Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta
Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex inlet comprising of the aortic valve and root, which is highly prone to different morphologies and pathologies. We investigated the effect of us...
Saved in:
Published in | Journal of biomechanical engineering Vol. 140; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex inlet comprising of the aortic valve and root, which is highly prone to different morphologies and pathologies. We investigated the effect of using patient-specific (PS) inflow velocity profiles compared to idealized profiles based on the patient's flow waveform. A healthy 31 yo with a normally functioning tricuspid aortic valve (subject A), and a 52 yo with a bicuspid aortic valve (BAV), aortic valvular stenosis, and dilated ascending aorta (subject B) were studied. Subjects underwent MR angiography to image and reconstruct three-dimensional (3D) geometric models of the thoracic aorta. Flow-magnetic resonance imaging (MRI) was acquired above the aortic valve and used to extract the patient-specific velocity profiles. Subject B's eccentric asymmetrical inflow profile led to highly complex velocity patterns, which were not replicated by the idealized velocity profiles. Despite having identical flow rates, the idealized inflow profiles displayed significantly different peak and radial velocities. Subject A's results showed some similarity between PS and parabolic inflow profiles; however, other parameters such as Flowasymmetry were significantly different. Idealized inflow velocity profiles significantly alter velocity patterns and produce inaccurate hemodynamic assessments in the thoracic aorta. The complex structure of the aortic valve and its predisposition to pathological change means the inflow into the thoracic aorta can be highly variable. CFD analysis of the thoracic aorta needs to utilize fully PS inflow boundary conditions in order to produce truly meaningful results. |
---|---|
AbstractList | Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex inlet comprising of the aortic valve and root, which is highly prone to different morphologies and pathologies. We investigated the effect of using patient-specific (PS) inflow velocity profiles compared to idealized profiles based on the patient's flow waveform. A healthy 31 yo with a normally functioning tricuspid aortic valve (subject A), and a 52 yo with a bicuspid aortic valve (BAV), aortic valvular stenosis, and dilated ascending aorta (subject B) were studied. Subjects underwent MR angiography to image and reconstruct three-dimensional (3D) geometric models of the thoracic aorta. Flow-magnetic resonance imaging (MRI) was acquired above the aortic valve and used to extract the patient-specific velocity profiles. Subject B's eccentric asymmetrical inflow profile led to highly complex velocity patterns, which were not replicated by the idealized velocity profiles. Despite having identical flow rates, the idealized inflow profiles displayed significantly different peak and radial velocities. Subject A's results showed some similarity between PS and parabolic inflow profiles; however, other parameters such as Flowasymmetry were significantly different. Idealized inflow velocity profiles significantly alter velocity patterns and produce inaccurate hemodynamic assessments in the thoracic aorta. The complex structure of the aortic valve and its predisposition to pathological change means the inflow into the thoracic aorta can be highly variable. CFD analysis of the thoracic aorta needs to utilize fully PS inflow boundary conditions in order to produce truly meaningful results. |
