Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta

Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex inlet comprising of the aortic valve and root, which is highly prone to different morphologies and pathologies. We investigated the effect of us...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanical engineering Vol. 140; no. 1
Main Authors Youssefi, Pouya, Gomez, Alberto, Arthurs, Christopher, Sharma, Rajan, Jahangiri, Marjan, Alberto Figueroa, C
Format Journal Article
LanguageEnglish
Published United States 01.01.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex inlet comprising of the aortic valve and root, which is highly prone to different morphologies and pathologies. We investigated the effect of using patient-specific (PS) inflow velocity profiles compared to idealized profiles based on the patient's flow waveform. A healthy 31 yo with a normally functioning tricuspid aortic valve (subject A), and a 52 yo with a bicuspid aortic valve (BAV), aortic valvular stenosis, and dilated ascending aorta (subject B) were studied. Subjects underwent MR angiography to image and reconstruct three-dimensional (3D) geometric models of the thoracic aorta. Flow-magnetic resonance imaging (MRI) was acquired above the aortic valve and used to extract the patient-specific velocity profiles. Subject B's eccentric asymmetrical inflow profile led to highly complex velocity patterns, which were not replicated by the idealized velocity profiles. Despite having identical flow rates, the idealized inflow profiles displayed significantly different peak and radial velocities. Subject A's results showed some similarity between PS and parabolic inflow profiles; however, other parameters such as Flowasymmetry were significantly different. Idealized inflow velocity profiles significantly alter velocity patterns and produce inaccurate hemodynamic assessments in the thoracic aorta. The complex structure of the aortic valve and its predisposition to pathological change means the inflow into the thoracic aorta can be highly variable. CFD analysis of the thoracic aorta needs to utilize fully PS inflow boundary conditions in order to produce truly meaningful results.
AbstractList Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex inlet comprising of the aortic valve and root, which is highly prone to different morphologies and pathologies. We investigated the effect of using patient-specific (PS) inflow velocity profiles compared to idealized profiles based on the patient's flow waveform. A healthy 31 yo with a normally functioning tricuspid aortic valve (subject A), and a 52 yo with a bicuspid aortic valve (BAV), aortic valvular stenosis, and dilated ascending aorta (subject B) were studied. Subjects underwent MR angiography to image and reconstruct three-dimensional (3D) geometric models of the thoracic aorta. Flow-magnetic resonance imaging (MRI) was acquired above the aortic valve and used to extract the patient-specific velocity profiles. Subject B's eccentric asymmetrical inflow profile led to highly complex velocity patterns, which were not replicated by the idealized velocity profiles. Despite having identical flow rates, the idealized inflow profiles displayed significantly different peak and radial velocities. Subject A's results showed some similarity between PS and parabolic inflow profiles; however, other parameters such as Flowasymmetry were significantly different. Idealized inflow velocity profiles significantly alter velocity patterns and produce inaccurate hemodynamic assessments in the thoracic aorta. The complex structure of the aortic valve and its predisposition to pathological change means the inflow into the thoracic aorta can be highly variable. CFD analysis of the thoracic aorta needs to utilize fully PS inflow boundary conditions in order to produce truly meaningful results.
