 2021051715310409300_egab018-B37 article-title: Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: implications for petrogenesis and metallogenesis publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2015.02.004 – volume: 59 start-page: 2463 year: 2018 ident: 2021051715310409300_egab018-B107 article-title: Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy publication-title: Journal of Petrology doi: 10.1093/petrology/egy020 – volume: 102 start-page: 537 year: 2007 ident: 2021051715310409300_egab018-B93 article-title: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis publication-title: Economic Geology doi: 10.2113/gsecongeo.102.4.537 – volume: 113 start-page: 803 year: 2018 ident: 2021051715310409300_egab018-B123 article-title: Magmatic–hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China: a melt and fluid inclusion study publication-title: Economic Geology doi: 10.5382/econgeo.2018.4572 – start-page: 329 volume-title: Cenozoic tectonics and porphyry copper systems of the Chilean Andes year: 2012 ident: 2021051715310409300_egab018-B76 – volume: 47 start-page: 135 year: 2019 ident: 2021051715310409300_egab018-B127 article-title: Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting publication-title: Geology doi: 10.1130/G45362.1 – volume: 40 start-page: 783 year: 2012 ident: 2021051715310409300_egab018-B41 article-title: Oxidation state of subarc mantle publication-title: Geology doi: 10.1130/G33037.1 – volume: 316-317 start-page: 212 year: 2018 ident: 2021051715310409300_egab018-B130 article-title: What triggers fertile porphyritic Mo magmas in subduction setting: a case study from the giant Daheishan Mo deposit, NE China publication-title: Lithos doi: 10.1016/j.lithos.2018.07.017 – start-page: 261 volume-title: Electron Probe Quantitation year: 1991 ident: 2021051715310409300_egab018-B4 doi: 10.1007/978-1-4899-2617-3_15 – start-page: 313 volume-title: Magmatism in the Ocean Basins. Geological Society, London, Special Publications year: 1989 ident: 2021051715310409300_egab018-B110 – volume: 58 start-page: 1158 year: 2016 ident: 2021051715310409300_egab018-B125 article-title: Ore-forming granites from Jurassic porphyry Mo deposits, east–central Jilin Province, China: geochemistry, geochronology, and petrogenesis publication-title: International Geology Review doi: 10.1080/00206814.2016.1150213 – volume: 302–303 start-page: 158 year: 2018 ident: 2021051715310409300_egab018-B42 article-title: Highly differentiated magmas linked with polymetallic mineralization: a case study from the Cuihongshan granitic intrusions, Lesser Xing’an Range, NE China publication-title: Lithos doi: 10.1016/j.lithos.2017.12.027 |
SSID | ssj0014150 |
Score | 2.5697942 |
Snippet | Abstract
There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly... There are more than 80 porphyry (or skarn) Mo deposits in northeastern China with Jurassic or Cretaceous ages. These are thought to have formed mainly in a... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
Title | Constraints on the Formation of the Giant Daheishan Porphyry Mo Deposit (NE China) from Whole-Rock and Accessory Mineral Geochemistry |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx2Avo_ti3dpxDx3sA622JVvJYxlpS7sUNlqWtyDZchMY8QjOQ_u-_7t3sqw4o93avThB2Iej--V038fYrlCpGpi04NS7m8tU97kuC8sTqa0QGm05TQ790Wl2dC6Px-m41-tmLS1r8zm_urGu5H-4imvIV6qSvQdnA1FcwO_IX7wih_F6Jx7TtE034yE4_T8dtMWIbfD_EPlfI3OnluYso8SraGcXl_hvRmHjcrbcRJ5hM0qbvASu5OQHDc7l31FcuvjCvhusSAH50cw1qiZvet5Oi7tFxUWNfLHmth_7CSonehZcO9MlrXybTVdrX_EkvAoZ9z6n0bsmkriT0dItFfCBF9tIWJlFnNSGrgjOkg7U5I2Svel6Fd6b-H2hTeSF91of7T_Ot5B12MTbxSQQmXgSD9jDBK2MxMn1YD3F-JJRaDaPv6INig_EXiCx50msqTVUKtnRUs422RO_97DfYOUp69n5M_bo0I1vvnzOfncQA9UcECAQEANV6RYcYiAgBlrEwKgCjxh4fzoEh5cPQGiBFVoA0QIBLeDRAl20vGDnB8OzL0fcD-LgGo-DmpexKYVE0zdTWvRLrTWaAXGc5SrKlYmlsimS1VFhkqwsjRUWtRz8xD0bxLa04iXbmFdz-4pBKrQsFFVX20ymymiD8kAV_ULhY4NcbrGo3cdJ7rvU07b8nNzKvS32MTzyq2nR8reb3yFz_n3f6_sQfcMer-C_zTbqxdLuoK5am7cOUdeERp8m |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+the+Formation+of+the+Giant+Daheishan+Porphyry+Mo+Deposit+%28NE+China%29+from+Whole-Rock+and+Accessory+Mineral+Geochemistry&rft.jtitle=Journal+of+petrology&rft.au=Xing%2C+Kai&rft.au=Shu%2C+Qihai&rft.au=Lentz%2C+David+R&rft.date=2021-04-01&rft.issn=0022-3530&rft.eissn=1460-2415&rft.volume=62&rft.issue=4&rft_id=info:doi/10.1093%2Fpetrology%2Fegab018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_petrology_egab018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3530&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3530&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3530&client=summon |