Author | Youssefi, Pouya Arthurs, Christopher Alberto Figueroa, C Sharma, Rajan Jahangiri, Marjan Gomez, Alberto |
Author_xml | – sequence: 1 givenname: Pouya surname: Youssefi fullname: Youssefi, Pouya organization: Department of Biomedical Engineering, King's College London, London SE1 7EH, UK e-mail: – sequence: 2 givenname: Alberto surname: Gomez fullname: Gomez, Alberto organization: Department of Biomedical Engineering, King's College London, London SE1 7EH, UK e-mail: – sequence: 3 givenname: Christopher surname: Arthurs fullname: Arthurs, Christopher organization: Department of Biomedical Engineering, King's College London, London SE1 7EH, UK e-mail: – sequence: 4 givenname: Rajan surname: Sharma fullname: Sharma, Rajan organization: Department of Cardiology, St. George's Hospital, London SW17 0QT, UK e-mail: – sequence: 5 givenname: Marjan surname: Jahangiri fullname: Jahangiri, Marjan organization: Department of Cardiothoracic Surgery, St. George's Hospital, London SW17 0QT, UK e-mail: – sequence: 6 givenname: C surname: Alberto Figueroa fullname: Alberto Figueroa, C organization: Departments of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail: |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28890987$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j91KwzAYQIMo7kcvfAHJC3TmS5smvRxDXWHgwCnejTT5wiJtUtqI9O1V1KtzdQ6cBTkPMSAhN8BWACDuYFWwXCohz8gcBFeZqgTMyGIc3xkDUAW7JDOuVMUqJefkre56bRKNju518hhS9tyj8c4bWgfXxk_6im00Pk10P0TnW6Qx0C120U5Bd96MP246IT2c4qDNt7eOQ9JX5MLpdsTrPy7Jy8P9YbPNdk-P9Wa9y3TORMpkKStWAAc0Fo0ynDsLAqXLnXXaCiU4R1blJasay1RTau445I1hSnObW74kt7_d_qPp0B77wXd6mI7_i_wLwJ5SCw |
CitedBy_id | crossref_primary_10_1007_s10439_021_02744_9 crossref_primary_10_1016_j_compfluid_2018_01_012 crossref_primary_10_1016_j_medengphy_2020_07_001 crossref_primary_10_1007_s00366_024_02100_0 crossref_primary_10_1016_j_jcp_2024_113096 crossref_primary_10_3390_fluids8100272 crossref_primary_10_1152_physrev_00038_2022 crossref_primary_10_1016_j_compbiomed_2025_109876 crossref_primary_10_1016_j_cmpb_2023_107468 crossref_primary_10_1002_cnm_3855 crossref_primary_10_1002_cnm_3736 crossref_primary_10_1007_s11517_020_02287_6 crossref_primary_10_1155_2020_4568509 crossref_primary_10_1016_j_cmpb_2024_108369 crossref_primary_10_1016_j_jbiomech_2019_109478 crossref_primary_10_3389_fbioe_2025_1556091 crossref_primary_10_1002_mrm_28269 crossref_primary_10_1016_j_compbiomed_2021_104652 crossref_primary_10_1016_j_jtcvs_2018_06_022 crossref_primary_10_1007_s10439_020_02448_6 crossref_primary_10_1007_s12055_021_01326_7 crossref_primary_10_1007_s10237_025_01939_6 crossref_primary_10_1016_j_jbiomech_2023_111620 crossref_primary_10_3389_fcvm_2021_670841 crossref_primary_10_3389_fcvm_2020_00075 crossref_primary_10_3390_app10041396 crossref_primary_10_1016_j_ijnonlinmec_2023_104517 crossref_primary_10_1111_aor_14679 crossref_primary_10_1016_j_avsg_2021_08_007 crossref_primary_10_1016_j_compbiomed_2024_108310 crossref_primary_10_1115_1_4048978 crossref_primary_10_1371_journal_pcbi_1012231 crossref_primary_10_3389_fmedt_2021_748908 crossref_primary_10_3390_app13085095 crossref_primary_10_1038_s41598_018_31015_2 crossref_primary_10_1016_j_cmpb_2024_108214 crossref_primary_10_1115_1_4054459 crossref_primary_10_1016_j_compbiomed_2021_104581 crossref_primary_10_1098_rsif_2023_0656 crossref_primary_10_1371_journal_pcbi_1011055 crossref_primary_10_1016_j_csite_2024_104746 crossref_primary_10_1016_j_compfluid_2023_106043 crossref_primary_10_1038_s41598_020_65576_y crossref_primary_10_1016_j_avsg_2024_07_111 crossref_primary_10_1098_rsif_2023_0281 crossref_primary_10_1016_j_jbiomech_2020_109954 crossref_primary_10_1109_TBME_2018_2880606 crossref_primary_10_1016_j_cmpb_2022_107004 