Author Youssefi, Pouya
Arthurs, Christopher
Alberto Figueroa, C
Sharma, Rajan
Jahangiri, Marjan
Gomez, Alberto
Author_xml – sequence: 1
  givenname: Pouya
  surname: Youssefi
  fullname: Youssefi, Pouya
  organization: Department of Biomedical Engineering, King's College London, London SE1 7EH, UK e-mail: 
– sequence: 2
  givenname: Alberto
  surname: Gomez
  fullname: Gomez, Alberto
  organization: Department of Biomedical Engineering, King's College London, London SE1 7EH, UK e-mail: 
– sequence: 3
  givenname: Christopher
  surname: Arthurs
  fullname: Arthurs, Christopher
  organization: Department of Biomedical Engineering, King's College London, London SE1 7EH, UK e-mail: 
– sequence: 4
  givenname: Rajan
  surname: Sharma
  fullname: Sharma, Rajan
  organization: Department of Cardiology, St. George's Hospital, London SW17 0QT, UK e-mail: 
– sequence: 5
  givenname: Marjan
  surname: Jahangiri
  fullname: Jahangiri, Marjan
  organization: Department of Cardiothoracic Surgery, St. George's Hospital, London SW17 0QT, UK e-mail: 
– sequence: 6
  givenname: C
  surname: Alberto Figueroa
  fullname: Alberto Figueroa, C
  organization: Departments of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail: 
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28890987$$D View this record in MEDLINE/PubMed
BookMark eNo1j91KwzAYQIMo7kcvfAHJC3TmS5smvRxDXWHgwCnejTT5wiJtUtqI9O1V1KtzdQ6cBTkPMSAhN8BWACDuYFWwXCohz8gcBFeZqgTMyGIc3xkDUAW7JDOuVMUqJefkre56bRKNju518hhS9tyj8c4bWgfXxk_6im00Pk10P0TnW6Qx0C120U5Bd96MP246IT2c4qDNt7eOQ9JX5MLpdsTrPy7Jy8P9YbPNdk-P9Wa9y3TORMpkKStWAAc0Fo0ynDsLAqXLnXXaCiU4R1blJasay1RTau445I1hSnObW74kt7_d_qPp0B77wXd6mI7_i_wLwJ5SCw
CitedBy_id crossref_primary_10_1007_s10439_021_02744_9
crossref_primary_10_1016_j_compfluid_2018_01_012
crossref_primary_10_1016_j_medengphy_2020_07_001
crossref_primary_10_1007_s00366_024_02100_0
crossref_primary_10_1016_j_jcp_2024_113096
crossref_primary_10_3390_fluids8100272
crossref_primary_10_1152_physrev_00038_2022
crossref_primary_10_1016_j_compbiomed_2025_109876
crossref_primary_10_1016_j_cmpb_2023_107468
crossref_primary_10_1002_cnm_3855
crossref_primary_10_1002_cnm_3736
crossref_primary_10_1007_s11517_020_02287_6
crossref_primary_10_1155_2020_4568509
crossref_primary_10_1016_j_cmpb_2024_108369
crossref_primary_10_1016_j_jbiomech_2019_109478
crossref_primary_10_3389_fbioe_2025_1556091
crossref_primary_10_1002_mrm_28269
crossref_primary_10_1016_j_compbiomed_2021_104652
crossref_primary_10_1016_j_jtcvs_2018_06_022
crossref_primary_10_1007_s10439_020_02448_6
crossref_primary_10_1007_s12055_021_01326_7
crossref_primary_10_1007_s10237_025_01939_6
crossref_primary_10_1016_j_jbiomech_2023_111620
crossref_primary_10_3389_fcvm_2021_670841
crossref_primary_10_3389_fcvm_2020_00075
crossref_primary_10_3390_app10041396
crossref_primary_10_1016_j_ijnonlinmec_2023_104517
crossref_primary_10_1111_aor_14679
crossref_primary_10_1016_j_avsg_2021_08_007
crossref_primary_10_1016_j_compbiomed_2024_108310
crossref_primary_10_1115_1_4048978
crossref_primary_10_1371_journal_pcbi_1012231
crossref_primary_10_3389_fmedt_2021_748908
crossref_primary_10_3390_app13085095
crossref_primary_10_1038_s41598_018_31015_2
crossref_primary_10_1016_j_cmpb_2024_108214
crossref_primary_10_1115_1_4054459
crossref_primary_10_1016_j_compbiomed_2021_104581
crossref_primary_10_1098_rsif_2023_0656
crossref_primary_10_1371_journal_pcbi_1011055
crossref_primary_10_1016_j_csite_2024_104746
crossref_primary_10_1016_j_compfluid_2023_106043
crossref_primary_10_1038_s41598_020_65576_y
crossref_primary_10_1016_j_avsg_2024_07_111
crossref_primary_10_1098_rsif_2023_0281