crossref_primary_10_1063_5_0068998 crossref_primary_10_1007_s10237_023_01745_y crossref_primary_10_1016_j_ijheatfluidflow_2022_108986 crossref_primary_10_1371_journal_pcbi_1008881 crossref_primary_10_1016_j_jbiomech_2021_110793 crossref_primary_10_3390_bioengineering10020272 crossref_primary_10_1007_s10439_019_02307_z crossref_primary_10_3233_BIR_201009 crossref_primary_10_1007_s10237_021_01542_5 crossref_primary_10_1093_ehjdh_ztac058 crossref_primary_10_1002_cnm_3884 crossref_primary_10_1016_j_cmpb_2022_106826 crossref_primary_10_1016_j_compfluid_2021_105123 crossref_primary_10_1007_s10439_022_02967_4 crossref_primary_10_1016_j_medengphy_2020_09_005 crossref_primary_10_3390_jcm14041290 crossref_primary_10_1002_cnm_3326 crossref_primary_10_1007_s10237_019_01282_7 crossref_primary_10_1016_j_ijmecsci_2021_107038 crossref_primary_10_1016_j_compbiomed_2021_104882 crossref_primary_10_1186_s12938_024_01251_x crossref_primary_10_1007_s10237_021_01419_7 crossref_primary_10_1007_s13239_023_00682_2 crossref_primary_10_47480_isibted_1391391 crossref_primary_10_1016_j_heliyon_2023_e17533 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1115/1.4037857 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Engineering Forestry |
EISSN | 1528-8951 |
ExternalDocumentID | 28890987 |
Genre | Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: NH/11/5/29058 |
GroupedDBID | --- -~X .DC 29J 4.4 5AI 5GY ABJNI ACBEA ACGFO ACGFS ACKMT ADPDT AGNGV ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR |
ID | FETCH-LOGICAL-a305t-767904121ecdec8c22fd15e7f3fdfad58522e093609bd08b6a2f213bc08a2d3d2 |
IngestDate | Sat May 31 02:05:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a305t-767904121ecdec8c22fd15e7f3fdfad58522e093609bd08b6a2f213bc08a2d3d2 |
PMID | 28890987 |
ParticipantIDs | pubmed_primary_28890987 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomechanical engineering |
PublicationTitleAlternate | J Biomech Eng |
PublicationYear | 2018 |
SSID | ssj0011840 |
Score | 2.504246 |
Snippet | Computational fluid dynamics (CFD) provides a noninvasive method to functionally assess aortic hemodynamics. The thoracic aorta has an anatomically complex... |
SourceID | pubmed |
SourceType | Index Database |
SubjectTerms | Aorta, Thoracic - diagnostic imaging Aorta, Thoracic - physiology Hemodynamics Humans Imaging, Three-Dimensional Magnetic Resonance Imaging Patient-Specific Modeling |
Title | Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28890987 |
Volume | 140 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rguhBfL8lB28SbdNXclxEXQXFwyp7kzYPVHQr7oqof97Jo92yKKxeSmlIKfm-TGeSzDcI7YPNl4XmmkR5wkgMfxzCokgRlooCTGEeqswkJ19epZ2b-KKX9Fqtr2Z2ybA4FJ8_5pX8B1V4BriaLNk_IFu_FB7APeALV0AYrhNhfF6nOF47eVRiy8nrBwHzXj-V7we3Cn5WLg3Q1uY2ewMd9VxKV4h-UB0R6N4DFQT0axt3_BeP1abqm0xhC6waKRk2TMdgoLQ9IHBdvn3UJv8MOn66fBpzkLsc0Wx4__Y6rnJQr_pYWW1LgvzRs9gvUISssUChvFGljDDuhWUrq-tUmpr0-sGaG-GL8DAOoow5HesGqi_PFlbKGA84m6B1TFi7appCUxBimJqpZqHHb0CZwNcLUcFXHNXfYMSjfb-xQMQ6JN1FtOBxwW1HiyXUUv1lNN_Ql1xGs6bwqqnmB7eX_hDFCuo52uBS43HaYEcbXNEGe9rgso-btDF9gTa4og22tFlFN6cn3eMO8QU2SA5mfkiyNONGby1UQirBBKVahonKdKSlziVEkpSqgEdpwAsZsCLNqaZhVIiA5VRGkq6h6X7ZVxsIB1poKVQq0riIweXkCcTVSc5FFipN42wTrbvBuntxKip31TBu_dqyjeZGfNpBMxqmrdoFH3BY7Fm0vgFUmV60 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Patient-Specific+Inflow+Velocity+Profile+on+Hemodynamics+of+the+Thoracic+Aorta&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Youssefi%2C+Pouya&rft.au=Gomez%2C+Alberto&rft.au=Arthurs%2C+Christopher&rft.au=Sharma%2C+Rajan&rft.date=2018-01-01&rft.eissn=1528-8951&rft.volume=140&rft.issue=1&rft_id=info:doi/10.1115%2F1.4037857&rft_id=info%3Apmid%2F28890987&rft_id=info%3Apmid%2F28890987&rft.externalDocID=28890987 |