crossref_primary_10_1016_j_jbiomech_2020_109954
crossref_primary_10_1109_TBME_2018_2880606
crossref_primary_10_1016_j_cmpb_2022_107004
crossref_primary_10_1063_5_0068998
crossref_primary_10_1007_s10237_023_01745_y
crossref_primary_10_1016_j_ijheatfluidflow_2022_108986
crossref_primary_10_1371_journal_pcbi_1008881
crossref_primary_10_1016_j_jbiomech_2021_110793
crossref_primary_10_3390_bioengineering10020272
crossref_primary_10_1007_s10439_019_02307_z
crossref_primary_10_3233_BIR_201009
crossref_primary_10_1007_s10237_021_01542_5
crossref_primary_10_1093_ehjdh_ztac058
crossref_primary_10_1002_cnm_3884
crossref_primary_10_1016_j_cmpb_2022_106826
crossref_primary_10_1016_j_compfluid_2021_105123
crossref_primary_10_1007_s10439_022_02967_4
crossref_primary_10_1016_j_medengphy_2020_09_005
crossref_primary_10_3390_jcm14041290
crossref_primary_10_1002_cnm_3326
crossref_primary_10_1007_s10237_019_01282_7
crossref_primary_10_1016_j_ijmecsci_2021_107038
crossref_primary_10_1016_j_compbiomed_2021_104882
crossref_primary_10_1186_s12938_024_01251_x
crossref_primary_10_1007_s10237_021_01419_7
crossref_primary_10_1007_s13239_023_00682_2
crossref_primary_10_47480_isibted_1391391
crossref_primary_10_1016_j_heliyon_2023_e17533
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1115/1.4037857
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 28890987
Genre Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: NH/11/5/29058
GroupedDBID ---
-~X
.DC
29J
4.4
5AI
5GY
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ADPDT
AGNGV
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
ID FETCH-LOGICAL-a305t-767904121ecdec8c22fd15e7f3fdfad58522e093609bd08b6a2f213bc08a2d3d2
IngestDate Sat May 31 02:05:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a305t-767904121ecdec8c22fd15e7f3fdfad58522e093609bd08b6a2f213bc08a2d3d2
PMID 28890987
ParticipantIDs pubmed_primary_28890987
PublicationCentury 2000
PublicationDate 2018-Jan-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2018
SSID ssj0011840
Score 2.504246
Snippet Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex...
SourceID pubmed
SourceType Index Database
SubjectTerms Aorta, Thoracic - diagnostic imaging
Aorta, Thoracic - physiology
Hemodynamics
Humans
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Patient-Specific Modeling
Title Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta
URI https://www.ncbi.nlm.nih.gov/pubmed/28890987
Volume 140
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rguhBfL8lB28SbdNXclxEXQXFwyp7kzYPVHQr7oqof97Jo92yKKxeSmlIKfm-TGeSzDcI7YPNl4XmmkR5wkgMfxzCokgRlooCTGEeqswkJ19epZ2b-KKX9Fqtr2Z2ybA4FJ8_5pX8B1V4BriaLNk_IFu_FB7APeALV0AYrhNhfF6nOF47eVRiy8nrBwHzXj-V7we3Cn5WLg3Q1uY2ewMd9VxKV4h-UB0R6N4DFQT0axt3_BeP1abqm0xhC6waKRk2TMdgoLQ9IHBdvn3UJv8MOn66fBpzkLsc0Wx4__Y6rnJQr_pYWW1LgvzRs9gvUISssUChvFGljDDuhWUrq-tUmpr0-sGaG-GL8DAOoow5HesGqi_PFlbKGA84m6B1TFi7appCUxBimJqpZqHHb0CZwNcLUcFXHNXfYMSjfb-xQMQ6JN1FtOBxwW1HiyXUUv1lNN_Ql1xGs6bwqqnmB7eX_hDFCuo52uBS43HaYEcbXNEGe9rgso-btDF9gTa4og22tFlFN6cn3eMO8QU2SA5mfkiyNONGby1UQirBBKVahonKdKSlziVEkpSqgEdpwAsZsCLNqaZhVIiA5VRGkq6h6X7ZVxsIB1poKVQq0riIweXkCcTVSc5FFipN42wTrbvBuntxKip31TBu_dqyjeZGfNpBMxqmrdoFH3BY7Fm0vgFUmV60
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Patient-Specific+Inflow+Velocity+Profile+on+Hemodynamics+of+the+Thoracic+Aorta&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Youssefi%2C+Pouya&rft.au=Gomez%2C+Alberto&rft.au=Arthurs%2C+Christopher&rft.au=Sharma%2C+Rajan&rft.date=2018-01-01&rft.eissn=1528-8951&rft.volume=140&rft.issue=1&rft_id=info:doi/10.1115%2F1.4037857&rft_id=info%3Apmid%2F28890987&rft_id=info%3Apmid%2F28890987&rft.externalDocID=28890987